0
Review Article

Mechanics of Crystalline Nanowires: An Experimental Perspective

[+] Author and Article Information
Yong Zhu

Department of Mechanical
and Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27502
e-mail: yong_zhu@ncsu.edu

Manuscript received June 24, 2016; final manuscript received December 11, 2016; published online January 12, 2017. Assoc. Editor: Xiaodong Li.

Appl. Mech. Rev 69(1), 010802 (Jan 12, 2017) (24 pages) Paper No: AMR-16-1054; doi: 10.1115/1.4035511 History: Received June 24, 2016; Revised December 11, 2016

A wide variety of crystalline nanowires (NWs) with outstanding mechanical properties have recently emerged. Measuring their mechanical properties and understanding their deformation mechanisms are of important relevance to many of their device applications. On the other hand, such crystalline NWs can provide an unprecedented platform for probing mechanics at the nanoscale. While challenging, the field of experimental mechanics of crystalline nanowires has emerged and seen exciting progress in the past decade. This review summarizes recent advances in this field, focusing on major experimental methods using atomic force microscope (AFM) and electron microscopes and key results on mechanics of crystalline nanowires learned from such experimental studies. Advances in several selected topics are discussed including elasticity, fracture, plasticity, and anelasticity. Finally, this review surveys some applications of crystalline nanowires such as flexible and stretchable electronics, nanocomposites, nanoelectromechanical systems (NEMS), energy harvesting and storage, and strain engineering, where mechanics plays a key role.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zhu, T. , and Li, J. , 2010, “ Ultra-Strength Materials,” Prog. Mater. Sci., 55, pp. 710–757. [CrossRef]
Suresh, S. , and Li, J. , 2008, “ Materials Science Deformation of the Ultra-Strong,” Nature, 456, pp. 716–717. [CrossRef] [PubMed]
Baughman, R. H. , Zakhidov, A. A. , and de Heer, W. A. , 2002, “ Carbon Nanotubes—The Route Toward Applications,” Science, 297, pp. 787–792. [CrossRef] [PubMed]
Xu, F. , Wang, X. , Zhu, Y. T. , and Zhu, Y. , 2012, “ Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors,” Adv. Funct. Mater. 22(6), pp. 1279–1283. [CrossRef]
Wang, Z. L. , and Song, J. H. , 2006, “ Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,” Science, 312(5771), pp. 242–246. [CrossRef] [PubMed]
Law, M. , Greene, L. E. , Johnson, J. C. , Saykally, R. , and Yang, P. D. , 2005, “ Nanowire Dye-Sensitized Solar Cells,” Nat. Mater., 4, pp. 455–459. [CrossRef] [PubMed]
Hochbaum, A. I. , Chen, R. K. , Delgado, R. D. , Liang, W. J. , Garnett, E. C. , Najarian, M. , Majumdar, A. , and Yang, P. D. , 2008, “ Enhanced Thermoelectric Performance of Rough Silicon Nanowires,” Nature, 451, pp. 163–167. [CrossRef] [PubMed]
Chan, C. K. , Peng, H. L. , Liu, G. , McIlwrath, K. , Zhang, X. F. , Huggins, R. A. , and Cui, Y. , 2008, “ High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnol., 3, pp. 31–35. [CrossRef] [PubMed]
Yang, Y. T. , Ekinci, K. L. , Huang, X. M. H. , Schiavone, L. M. , Roukes, M. L. , Zorman, C. A. , and Mehregany, M. , 2001, “ Monocrystalline Silicon Carbide Nanoelectromechanical Systems,” Appl. Phys. Lett., 78(2), pp. 162–164. [CrossRef]
Lee, J.-Y. , Connor, S. T. , Cui, Y. , and Peumans, P. , 2008, “ Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett., 8(2), pp. 689–692. [CrossRef] [PubMed]
De, S. , Higgins, T. M. , Lyons, P. E. , Doherty, E. M. , Nirmalraj, P. N. , Blau, W. J. , Boland, J. J. , and Coleman, J. N. , 2009, “ Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano, 3(7), pp. 1767–1774. [CrossRef] [PubMed]
Xu, F. , and Zhu, Y. , 2012, “ Highly Conductive and Stretchable Silver Nanowire Conductors,” Adv. Mater., 24(37), pp. 5117–5122. [CrossRef] [PubMed]
Yao, S. , and Zhu, Y. , 2015, “ Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices,” Adv. Mater., 27(9), pp. 1480–4511. [CrossRef] [PubMed]
Lee, P. , Lee, J. , Lee, H. , Yeo, J. , Hong, S. , Nam, K. H. , Lee, D. , Lee, S. S. , and Ko, S. H. , 2012, “ Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network,” Adv. Mater., 24(25), pp. 3326–3332. [CrossRef] [PubMed]
Grumstrup, E. M. , Gabriel, M. M. , Pinion, C. W. , Parker, J. K. , Cahoon, J. F. , and Papanikolas, J. M. , 2014, “ Reversible Strain-Induced Electron-Hole Recombination in Silicon Nanowires Observed With Femtosecond Pump-Probe Microscopy,” Nano Lett. 14(11), pp. 6287–6292. [CrossRef] [PubMed]
Park, H. S. , and Qian, X. , 2010, “ Surface-Stress-Driven Lattice Contraction Effects on the Extinction Spectra of Ultrasmall Silver Nanowires,” J. Phys. Chem. C, 114(19), pp. 8741–8748. [CrossRef]
Wang, W. , Yang, Q. , Fan, F. , Xu, H. , and Wang, Z. L. , 2011, “ Light Propagation in Curved Silver Nanowire Plasmonic Waveguides,” Nano Lett., 11(4), pp. 1603–1608. [CrossRef] [PubMed]
Oliver, W. C. , and Pharr, G. M. , 1992, “ An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7(6), pp. 1564–1583. [CrossRef]
Nix, W. D. , 1989, “ Mechanical-Properties of Thin-Films,” Metall. Trans. A: Phys. Metall. Mater. Sci., 20, pp. 2217–2245. [CrossRef]
Nix, W. D. , and Gao, H. , 1998, “ Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity,” J. Mech. Phys. Solids, 46(3), pp. 411–425. [CrossRef]
Greer, J. R. , and De Hosson, J. T. M. , 2011, “ Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect,” Prog. Mater. Sci., 56(6), pp. 654–724. [CrossRef]
Uchic, M. D. , Shade, P. A. , and Dimiduk, D. M. , 2009, “ Plasticity of Micrometer-Scale Single Crystals in Compression,” Annu. Rev. Mater. Res., 39, pp. 361–386. [CrossRef]
Volkert, C. A. , and Lilleodden, E. T. , 2006, “ Size Effects in the Deformation of Sub-Micron Au Columns,” Philos. Mag., 86(33–35), pp. 5567–5579. [CrossRef]
Uchic, M. D. , Dimiduk, D. M. , Florando, J. N. , and Nix, W. D. , 2004, “ Sample Dimensions Influence Strength and Crystal Plasticity,” Science, 305(5686), pp. 986–989. [CrossRef] [PubMed]
Greer, J. R. , Oliver, W. C. , and Nix, W. D. , 2005, “ Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients,” Acta Mater., 53(6), pp. 1821–1830. [CrossRef]
Weinberger, C. R. , and Cai, W. , 2008, “ Surface-Controlled Dislocation Multiplication in Metal Micropillars,” Proc. Natl. Acad. Sci. U.S.A., 105(38), pp. 14304–14307. [CrossRef] [PubMed]
Tang, H. , Schwarz, K. , and Espinosa, H. , 2007, “ Dislocation Escape-Related Size Effects in Single-Crystal Micropillars Under Uniaxial Compression,” Acta Mater., 55(5), pp. 1607–1616. [CrossRef]
El-Awady, J. , Woodward, C. , Dimiduk, D. , and Ghoniem, N. , 2009, “ Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars,” Phys. Rev. B 80(1), p. 104104. [CrossRef]
Guruprasad, P. , and Benzerga, A. , 2008, “ Size Effects Under Homogeneous Deformation of Single Crystals: A Discrete Dislocation Analysis,” J. Mech. Phys. Solids, 56(1), pp. 132–156. [CrossRef]
Oh, S. H. , Legros, M. , Kiener, D. , and Dehm, G. , 2009, “ In Situ Observation of Dislocation Nucleation and Escape in a Submicrometre Aluminium Single Crystal,” Nat. Mater., 8, pp. 95–100. [CrossRef] [PubMed]
Diao, J. , Gall, K. , Dunn, M. L. , and Zimmerman, J. A. , 2006, “ Atomistic Simulations of the Yielding of Gold Nanowires,” Acta Mater., 54(3), pp. 643–653. [CrossRef]
Park, H. S. , Gall, K. , and Zimmerman, J. A. , 2006, “ Deformation of FCC Nanowires by Twinning and Slip,” J. Mech. Phys. Solids, 54(9), pp. 1862–1881. [CrossRef]
Zhu, T. , Li, J. , Samanta, A. , Leach, A. , and Gall, K. , 2008, “ Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation,” Phys. Rev. Lett., 100, p. 25502. [CrossRef]
Zheng, H. , Cao, A. , Weinberger, C. R. , Huang, J. Y. , Du, K. , Wang, J. , Ma, Y. , Xia, Y. , and Mao, S. X. , 2010, “ Discrete Plasticity in Sub-10-nm-Sized Gold Crystals,” Nat. Commun., 1, p. 144. [CrossRef] [PubMed]
Qian, D. , Wagner, G. J. , Liu, W. K. , Yu, M. F. , and Ruoff, R. S. , 2002, “ Mechanics of Carbon Nanotubes,” ASME Appl. Mech. Rev., 55(6), pp. 495–533. [CrossRef]
Weinberger, C. R. , and Cai, W. , 2012, “ Plasticity of Metal Nanowires,” J. Mater. Chem., 22, pp. 3277–3292. [CrossRef]
Park, H. S. , Cai, W. , Espinosa, H. D. , and Huang, H. , 2009, “ Mechanics of Crystalline Nanowires,” MRS Bull., 34(3), pp. 178–183. [CrossRef]
Salvetat, J. P. , Briggs, G. A. D. , Bonard, J. M. , Bacsa, R. R. , Kulik, A. J. , Stockli, T. , Burnham, N. A. , and Forro, L. , 1999, “ Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes,” Phys. Rev. Lett., 82, pp. 944–947. [CrossRef]
Walters, D. A. , Ericson, L. M. , Casavant, M. J. , Liu, J. , Colbert, D. T. , Smith, K. A. , and Smalley, R. E. , 1999, “ Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes,” Appl. Phys. Lett. 74(25), pp. 3803–3805. [CrossRef]
Li, X. D. , Hao, H. S. , Murphy, C. J. , and Caswell, K. K. , 2003, “ Nanoindentation of Silver Nanowires,” Nano Lett., 3(11), pp. 1495–1498. [CrossRef]
Cuenot, S. , Fretigny, C. , Demoustier-Champagne, S. , and Nysten, B. , 2004, “ Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy,” Phys. Rev. B, 69, p. 165410. [CrossRef]
Wu, B. , Heidelberg, A. , and Boland, J. J. , 2005, “ Mechanical Properties of Ultrahigh-Strength Gold Nanowires,” Nat. Mater., 4, pp. 525–529. [CrossRef] [PubMed]
Paulo, A. S. , Bokor, J. , Howe, R. T. , He, R. , Yang, P. , Gao, D. , Carraro, C. , and Maboudian, R. , 2005, “ Mechanical Elasticity of Single and Double Clamped Silicon Nanobeams Fabricated by the Vapor–Liquid–Solid Method,” Appl. Phys. Lett. 87(5), p. 53111. [CrossRef]
Sohn, Y.-S. , Park, J. , Yoon, G. , Song, J. , Jee, S.-W. , Lee, J.-H. , Na, S. , Kwon, T. , and Eom, K. , 2010, “ Mechanical Properties of Silicon Nanowires Nanoscale,” Res. Lett., 5(1), pp. 211–216.
Treacy, M. M. J. , Ebbesen, T. W. , and Gibson, J. M. , 1996, “ Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes,” Nature, 381, pp. 678–680. [CrossRef]
Poncharal, P. , Wang, Z. L. , Ugarte, D. , and de Heer, W. A. , 1999, “ Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes,” Science, 283(5407), pp. 1513–1516. [CrossRef] [PubMed]
Yu, M. F. , Lourie, O. , Dyer, M. J. , Moloni, K. , Kelly, T. F. , and Ruoff, R. S. , 2000, “ Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, 287(5453), pp. 637–640. [CrossRef] [PubMed]
Dikin, D. A. , Chen, X. , Ding, W. , Wagner, G. , and Ruoff, R. S. , 2003, “ Resonance Vibration of Amorphous SiO2 Nanowires Driven by Mechanical or Electrical Field Excitation,” J. Appl. Phys., 93(1), pp. 226–230. [CrossRef]
Zhu, Y. , and Espinosa, H. D. , 2005, “ An Electromechanical Material Testing System for In Situ Electron Microscopy and Applications,” Proc. Natl. Acad. Sci. U.S.A., 102(41), pp. 14503–14508. [CrossRef] [PubMed]
Chen, C. Q. , Shi, Y. , Zhang, Y. S. , Zhu, J. , and Yan, Y. J. , 2006, “ Size Dependence of the Young's Modulus of ZnO Nanowires,” Phys. Rev. Lett., 96, p. 75505. [CrossRef]
Zhu, Y. , Xu, F. , Qin, Q. Q. , Fung, W. Y. , and Lu, W. , 2009, “ Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires,” Nano Lett. 9(11), pp. 3934–3939. [CrossRef] [PubMed]
Richter, G. , Hillerich, K. , Gianola, D. S. , Mönig, R. , Kraft, O. , and Volkert, C. A. , 2009, “ Ultra High Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition,” Nano Lett., 9(8), pp. 3048–3052. [CrossRef] [PubMed]
Xu, F. , Qin, Q. , Mishra, A. , Gu, Y. , and Zhu, Y. , 2010, “ Mechanical Properties of ZnO Nanowires Under Different Loading Modes,” Nano Res., 3(4), pp. 271–280. [CrossRef]
Chang, T.-H. , and Zhu, Y. , 2013, “ A Microelectromechanical System for Thermomechanical Testing of Nanostructures,” Appl. Phys. Lett., 103(26), p. 263114. [CrossRef]
Qin, Q. , Yin, S. , Cheng, G. , Li, X. , Chang, T.-H. , Richter, G. , Zhu, Y. , and Gao, H. , 2015, “ Recoverable Plasticity in Penta-Twinned Metallic Nanowires Governed by Dislocation Nucleation and Retraction,” Nat. Commun., 6, p. 5983. [CrossRef] [PubMed]
Ramachandramoorthy, R. , Gao, W. , Bernal, R. , and Espinosa, H. , 2016, “ High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition,” Nano Lett., 16(1), pp. 255–263. [CrossRef] [PubMed]
Zhu, Y. , Ke, C. , and Espinosa, H. D. , 2007, “ Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures,” Exp. Mech., 47, pp. 7–24. [CrossRef]
Li, X. D. , Chasiotis, I. , and Kitamura, T. , 2010, “ In Situ Scanning Probe Microscopy Nanomechanical Testing,” MRS Bull., 35(5), pp. 361–367. [CrossRef]
Chen, Y. , Dorgan, B. L. , McIlroy, D. N. , and Eric Aston, D. , 2006, “ On the Importance of Boundary Conditions on Nanomechanical Bending Behavior and Elastic Modulus Determination of Silver Nanowires,” J. Appl. Phys., 100(10), p. 104301. [CrossRef]
Jing, G. Y. , Duan, H. L. , Sun, X. M. , Zhang, Z. S. , Xu, J. , Li, Y. D. , Wang, J. X. , and Yu, D. P. , 2006, “ Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy,” Phys. Rev. B, 73, p. 235409. [CrossRef]
Qin, Q. , Xu, F. , Cao, Y. , Ro, P. I. , and Zhu, Y. , 2012, “ Measuring True Young's Modulus of a Cantilevered Nanowire: Effect of Clamping on Resonance Frequency,” Small, 8(16), pp. 2571–2576. [CrossRef] [PubMed]
Murphy, K. F. , Chen, L. Y. , and Gianola, D. S. , 2013, “ Effect of Organometallic Clamp Properties on the Apparent Diversity of Tensile Response of Nanowires,” Nanotechnology, 24(23), p. 235704. [CrossRef] [PubMed]
Zhang, H. , Tang, J. , Zhang, L. , An, B. , and Qin, L.-C. , 2008, “ Atomic Force Microscopy Measurement of the Young's Modulus and Hardness of Single LaB6 Nanowires,” Appl. Phys. Lett., 92(17), p. 173121. [CrossRef]
Ni, H. , and Li, X. D. , 2006, “ Young's Modulus of ZnO Nanobelts Measured Using Atomic Force Microscopy and Nanoindentation Techniques,” Nanotechnology, 17(14), pp. 3591–3597. [CrossRef] [PubMed]
Ni, H. , Li, X. D. , and Gao, H. S. , 2006, “ Elastic Modulus of Amorphous SiO2 Nanowires,” Appl. Phys. Lett., 88(4), p. 043108. [CrossRef]
Wong, E. W. , Sheehan, P. E. , and Lieber, C. M. , 1997, “ Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277(5334), pp. 1971–1975. [CrossRef]
Heidelberg, A. , Ngo, L. T. , Wu, B. , Phillips, M. A. , Sharma, S. , Kamins, T. I. , Sader, J. E. , and Boland, J. J. , 2006, “ A Generalized Description of the Elastic Properties of Nanowires,” Nano Lett., 6(6), pp. 1101–1106. [CrossRef] [PubMed]
Wen, B. , Sader, J. E. , and Boland, J. J. , 2008, “ Mechanical Properties of ZnO Nanowires,” Phys. Rev. Lett., 101, p. 175502. [CrossRef] [PubMed]
Ngo, L. T. , Almécija, D. , Sader, J. E. , Daly, B. , Petkov, N. , Holmes, J. D. , Erts, D. , and Boland, J. J. , 2006, “ Ultimate-Strength Germanium Nanowires,” Nano Lett., 6(12), pp. 2964–2968. [CrossRef] [PubMed]
Lucas, M. , Leach, A. M. , McDowell, M. T. , Hunyadi, S. E. , Gall, K. , Murphy, C. J. , and Riedo, E. , 2008, “ Plastic Deformation of Pentagonal Silver Nanowires: Comparison Between AFM Nanoindentation and Atomistic Simulations,” Phys. Rev. B, 77, p. 245420. [CrossRef]
Rabe, U. , Janser, K. , and Arnold, W. , 1996, “ Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment,” Rev. Sci. Instrum., 67(9), pp. 3281–3293. [CrossRef]
Yamanaka, K. , Maruyama, Y. , Tsuji, T. , and Nakamoto, K. , 2001, “ Resonance Frequency and Q Factor Mapping by Ultrasonic Atomic Force Microscopy,” Appl. Phys. Lett., 78(13), pp. 1939–1941. [CrossRef]
Hurley, D. C. , Shen, K. , Jennett, N. M. , and Turner, J. A. , 2003, “ Atomic Force Acoustic Microscopy Methods to Determine Thin-Film Elastic Properties,” J. Appl. Phys., 94(4), pp. 2347–2354. [CrossRef]
Stan, G. , King, S. W. , and Cook, R. F. , 2012, “ Nanoscale Mapping of Contact Stiffness and Damping by Contact Resonance Atomic Force Microscopy,” Nanotechnology, 23(21), p. 215703. [CrossRef] [PubMed]
Marszalek, P. E. , Greenleaf, W. J. , Li, H. , Oberhauser, A. F. , and Fernandez, J. M. , 2000, “ Atomic Force Microscopy Captures Quantized Plastic Deformation in Gold Nanowires,” Proc. Natl. Acad. Sci. U.S.A., 97(12), pp. 6282–6286. [CrossRef] [PubMed]
Marszalek, P. E. , Li, H. , Oberhauser, A. F. , and Fernandez, J. M. , 2002, “ Chair-Boat Transitions in Single Polysaccharide Molecules Observed With Force-Ramp AFM,” Proc. Natl. Acad. Sci., 99(7), pp. 4278–4283. [CrossRef]
Rief, M. , Gautel, M. , Oesterhelt, F. , Fernandez, J. M. , and Gaub, H. E. , 1997, “ Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM,” Science, 276(5315), pp. 1109–1112. [CrossRef] [PubMed]
Strus, M. C. , Lahiji, R. R. , Ares, P. , López, V. , Raman, A. , and Reifenberger, R. , 2009, “ Strain Energy and Lateral Friction Force Distributions of Carbon Nanotubes Manipulated Into Shapes by Atomic Force Microscopy,” Nanotechnology, 20, p. 385709. [CrossRef] [PubMed]
Stan, G. , Krylyuk, S. , Davydov, A. V. , Levin, I. , and Cook, R. F. , 2012, “ Ultimate Bending Strength of Si Nanowires,” Nano Lett., 12(5), pp. 2599–2604. [CrossRef] [PubMed]
Bordag, M. , Ribayrol, A. , Conache, G. , Froberg, L. E. , Gray, S. , Samuelson, L. , Montelius, L. , and Pettersson, H. , 2007, “ Shear Stress Measurements on InAs Nanowires by AFM Manipulation,” Small 3(8), pp. 1398–1401. [CrossRef] [PubMed]
Qin, Q. Q. , and Zhu, Y. , 2011, “ Static Friction Between Silicon Nanowires and Elastomeric Substrates,” ACS Nano 5(9), pp. 7404–7410. [CrossRef] [PubMed]
Li, X. , Gao, H. , Murphy, C. J. , and Gou, L. , 2004, “ Nanoindentation of Cu2O Nanocubes,” Nano Lett., 4, pp. 1903–1907. [CrossRef]
Mao, S. X. , Zhao, M. , and Wang, Z. L. , 2003, “ Nanoscale Mechanical Behavior of Individual Semiconducting Nanobelts,” Appl. Phys. Lett., 83(5), pp. 993–995. [CrossRef]
Li, X. , Wang, X. , Xiong, Q. , and Eklund, P. C. , 2005, “ Mechanical Properties of ZnS Nanobelts,” Nano Lett., 5(10), pp. 1982–1986. [CrossRef] [PubMed]
Feng, G. , Nix, W. D. , Yoon, Y. , and Lee, C. J. , 2006, “ A Study of the Mechanical Properties of Nanowires Using Nanoindentation,” J. Appl. Phys., 99(7), p. 074304. [CrossRef]
Shu, S. Q. , Yang, Y. , Fu, T. , Wen, C. S. , and Lu, J. , 2009, “ Can Young's Modulus and Hardness of Wire Structural Materials be Directly Measured Using Nanoindentation?,” J. Mater. Res., 24(3), pp. 1054–1058. [CrossRef]
Wu, X. , Amin, S. S. , and Xu, T. T. , 2010, “ Substrate Effect on the Young's Modulus Measurement of TiO2 Nanoribbons by Nanoindentation,” J. Mater. Res., 25(5), pp. 935–942. [CrossRef]
Kim, Y.-J. , Son, K. , Choi, I.-C. , Choi, I.-S. , Park, W. Il. , and Jang, J. , 2011, “ Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation,” Adv. Funct. Mater. 21(20), pp. 279–286. [CrossRef]
Ogletree, D. F. , Carpick, R. W. , and Salmeron, M. , 1996, “ Calibration of Frictional Forces in Atomic Force Microscopy,” Rev. Sci. Instrum. 67(9), pp. 3298–3306. [CrossRef]
Li, Q. , Kim, K.-S. , and Rydberg, A. , 2006, “ Lateral Force Calibration of an Atomic Force Microscope With a Diamagnetic Levitation Spring System,” Rev. Sci. Instrum., 77(6), p. 65105. [CrossRef]
Cannara, R. J. , Eglin, M. , and Carpick, R. W. , 2006, “ Lateral Force Calibration in Atomic Force Microscopy: A New Lateral Force Calibration Method and General Guidelines for Optimization,” Rev. Sci. Instrum., 77(5), p. 53701. [CrossRef]
Chen, C. Q. , and Zhu, J. , 2007, “ Bending Strength and Flexibility of ZnO Nanowires,” Appl. Phys. Lett., 90(4), p. 043105. [CrossRef]
Hoffmann, S. , Utke, I. , Moser, B. , Michler, J. , Christiansen, S. H. , Schmidt, V. , Senz, S. , Werner, P. , Gosele, U. , and Ballif, C. , 2006, “ Measurement of the Bending Strength of Vapor–Liquid–Solid Grown Silicon Nanowires,” Nano Lett., 6(4), pp. 622–625. [CrossRef] [PubMed]
Hoffmann, S. , Ostlund, F. , Michler, J. , Fan, H. J. , Zacharias, M. , Christiansen, S. H. , and Ballif, C. , 2007, “ Fracture Strength and Young's Modulus of ZnO Nanowires,” Nanotechnology, 18(20), p. 205503. [CrossRef]
Xu, F. , Qin, Q. Q. , Mishra, A. , Gu, Y. , and Zhu, Y. , 2010, “ Mechanical Properties of ZnO Nanowires Under Different Loading Modes,” Nano Res. 3(4), pp. 271–280. [CrossRef]
Lin, C.-H. , Ni, H. , Wang, X. , Chang, M. , Chao, Y. J. , Deka, J. R. , and Li, X. , 2010, “ In Situ Nanomechanical Characterization of Single-Crystalline Boron Nanowires by Buckling,” Small, 6(8), pp. 927–931. [CrossRef] [PubMed]
Hsin, C.-L. , Mai, W. , Gu, Y. , Gao, Y. , Huang, C.-T. , Liu, Y. , Chen, L.-J. , and Wang, Z.-L. , 2008, “ Elastic Properties and Buckling of Silicon Nanowires,” Adv. Mater., 20(20), pp. 3919–3923. [CrossRef]
Agrawal, R. , Peng, B. , Gdoutos, E. , and Espinosa, H. D. , 2008, “ Elasticity Size Effects in ZnO Nanowires—A Combined Experimental-Computational Approach,” Nano Lett., 8(11), pp. 3668–3674. [CrossRef] [PubMed]
He, M.-R. , Shi, Y. , Zhou, W. , Chen, J. W. , Yan, Y. J. , and Zhu, J. , 2009, “ Diameter Dependence of Modulus in Zinc Oxide Nanowires and the Effect of Loading Mode: In Situ Experiments and Universal Core-Shell Approach,” Appl. Phys. Lett., 95(9), p. 91912. [CrossRef]
Desai, A. V. , and Haque, M. A. , 2007, “ Sliding of Zinc Oxide Nanowires on Silicon Substrate,” Appl. Phys. Lett., 90(3), p. 33102. [CrossRef]
Cheng, G. , Miao, C. , Qin, Q. , Li, J. , Xu, F. , Haftbaradaran, H. , Dickey, E. C. , Gao, H. , and Zhu, Y. , 2015, “ Large Anelasticity and Associated Energy Dissipation in Single-Crystalline Nanowires,” Nat. Nanotechnol., 10 pp. 687–691. [CrossRef] [PubMed]
Chang, T.-H. , Cheng, G. , Li, C. , and Zhu, Y. , 2016, “ On the Size-Dependent Elasticity of Penta-Twinned Silver Nanowires,” Extrem. Mech. Lett. 8, pp. 177–183. [CrossRef]
Gianola, D. S. , and Eberl, C. , 2009, “ Micro- and Nanoscale Tensile Testing of Materials,” JOM, 61, pp. 24–35. [CrossRef]
Kiener, D. , and Minor, A. M. , 2011, “ Source Truncation and Exhaustion: Insights From Quantitative In Situ TEM Tensile Testing,” Nano Lett., 11(9), pp. 3816–3820. [CrossRef] [PubMed]
Yu, Q. , Qi, L. , Chen, K. , Mishra, R. K. , Li, J. , and Minor, A. M. , 2012, “ The Nanostructured Origin of Deformation Twinning,” Nano Lett., 12(2), pp. 887–892. [CrossRef] [PubMed]
Kiener, D. , Grosinger, W. , Dehm, G. , and Pippan, R. , 2008, “ A Further Step Towards an Understanding of Size-Dependent Crystal Plasticity: In Situ Tension Experiments of Miniaturized Single-Crystal Copper Samples,” Acta Mater., 56(3), pp. 580–592. [CrossRef]
Wang, J. , and Mao, S. X. , 2016, “ Atomistic Perspective on In Situ Nanomechanics Extrem,” Mech. Lett., 8, pp. 127–139. [CrossRef]
Wang, J. , Zeng, Z. , Weinberger, C. R. , Zhang, Z. , Zhu, T. , and Mao, S. X. , 2015, “ In Situ Atomic-Scale Observation of Twinning-Dominated Deformation in Nanoscale Body-Centred Cubic Tungsten,” Nat. Mater., 14, pp. 594–600. [CrossRef] [PubMed]
Lu, Y. , Huang, J. Y. , Wang, C. , Sun, S. , and Lou, J. , 2010, “ Cold Welding of Ultrathin Gold Nanowires,” Nat. Nanotechnol. 5, pp. 218–224. [CrossRef] [PubMed]
Eberl, C. , Gianola, D. S. , and Thompson, R. , 2006, “ Digital Image Correlation and Tracking,” File ID: 12413.
Ding, W. , Calabri, L. , Chen, X. , Kohlhaas, K. M. , and Ruoff, R. S. , 2006, “ Mechanics of Crystalline Boron Nanowires,” Compos. Sci. Technol., 66(9), pp. 1112–1124. [CrossRef]
Zhu, Y. , 2016, “ In-Situ Nanomechanical Testing of Crystalline Nanowires in Electron Microscopes,” JOM, 68(1), pp. 84–93. [CrossRef]
Kahn, H. , Ballarini, R. , Mullen, R. L. , and Heuer, A. H. , 1999, “ Electrostatically Actuated Failure of Microfabricated Polysilicon Fracture Mechanics Specimens,” Proc. R. Soc. London Ser. A, 455(1990), pp. 3807–3823. [CrossRef]
Haque, M. A. , and Saif, M. T. A. , 2003, “ A Review of MEMS-Based Microscale and Nanoscale Tensile and Bending Testing,” Exp. Mech., 43(3), pp. 248–255. [CrossRef]
Corigliano, A. , De Masi, B. , Frangi, A. , Comi, C. , Villa, A. , and Marchi, M. , 2004, “ Mechanical Characterization of Polysilicon Through On-Chip Tensile Tests,” J. Microelectromech. Syst., 13(2), pp. 200–219. [CrossRef]
Hazra, S. S. , Baker, M. S. , Beuth, J. L. , and de Boer, M. P. , 2009, “ Demonstration of an In Situ On-Chip Tensile Tester,” J. Micromech. Microeng., 19, p. 082001. [CrossRef]
Haque, M. A. , Espinosa, H. D. , and Lee, H. J. , 2011, “ MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements,” MRS Bull., 35(5), pp. 375–381. [CrossRef]
Zhu, Y. , and Chang, T.-H. , 2015, “ A Review of Microelectromechanical Systems for Nanoscale Mechanical Characterization,” J. Micromech. Microeng., 25(9), p. 93001. [CrossRef]
Haque, M. A. , and Saif, M. T. A. , 2002, “ In-Situ Tensile Testing of Nano-Scale Specimens in SEM and TEM,” Exp. Mech., 42(1), pp. 123–128. [CrossRef]
Haque, M. A. , and Saif, M. T. A. , 2002, “ Application of MEMS Force Sensors for In Situ Mechanical Characterization of Nano-Scale Thin Films in SEM and TEM,” Sens. Actuators A 97–98, pp. 239–245. [CrossRef]
Zhu, Y. , Moldovan, N. , and Espinosa, H. D. , 2005, “ A Microelectromechanical Load Sensor for In Situ Electron and X-Ray Microscopy Tensile Testing of Nanostructures,” Appl. Phys. Lett. 86(1), p. 13506. [CrossRef]
Zhu, Y. , Corigliano, A. , and Espinosa, H. D. , 2006, “ A Thermal Actuator for Nanoscale In Situ Microscopy Testing: Design and Characterization,” J. Micromech. Microeng., 16(2), pp. 242–253. [CrossRef]
Espinosa, H. D. , Zhu, Y. , and Moldovan, N. , 2007, “ Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization,” J. Microelectromech. Syst., 16(5), pp. 1219–1231. [CrossRef]
Hosseinian, E. , and Pierron, O. N. , 2013, “ Quantitative In Situ TEM Tensile Fatigue Testing on Nanocrystalline Metallic Ultrathin Films,” Nanoscale, 5(24), pp. 12532–12541. [CrossRef] [PubMed]
Chen, L. Y. , Richter, G. , Sullivan, J. P. , and Gianola, D. S. , 2012, “ Lattice Anharmonicity in Defect-Free Pd Nanowhiskers,” Phys. Rev. Lett., 109, p. 125503. [CrossRef] [PubMed]
Zhang, D. F. , Drissen, W. , Breguet, J. M. , Clavel, R. , and Michler, J. , 2009, “ A High-Sensitivity and Quasi-Linear Capacitive Sensor for Nanomechanical Testing Applications,” J. Micromech. Microeng., 19(7), p. 075003. [CrossRef]
Steighner, M. S. , Snedeker, L. P. , Boyce, B. L. , Gall, K. , Miller, D. C. , and Muhlstein, C. L. , 2011, “ Dependence on Diameter and Growth Direction of Apparent Strain to Failure of Si Nanowires,” J. Appl. Phys., 109(3), p. 033503. [CrossRef]
Ganesan, Y. , Lu, Y. , Peng, C. , Ballarini, R. , and Lou, J. , 2010, “ Development and Application of a Novel Microfabricated Device for the In Situ Tensile Testing of 1-D Nanomaterials,” J. Microelectromech. Syst., 19(3), pp. 675–682. [CrossRef]
Tsuchiya, T. , Ura, Y. , Sugano, K. , and Tabata, O. , 2012, “ Electrostatic Tensile Testing Device With Nanonewton and Nanometer Resolution and Its Application to Nanowire Testing,” J. Microelectromech. Syst., 21(3), pp. 523–529. [CrossRef]
Yilmaz, M. , and Kysar, J. W. , 2013, “ Monolithic Integration of Nanoscale Tensile Specimens and MEMS Structures,” Nanotechnology, 24(16), p. 165502. [CrossRef] [PubMed]
Brown, J. J. , Baca, A. I. , Bertness, K. A. , Dikin, D. A. , Ruoff, R. S. , and Bright, V. M. , 2011, “ Tensile Measurement of Single Crystal Gallium Nitride Nanowires on MEMS Test Stages,” Sens. Actuators, A, 166(2), pp. 177–186. [CrossRef]
Zhang, Y. , Liu, X. , Ru, C. , Zhang, Y. L. , Dong, L. , and Sun, Y. , 2011, “ Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device,” J. Microelectromech. Syst., 20(4), pp. 959–967. [CrossRef]
Pant, B. , Choi, S. , Baumert, E. K. , Allen, B. L. , Graham, S. , Gall, K. , and Pierron, O. N. , 2012, “ MEMS-Based Nanomechanics: Influence of MEMS Design on Test Temperature,” Exp. Mech., 52(6), pp. 607–617. [CrossRef]
Chen, L. Y. , Terrab, S. , Murphy, K. F. , Sullivan, J. P. , Cheng, X. , and Gianola, D. S. , 2014, “ Temperature Controlled Tensile Testing of Individual Nanowires,” Rev. Sci. Instrum., 85(1), p. 13901. [CrossRef]
Kang, W. , and Saif, M. T. A. , 2011, “ A Novel SiC MEMS Apparatus for In Situ Uniaxial Testing of Micro/Nanomaterials at High Temperature,” J. Micromech. Microeng., 21(10), p. 105017. [CrossRef]
Bernal, R. A. , Filleter, T. , Connell, J. , Sohn, K. , Huang, J. , Lauhon, L. J. , and Espinosa, H. D. , 2014, “ In Situ Electron Microscopy Four-Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires,” Small, 10(4), pp. 725–733. [CrossRef] [PubMed]
Murphy, K. F. , Piccione, B. , Zanjani, M. B. , Lukes, J. R. , and Gianola, D. S. , 2014, “ Strain- and Defect-Mediated Thermal Conductivity in Silicon Nanowires,” Nano Lett., 14(7), pp. 3785–3792. [CrossRef] [PubMed]
Qin, Q. , and Zhu, Y. , 2013, “ Temperature Control in Thermal Microactuators With Applications to In-Situ Nanomechnaical Testing,” Appl. Phys. Lett., 102(1), p. 13101. [CrossRef]
Lu, S. N. , Chung, J. , and Ruoff, R. S. , 2005, “ Controlled Deposition of Nanotubes on Opposing Electrodes,” Nanotechnology, 16(9), pp. 1765–1770. [CrossRef]
Guo, H. , Chen, K. , Oh, Y. , Wang, K. , Dejoie, C. , Syed Asif, S. A. , Warren, O. L. , Shan, Z. W. , Wu, J. , and Minor, A. M. , 2011, “ Mechanics and Dynamics of the Strain-Induced M1-M2 Structural Phase Transition in Individual VO2 Nanowires,” Nano Lett., 11(8), pp. 3207–3213. [CrossRef] [PubMed]
Naraghi, M. , Chasiotis, I. , Kahn, H. , Wen, Y. K. , and Dzenis, Y. , 2007, “ Mechanical Deformation and Failure of Electrospun Polyacrylonitrile Nanofibers as a Function of Strain Rate,” Appl. Phys. Lett., 91(15), p. 151901. [CrossRef]
Ganesan, Y. , Peng, C. , Lu, Y. , Ci, L. , Srivastava, A. , Ajayan, P. M. , and Lou, J. , 2010, “ Effect of Nitrogen Doping on the Mechanical Properties of Carbon Nanotubes,” ACS Nano, 4(12), pp. 7637–7643. [CrossRef] [PubMed]
Espinosa, H. D. , Bernal, R. A. , and Filleter, T. , 2012, “ In Situ TEM Electromechanical Testing of Nanowires and Nanotubes,” Small, 8(21), pp. 3233–3252. [CrossRef] [PubMed]
Song, J. H. , Wang, X. D. , Riedo, E. , and Wang, Z. L. , 2005, “ Elastic Property of Vertically Aligned Nanowires,” Nano Lett. 5(10), pp. 1954–1958. [CrossRef] [PubMed]
Gordon, M. J. , Baron, T. , Dhalluin, F. , Gentile, P. , and Ferret, P. , 2009, “ Size Effects in Mechanical Deformation and Fracture of Cantilevered Silicon Nanowires,” Nano Lett., 9(2), pp. 525–529. [CrossRef] [PubMed]
Miller, R. E. , and Shenoy, V . B. , 2000, “ Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology, 11(3), pp. 139–147. [CrossRef]
Dingreville, R. , Qu, J. , and Cherkaoui, M. , 2005, “ Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films,” J. Mech. Phys. Solids, 53(8), pp. 1827–1854. [CrossRef]
Diao, J. K. , Gall, K. , and Dunn, M. L. , 2004, “ Atomistic Simulation of the Structure and Elastic Properties of Gold Nanowires,” J. Mech. Phys. Solids, 52(9), pp. 1935–1962. [CrossRef]
Zhou, L. G. , and Huang, H. C. , 2004, “ Are Surfaces Elastically Softer or Stiffer?,” Appl. Phys. Lett., 84(11), pp. 1940–1942. [CrossRef]
Sharma, P. , Ganti, S. , and Bhate, N. , 2003, “ Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities,” Appl. Phys. Lett., 82(4), pp. 535–537. [CrossRef]
Liang, H. Y. , Upmanyu, M. , and Huang, H. C. , 2005, “ Size-Dependent Elasticity of Nanowires: Nonlinear Effects,” Phys. Rev. B, 71, p. 241403. [CrossRef]
McDowell, M. T. , Leach, A. M. , and Gall, K. , 2008, “ Bending and Tensile Deformation of Metallic Nanowires Model,” Simul. Mater. Sci. Eng., 16(4), p. 45003. [CrossRef]
Diao, J. K. , Gall, K. , and Dunn, M. L. , 2003, “ Surface-Stress-Induced Phase Transformation in Metal Nanowires,” Nat. Mater., 2, pp. 656–660. [CrossRef] [PubMed]
Shim, H. W. , Zhou, L. G. , Huang, H. , and Cale, T. S. , 2005, “ Nanoplate Elasticity Under Surface Reconstruction,” Appl. Phys. Lett., 86(15), p. 151912. [CrossRef]
He, J. , and Lilley, C. M. , 2008, “ Surface Effect on the Elastic Behavior of Static Bending Nanowires,” Nano Lett., 8(7), pp. 1798–1802. [CrossRef] [PubMed]
Song, F. , Huang, G. L. , Park, H. S. , and Liu, X. N. , 2011, “ A Continuum Model for the Mechanical Behavior of Nanowires Including Surface and Surface-Induced Initial Stresses,” Int. J. Solids Struct., 48(14–15), pp. 2154–2163. [CrossRef]
Wang, G. , and Feng, X. , 2009, “ Surface Effects on Buckling of Nanowires Under Uniaxial Compression,” Appl. Phys. Lett., 94(14), p. 141913. [CrossRef]
Park, H. , and Klein, P. , 2008, “ Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress,” J. Mech. Phys. Solids, 56(11), pp. 3144–3166. [CrossRef]
Yun, G. , and Park, H. , 2009, “ Surface Stress Effects on the Bending Properties of fcc Metal Nanowires,” Phys. Rev. B, 79, p. 195421. [CrossRef]
Wang, J. , Huang, Z. , Duan, H. , Yu, S. , Feng, X. , Wang, G. , Zhang, W. , and Wang, T. , 2011, “ Surface Stress Effect in Mechanics of Nanostructured Materials,” Acta Mech. Solida Sin., 24(1), pp. 52–82. [CrossRef]
Lee, B. , and Rudd, R. E. , 2007, “ First-Principles Calculation of Mechanical Properties of Si <001> Nanowires and Comparison to Nanomechanical Theory,” Phys. Rev. B, 75, p. 195328. [CrossRef]
Tabib-Azar, M. , Nassirou, M. , Wang, R. , Sharma, S. , Kamins, T. I. , Islam, M. S. , and Williams, R. S. , 2005, “ Mechanical Properties of Self-Welded Silicon Nanobridges,” Appl. Phys. Lett., 87(11), p. 113102. [CrossRef]
Kang, K. , and Cai, W. , 2007, “ Brittle and Ductile Fracture of Semiconductor Nanowires—Molecular Dynamics Simulations,” Philos. Mag., 87(14–15), pp. 2169–2189. [CrossRef]
Han, X. , Zheng, K. , Zhang, Y. F. , Zhang, X. , Zhang, Z. , and Wang, Z. L. , 2007, “ Low-Temperature In Situ Large-Strain Plasticity of Silicon Nanowires,” Adv. Mater., 19(16), pp. 2112–2118. [CrossRef]
Li, X. X. , Ono, T. , Wang, Y. L. , and Esashi, M. , 2003, “ Ultrathin Single-Crystalline-Silicon Cantilever Resonators: Fabrication Technology and Significant Specimen Size Effect on Young's Modulus,” Appl. Phys. Lett., 83(15), pp. 3081–3083. [CrossRef]
Desai, A. V. , and Haque, M. A. , 2007, “ Mechanical Properties of ZnO Nanowires,” Sens. Actuators A, 134(1), pp. 169–176. [CrossRef]
Bai, X. D. , Gao, P. X. , Wang, Z. L. , and Wang, E. G. , 2003, “ Dual-Mode Mechanical Resonance of Individual ZnO Nanobelts,” Appl. Phys. Lett., 82(26), pp. 4806–4808. [CrossRef]
Zhu, Y. , Qin, Q. Q. , Xu, F. , Fan, F. R. , Ding, Y. , Zhang, T. , Wiley, B. J. , and Wang, Z. L. , 2012, “ Size Effects on Elasticity, Yielding and Fracture of Silver Nanowires: In Situ Experiments,” Phys. Rev. B, 85, p. 45443. [CrossRef]
Filleter, T. , Ryu, S. , Kang, K. , Yin, J. , Bernal, R. A. , Sohn, K. , Li, S. , Huang, J. , Cai, W. , and Espinosa, H. D. , 2012, “ Nucleation-Controlled Distributed Plasticity in Penta-Twinned Silver Nanowires,” Small, 8(19), pp. 2986–2993. [CrossRef] [PubMed]
Wu, B. , Heidelberg, A. , Boland, J. J. , Sader, J. E. , Sun, X. , and Li, Y. , 2006, “ Microstructure-Hardened Silver Nanowires,” Nano Lett., 6(3), pp. 468–472. [CrossRef] [PubMed]
Alducin, D. , Borja, R. , Ortega, E. , Velazquez-Salazar, J. J. , Covarrubias, M. , Santoyo, F. M. , Bazán-Díaz, L. , Sanchez, J. E. , Torres, N. , Ponce, A. , and José-Yacamán, M. , 2016, “ In Situ Transmission Electron Microscopy Mechanical Deformation and Fracture of a Silver Nanowire,” Scr. Mater., 113, pp. 63–67. [CrossRef]
Park, H. S. , 2008, “ Surface Stress Effects on the Resonant Properties of Silicon Nanowires,” J. Appl. Phys., 103(12), p. 123504. [CrossRef]
Sun, C. Q. , 2007, “ Size Dependence of Nanostructures: Impact of Bond Order Deficiency,” Prog. Solid State Chem., 35(1), pp. 1–159. [CrossRef]
Zhang, L. , and Huang, H. , 2006, “ Young's Moduli or ZnO Nanoplates: Ab Initio Determinations,” Appl. Phys. Lett., 89(18), p. 183111. [CrossRef]
Kulkarni, A. J. , Zhou, M. , and Ke, F. J. , 2005, “ Orientation and Size Dependence of the Elastic Properties of Zinc Oxide Nanobelts,” Nanotechnology, 16(12), pp. 2749–2756. [CrossRef]
Cao, G. , and Chen, X. , 2007, “ Analysis of Size-Dependent Elastic Properties of ZnO Nanofilms Using Atomistic Simulations,” Phys. Rev. B, 76, p. 165407. [CrossRef]
Bernal, R. A. , Agrawal, R. , Peng, B. , Bertness, K. A. , Sanford, N. A. , Davydov, A. V. , and Espinosa, H. D. , 2011, “ Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined In Situ TEM and Atomistic Modeling Investigation,” Nano Lett., 11(2), pp. 548–555. [CrossRef] [PubMed]
Jang, D. , Li, X. , Gao, H. , and Greer, J. R. , 2012, “ Deformation Mechanisms in Nanotwinned Metal Nanopillars,” Nat. Nanotechnol., 7, pp. 594–601. [CrossRef] [PubMed]
Seo, J.-H. , Yoo, Y. , Park, N.-Y. , Yoon, S.-W. , Lee, H. , Han, S. , Lee, S.-W. , Seong, T.-Y. , Lee, S.-C. , Lee, K.-B. , Cha, P.-R. , Park, H. S. , Kim, B. , and Ahn, J.-P. , 2011, “ Superplastic Deformation of Defect-Free Au Nanowires Via Coherent Twin Propagation,” Nano Lett., 11(8), pp. 3499–3502. [CrossRef] [PubMed]
Wiley, B. , Sun, Y. , Mayers, B. , and Xia, Y. , 2005, “ Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver,” Chem. Eur. J., 11(2), pp. 454–463. [CrossRef]
McDowell, M. T. , Leach, A. M. , and Gall, K. , 2008, “ On the Elastic Modulus of Metallic Nanowires,” Nano Lett., 8(11), pp. 3613–3618. [CrossRef] [PubMed]
Yoo, J. H. , Oh, S. I. , and Jeong, M. S. , 2010, “ The Enhanced Elastic Modulus of Nanowires Associated With Multitwins,” J. Appl. Phys., 107(9), p. 94316. [CrossRef]
Wu, J. Y. , Nagao, S. , He, J. Y. , and Zhang, Z. L. , 2011, “ Role of Five-Fold Twin Boundary on the Enhanced Mechanical Properties of fcc Fe Nanowires,” Nano Lett., 11(12), pp. 5264–5273. [CrossRef] [PubMed]
Zheng, Y. G. , Zhao, Y. T. , Ye, H. F. , and Zhang, H. W. , 2014, “ Size-Dependent Elastic Moduli and Vibrational Properties of Fivefold Twinned Copper Nanowires,” Nanotechnology, 25(31), p. 315701. [CrossRef] [PubMed]
Wen, Y.-H. , Huang, R. , Zhu, Z.-Z. , and Wang, Q. , 2012, “ Mechanical Properties of Platinum Nanowires: An Atomistic Investigation on Single-Crystalline and Twinned Structures,” Comput. Mater. Sci., 55, pp. 205–210. [CrossRef]
Niekiel, F. , Spiecker, E. , and Bitzek, E. , 2015, “ Influence of Anisotropic Elasticity on the Mechanical Properties of Fivefold Twinned Nanowires,” J. Mech. Phys. Solids, 84, pp. 358–379. [CrossRef]
Bernal, R. A. , Aghaei, A. , Lee, S. , Ryu, S. , Sohn, K. , Huang, J. , Cai, W. , and Espinosa, H. , 2015, “ Intrinsic Bauschinger Effect and Recoverable Plasticity in Pentatwinned Silver Nanowires Tested in Tension,” Nano Lett., 15(1), pp. 139–146. [CrossRef] [PubMed]
Zheng, X.-P. , Cao, Y.-P. , Li, B. , Feng, X.-Q. , and Wang, G.-F. , 2010, “ Surface Effects in Various Bending-Based Test Methods for Measuring the Elastic Property of Nanowires,” Nanotechnology, 21(20), p. 205702. [CrossRef] [PubMed]
Pearson, G. , Read, W. , and Feldmann, W. , 1957, “ Deformation and Fracture of Small Silicon Crystals,” Acta Metall. 5(4), pp. 181–191. [CrossRef]
Johansson, S. , Schweitz, J.-Å. , Tenerz, L. , and Tirén, J. , 1988, “ Fracture Testing of Silicon Microelements In Situ in a Scanning Electron Microscope,” J. Appl. Phys., 63(10), pp. 4799–4803. [CrossRef]
Nakao, S. , Ando, T. , Shikida, M. , and Satol, K. , 2006, “ Mechanical Properties of a Micron-Sized SCS Film in a High-Temperature Environment,” J. Micromech. Microeng., 16(4), pp. 715–720. [CrossRef]
Zhang, D. , Breguet, J.-M. , Clavel, R. , Sivakov, V. , Christiansen, S. , and Michler, J. , 2010, “ In Situ Electron Microscopy Mechanical Testing of Silicon Nanowires Using Electrostatically Actuated Tensile Stages,” J. Microelectromech. Syst., 19(3), pp. 663–674. [CrossRef]
Tang, D.-M. , Ren, C.-L. , Wang, M.-S. , Wei, X. , Kawamoto, N. , Liu, C. , Bando, Y. , Mitome, M. , Fukata, N. , and Golberg, D. , 2012, “ Mechanical Properties of Si Nanowires as Revealed by In Situ Transmission Electron Microscopy and Molecular Dynamics Simulations,” Nano Lett., 12(4), pp. 1898–1904. [CrossRef] [PubMed]
Wagner, A. , Hintsala, E. , Kumar, P. , Gerberich, W. , and Mkhoyan, K. , 2015, “ Mechanisms of Plasticity in Near-Theoretical Strength Sub-100 nm Si Nanocubes,” Acta Mater. 100, pp. 256–265. [CrossRef]
Agrawal, R. , Peng, B. , and Espinosa, H. D. , 2009, “ Strength and Fracture Mechanism of Zinc Oxide Nanowires Under Uniaxial Tensile Load,” Nano Lett., 9(12), pp. 4177–4183. [CrossRef] [PubMed]
Cheng, G. , Chang, T.-H. , Qin, Q. , Huang, H. , and Zhu, Y. , 2014, “ Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density,” Nano Lett., 14(2), pp. 754–758. [CrossRef] [PubMed]
Narayanan, S. , Cheng, G. , Zeng, Z. , Zhu, Y. , and Zhu, T. , 2015, “ Strain Hardening and Size Effect in Five-Fold Twinned Ag Nanowires,” Nano Lett., 15(6), pp. 4037–4044. [CrossRef] [PubMed]
Brenner, S. S. , 1956, “ Tensile Strength of Whiskers,” J. Appl. Phys., 27, pp. 1484–1491. [CrossRef]
Tsuchiya, T. , Hirata, M. , Chiba, N. , Udo, R. , Yoshitomi, Y. , Ando, T. , Sato, K. , Takashima, K. , Higo, Y. , Saotome, Y. , Ogawa, H. , and Ozaki, K. , 2005, “ Cross Comparison of Thin-Film Tensile-Testing Methods Examined Using Single-Crystal Silicon, Polysilicon, Nickel, and Titanium Films,” J. Microelectromech. Syst., 14(5), pp. 1178–1186. [CrossRef]
DelRio, F. W. , Cook, R. F. , and Boyce, B. L. , 2015, “ Fracture Strength of Micro- and Nano-Scale Silicon Components,” Appl. Phys. Rev., 2(2), p. 21303. [CrossRef]
Sharpe, W. N. , Jackson, K. M. , Hemker, K. J. , and Xie, Z. L. , 2001, “ Effect of Specimen Size on Young's Modulus and Fracture Strength of Polysilicon,” J. Microelectromech. Syst., 10(3), pp. 317–326. [CrossRef]
Boyce, B. L. , Grazier, J. M. , Buchheit, T. E. , and Shaw, M. J. , 2007, “ Strength Distributions in Polycrystalline Silicon MEMS,” J. Microelectromech. Syst., 16(2), pp. 179–190. [CrossRef]
Ballarini, R. , Kahn, H. , Tayebi, N. , and Heuer, A. H. , 2000, “ Effects of Microstructure on the Strength and Fracture Toughness of Polysilicon: A Wafer Level Testing Approach,” Symposium on Mechanical Properties of Structural Films, C. L. Muhlstein, ed., American Society Testing and Materials, Orlando, FL, p. 37.
Chasiotis, I. , and Knauss, W. G. , 2003, “ The Mechanical Strength of Polysilicon Films: Part 1. The Influence of Fabrication Governed Surface Conditions,” J. Mech. Phys. Solids, 51(8), pp. 1533–1550. [CrossRef]
Soudi, A. , Khan, E. H. , Dickinson, J. T. , and Gu, Y. , 2009, “ Observation of Unintentionally Incorporated Nitrogen-Related Complexes in ZnO and GaN Nanowires,” Nano Lett. 9(5), pp. 1844–1849. [CrossRef] [PubMed]
Agrawal, R. , Bernal, R. A. , Isheim, D. , and Espinosa, H. D. , 2011, “ Characterizing Atomic Composition and Dopant Distribution in Wide Band Gap Semiconductor Nanowires Using Laser-Assisted Atom Probe Tomography,” J. Phys. Chem. C, 115(36), pp. 17688–17694. [CrossRef]
Perea, D. E. , Hemesath, E. R. , Schwalbach, E. J. , Lensch-Falk, J. L. , Voorhees, P. W. , and Lauhon, L. J. , 2009, “ Direct Measurement of Dopant Distribution in an Individual Vapour-Liquid-Solid Nanowire,” Nat. Nanotechnol., 4, pp. 315–319. [CrossRef] [PubMed]
Lopez, F. J. , Hemesath, E. R. , and Lauhon, L. J. , 2009, “ Ordered Stacking Fault Arrays in Silicon Nanowires,” Nano Lett., 9(7), pp. 2774–2779. [CrossRef] [PubMed]
He, M. R. , and Zhu, J. , 2011, “ Defect-Dominated Diameter Dependence of Fracture Strength in Single-Crystalline ZnO Nanowires: In Situ Experiments,” Phys. Rev. B, 83, p. 161302. [CrossRef]
He, M.-R. , Xiao, P. , Zhao, J. , Dai, S. , Ke, F. , and Zhu, J. , 2011, “ Quantifying the Defect-Dominated Size Effect of Fracture Strain in Single Crystalline ZnO Nanowires,” J. Appl. Phys. 109(12), p. 123504. [CrossRef]
Kelly, T. F. , and Miller, M. K. , 2007, “ Invited Review Article: Atom Probe Tomography,” Rev. Sci. Instrum., 78(3), p. 031101.
Robertson, I. M. , Schuh, C. A. , Vetrano, J. S. , Browning, N. D. , Field, D. P. , Jensen, D. J. , Miller, M. K. , Baker, I. , Dunand, D. C. , Dunin-Borkowski, R. , Kabius, B. , Kelly, T. , Lozano-Perez, S. , Misra, A. , Rohrer, G. S. , Rollett, A. D. , Taheri, M. L. , Thompson, G. B. , Uchic, M. , Wang, X.-L. , and Was, G. , 2011, “ Towards an Integrated Materials Characterization Toolbox,” J. Mater. Res., 26(11), pp. 1341–1383. [CrossRef]
Shim, H. W. , and Huang, H. C. , 2007, “ Three-Stage Transition During Silicon Carbide Nanowire Growth,” Appl. Phys. Lett., 90(8), p. 083106.
Zhang, Y. F. , Han, X. D. , Zheng, K. , Zhang, Z. , Zhang, X. N. , Fu, J. Y. , Ji, Y. , Hao, Y. J. , Guo, X. Y. , and Wang, Z. L. , 2007, “ Direct Observation of Super-Plasticity of Beta-SiC Nanowires at Low Temperature,” Adv. Funct. Mater., 17(17), pp. 3435–3440. [CrossRef]
Wang, J. , Lu, C. , Wang, Q. , Xiao, P. , Ke, F. , Bai, Y. , Shen, Y. , Liao, X. , and Gao, H. , 2012, “ Influence of Microstructures on Mechanical Behaviours of SiC Nanowires: A Molecular Dynamics Study,” Nanotechnology, 23(2), p. 25703. [CrossRef]
Wu, Z. , Zhang, Y.-W. , Jhon, M. H. , Gao, H. , and Srolovitz, D. J. , 2012, “ Nanowire Failure: Long = Brittle and Short = Ductile,” Nano Lett. 12(2), pp. 910–914. [CrossRef] [PubMed]
Peng, C. , Zhan, Y. , and Lou, J. , 2012, “ Size-Dependent Fracture Mode Transition in Copper Nanowires,” Small, 8(12), pp. 1889–1894. [CrossRef] [PubMed]
Chen, L. Y. , He, M.-R. , Shin, J. , Richter, G. , and Gianola, D. S. , 2015, “ Measuring Surface Dislocation Nucleation in Defect-Scarce Nanostructures,” Nat. Mater., 14, pp. 707–713. [CrossRef] [PubMed]
Liang, W. , Zhou, M. , and Ke, F. , 2005, “ Shape Memory Effect in Cu Nanowires,” Nano Lett., 5(10), pp. 2039–2043. [CrossRef] [PubMed]
Sedlmayr, A. , Bitzek, E. , Gianola, D. S. , Richter, G. , Mönig, R. , and Kraft, O. , 2012, “ Existence of Two Twinning-Mediated Plastic Deformation Modes in Au Nanowhiskers,” Acta Mater., 60(9), pp. 3985–3993. [CrossRef]
Lu, K. , Lu, L. , and Suresh, S. , 2009, “ Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science, 324(5925), pp. 349–352. [CrossRef] [PubMed]
Li, X. , Wei, Y. , Lu, L. , Lu, K. , and Gao, H. , 2010, “ Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals,” Nature 464, pp. 877–880. [CrossRef] [PubMed]
Sansoz, F. , Huang, H. , and Warner, D. H. , 2008, “ An Atomistic Perspective on Twinning Phenomena in Nano-Enhanced fcc Metals,” JOM, 60, pp. 79–84. [CrossRef]
Deng, C. , and Sansoz, F. , 2009, “ Enabling Ultrahigh Plastic Flow and Work Hardening in Twinned Gold Nanowires,” Nano Lett., 9(4), pp. 1517–1522. [CrossRef] [PubMed]
Wang, J. , Sansoz, F. , Huang, J. , Liu, Y. , Sun, S. , Zhang, Z. , and Mao, S. X. , 2013, “ Near-Ideal Theoretical Strength in Gold Nanowires Containing Angstrom Scale Twins,” Nat. Commun., 4, p. 1742. [CrossRef] [PubMed]
Rajagopalan, J. , Han, J. H. , and Saif, M. T. A. , 2007, “ Plastic Deformation Recovery in Freestanding Nanocrystalline Aluminum and Gold Thin Films,” Science, 315(5820), pp. 1831–1834. [CrossRef] [PubMed]
Rajagopalan, J. , Rentenberger, C. , Peter Karnthaler, H. , Dehm, G. , and Saif, M. T. A. , 2010, “ In Situ TEM Study of Microplasticity and Bauschinger Effect in Nanocrystalline Metals,” Acta Mater., 58(14), pp. 4772–4782. [CrossRef]
Mompiou, F. , Caillard, D. , Legros, M. , and Mughrabi, H. , 2012, “ In Situ TEM Observations of Reverse Dislocation Motion Upon Unloading in Tensile-Deformed UFG Aluminium,” Acta Mater., 60(8), pp. 3402–3414. [CrossRef]
Xiang, Y. , and Vlassak, J. J. , 2005, “ Bauschinger Effect in Thin Metal Films,” Scr. Mater. 53(2), pp. 177–182. [CrossRef]
Jennings, A. T. , Gross, C. , Greer, F. , Aitken, Z. H. , Lee, S.-W. , Weinberger, C. R. , and Greer, J. R. , 2012, “ Higher Compressive Strengths and the Bauschinger Effect in Conformally Passivated Copper Nanopillars,” Acta Mater., 60(8), p. 3444. [CrossRef]
Lee, S. , Im, J. , Yoo, Y. , Bitzek, E. , Kiener, D. , Richter, G. , Kim, B. , and Oh, S. H. , 2014, “ Reversible Cyclic Deformation Mechanism of Gold Nanowires by Twinning-Detwinning Transition Evidenced From In Situ TEM,” Nat. Commun., 5, p. 3033. [PubMed]
Sun, J. , He, L. , Lo, Y.-C. , Xu, T. , Bi, H. , Sun, L. , Zhang, Z. , Mao, S. X. , and Li, J. , 2014, “ Liquid-Like Pseudoelasticity of Sub-10-nm Crystalline Silver Particles,” Nat. Mater., 13, pp. 1007–1012. [CrossRef] [PubMed]
Schuh, C. A. , Mason, J. K. , and Lund, A. C. , 2005, “ Quantitative Insight Into Dislocation Nucleation From High-Temperature Nanoindentation Experiments,” Nat. Mater., 4, pp. 617–621. [CrossRef] [PubMed]
Li, J. , 2015, “ Dislocation Nucleation: Diffusive Origins,” Nat. Mater., 14, pp. 656–657. [CrossRef] [PubMed]
Lakes, R. , 2009, Viscoelastic Material, Cambridge University Press, Cambridge, UK.
Zener, C. , 1948, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, IL.
Nowick, A. S. , and Berry, B. S. , 1972, Anelastic Relaxation in Crystalline Solids, Academic Press, New York.
Schaumann, G. , Völkl, J. , and Alefeld, G. , 1968, “ Relaxation Process Due to Long-Range Diffusion of Hydrogen and Deuterium in Niobium,” Phys. Rev. Lett., 21, pp. 891–893. [CrossRef]
Chen, B. , Gao, Q. , Wang, Y. , Liao, X. , Mai, Y.-W. , Tan, H. H. , Zou, J. , Ringer, S. P. , and Jagadish, C. , 2013, “ Anelastic Behavior in GaAs Semiconductor Nanowires,” Nano Lett., 13(7), pp. 3169–3172. [CrossRef] [PubMed]
Sheng, H. , Zheng, H. , Cao, F. , Wu, S. , Li, L. , Liu, C. , Zhao, D. , and Wang, J. , 2015, “ Anelasticity of Twinned CuO Nanowires,” Nano Res. 8(11), pp. 3687–3693. [CrossRef]
Fan, Z. Y. , Ho, J. C. , Takahashi, T. , Yerushalmi, R. , Takei, K. , Ford, A. C. , Chueh, Y. L. , and Javey, A. , 2009, “ Toward the Development of Printable Nanowire Electronics and Sensors,” Adv. Mater., 21(37), pp. 3730–3743. [CrossRef]
Ju, S. , Facchetti, A. , Xuan, Y. , Liu, J. , Ishikawa, F. , Ye, P. , Zhou, C. , Marks, T. J. , and Janes, D. B. , 2007, “ Fabrication of Fully Transparent Nanowire Transistors for Transparent and Flexible Electronics,” Nat. Nanotechnol., 2, pp. 378–384. [CrossRef] [PubMed]
McAlpine, M. C. , Ahmad, H. , Wang, D. W. , and Heath, J. R. , 2007, “ Highly Ordered Nanowire Arrays on Plastic Substrates for Ultrasensitive Flexible Chemical Sensors,” Nat. Mater. 6, pp. 379–384. [CrossRef] [PubMed]
Lu, W. , and Lieber, C. M. , 2006, “ Semiconductor Nanowires,” J. Phys. D: Appl. Phys., 39, pp. R387–R406. [CrossRef]
Xu, F. , Lu, W. , and Zhu, Y. , 2011, “ Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics,” ACS Nano, 5(1), pp. 672–678. [CrossRef] [PubMed]
Yao, S. , and Zhu, Y. , 2014, “ Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires,” Nanoscale, 6, pp. 2345–2352. [CrossRef] [PubMed]
Meyyappan, M. , and Sunkara, M. K. , 2010, Inorganic Nanowires: Applications, Properties and Characterization, CRC Press, Boca Raton, FL.
Zhou, J. , Gu, Y. , Fei, P. , Mai, W. , Gao, Y. , Yang, R. , Bao, G. , and Wang, Z. L. , 2008, “ Flexible Piezotronic Strain Sensor,” Nano Lett., 8(9), pp. 3035–3040. [CrossRef] [PubMed]
Hu, L. B. , Kim, H. S. , Lee, J. Y. , Peumans, P. , and Cui, Y. , 2010, “ Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano, 4(5), pp. 2955–2963. [CrossRef] [PubMed]
Wu, J. , Zang, J. , Rathmell, A. R. , Zhao, X. , and Wiley, B. J. , 2013, “ Reversible Sliding in Networks of Nanowires,” Nano Lett., 13(6), pp. 2381–2386. [CrossRef] [PubMed]
Scardaci, V. , Coull, R. , Lyons, P. E. , Rickard, D. , and Coleman, J. N. , 2011, “ Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires Over Large Areas,” Small, 7(18), pp. 2621–2628. [CrossRef] [PubMed]
Yu, Z. , Zhang, Q. , Li, L. , Chen, Q. , Niu, X. , Liu, J. , and Pei, Q. , 2011, “ Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes,” Adv. Mater., 23(5), pp. 664–668. [CrossRef] [PubMed]
Rogers, J. A. , Someya, T. , and Huang, Y. G. , 2010, “ Materials and Mechanics for Stretchable Electronics,” Science, 327(5973), pp. 1603–1607. [CrossRef] [PubMed]
Khang, D. Y. , Jiang, H. Q. , Huang, Y. , and Rogers, J. A. , 2006, “ A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” Science, 311(5758), pp. 208–212. [CrossRef] [PubMed]
Kim, D.-H. , Lu, N. , Ma, R. , Kim, Y.-S. , Kim, R.-H. , Wang, S. , Wu, J. , Won, S. M. , Tao, H. , Islam, A. , Yu, K. J. , Kim, T. , Chowdhury, R. , Ying, M. , Xu, L. , Li, M. , Chung, H.-J. , Keum, H. , McCormick, M. , Liu, P. , Zhang, Y.-W. , Omenetto, F. G. , Huang, Y. , Coleman, T. , and Rogers, J. A. , 2011, “ Epidermal Electronics,” Science, 333(6044), pp. 838–843. [CrossRef] [PubMed]
Kim, D. , Xiao, J. , Song, J. , Huang, Y. , and Rogers, J. A. , 2010, “ Stretchable, Curvilinear Electronics Based on Inorganic Materials,” Adv. Mater., 22(19), pp. 2108–2124. [CrossRef] [PubMed]
Hammock, M. L. , Chortos, A. , Tee, B. C.-K. , Tok, J. B.-H. , and Bao, Z. , 2013, “ 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress,” Adv. Mater., 25(42), pp. 5997–6038. [CrossRef] [PubMed]
Ryu, S. Y. , Xiao, J. L. , Il Park, W. , Son, K. S. , Huang, Y. Y. , Paik, U. , and Rogers, J. A. , 2009, “ Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates,” Nano Lett., 9(9), pp. 3214–3219. [CrossRef] [PubMed]
Durham, J. W. , and Zhu, Y. , 2013, “ Fabrication of Functional Nanowire Devices on Unconventional Substrates Using Strain-Release Assembly,” ACS Appl. Mater. Interfaces, 5(2), pp. 256–261. [CrossRef] [PubMed]
Hu, W. , Niu, X. , Li, L. , Yun, S. , Yu, Z. , and Pei, Q. , 2012, “ Intrinsically Stretchable Transparent Electrodes Based on Silver-Nanowire-Crosslinked-Polyacrylate Composites,” Nanotechnology, 23(34), p. 344002. [CrossRef] [PubMed]
Yao, S. , and Zhu, Y. , 2016, “ Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review,” JOM, 68(4), pp. 1145–1155. [CrossRef]
Myers, A. C. , Huang, H. , and Zhu, Y. , 2015, “ Wearable Silver Nanowire Dry Electrodes for Electrophysiological Sensing,” RSC Adv., 5(15), pp. 11627–11632. [CrossRef]
Cui, Z. , Poblete, F. R. , Cheng, G. , Yao, S. , Jiang, X. , and Zhu, Y. , 2015, “ Design and Operation of Silver Nanowire Based Flexible and Stretchable Touch Sensors,” J. Mater. Res., 30(1), pp. 79–85. [CrossRef]
Song, L. , Myers, A. C. , Adams, J. J. , and Zhu, Y. , 2014, “ Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires,” ACS Appl. Mater. Interfaces, 6(6), pp. 4248–4253. [CrossRef] [PubMed]
Chen, Y. , Zhu, Y. , Chen, X. , and Liu, Y. , 2016, “ Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate,” ASME J. Appl. Mech., 83(4), p. 041011. [CrossRef]
Chen, Y. , Liu, Y. , Yan, Y. , Zhu, Y. , and Chen, X. , 2016, “ Helical Coil Buckling Mechanism for a Stiff Nanowire on an Elastomeric Substrate,” J. Mech. Phys. Solids, 95, pp. 25–43. [CrossRef]
Jiang, T. , Huang, R. , and Zhu, Y. , 2014, “ Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate,” Adv. Funct. Mater., 24(3), pp. 396–402. [CrossRef]
Guo, G. , and Zhu, Y. , 2015, “ Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate,” ASME J. Appl. Mech., 82(3), p. 031005. [CrossRef]
Hwang, B. , Kim, T. , and Han, S. M. , 2016, “ Compression and Tension Bending Fatigue Behavior of Ag Nanowire Network Extrem,” Mech. Lett., 8, pp. 266–272. [CrossRef]
De Volder, M. F. L. , Tawfick, S. H. , Baughman, R. H. , and Hart, A. J. , 2013, “ Carbon Nanotubes: Present and Future Commercial Applications,” Science, 339(6119), pp. 535–539. [CrossRef] [PubMed]
Wu, R. , Zhou, K. , Yue, C. Y. , Wei, J. , and Pan, Y. , 2015, “ Recent Progress in Synthesis, Properties and Potential Applications of SiC Nanomaterials,” Prog. Mater. Sci., 72, pp. 1–60. [CrossRef]
Yang, W. , Araki, H. , Tang, C. , Thaveethavorn, S. , Kohyama, A. , Suzuki, H. , and Noda, T. , 2005, “ Single-Crystal SiC Nanowires With a Thin Carbon Coating for Stronger and Tougher Ceramic Composites,” Adv. Mater., 17(12), pp. 1519–1523. [CrossRef]
Yang, W. , Araki, H. , Kohyama, A. , Yang, Q. , Xu, Y. , Yu, J. , and Noda, T. , 2007, “ The Effect of SiC Nanowires on the Flexural Properties of CVI-SiC/SiC Composites,” J. Nucl. Mater., 367–370(Pt. a), pp. 708–712. [CrossRef]
Vivekchand, S. R. C. , Ramamurty, U. , and Rao, C. N. R. , 2006, “ Mechanical Properties of Inorganic Nanowire Reinforced Polymer–Matrix Composites,” Nanotechnology, 17(11), pp. S344–S350. [CrossRef]
Yanhui, C. , Qiangang, F. , Hejun, L. , Xiaohong, S. , Kezhi, L. , Xue, W. , and Gunan, S. , 2012, “ Effect of SiC Nanowires on the Mechanical and Oxidation Protective Ability of SiC Coating for C/C Composites,” J. Am. Ceram. Soc., 95(2), pp. 739–745. [CrossRef]
Fu, Q.-G. , Jia, B.-L. , Li, H.-J. , Li, K.-Z. , and Chu, Y.-H. , 2012, “ SiC Nanowires Reinforced MAS Joint of SiC Coated Carbon/Carbon Composites to LAS Glass Ceramics,” Mater. Sci. Eng. A, 532, pp. 255–259. [CrossRef]
Qian, D. , Dickey, E. C. , Andrews, R. , and Rantell, T. 2000, “ Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Appl. Phys. Lett., 76(20), pp. 2868–2870. [CrossRef]
Thostenson, E. T. , Ren, Z. , and Chou, T.-W. , 2001, “ Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review,” Compos. Sci. Technol., 61(13), pp. 1899–1912. [CrossRef]
Gao, X.-L. , and Li, K. , 2005, “ A Shear-lag Model for Carbon Nanotube-Reinforced Polymer Composites,” Int. J. Solids Struct., 42(5–6), pp. 1649–1667. [CrossRef]
Chen, X. , Zhang, L. , Zheng, M. , Park, C. , Wang, X. , and Ke, C. , 2015, “ Quantitative Nanomechanical Characterization of the van der Waals Interfaces Between Carbon Nanotubes and Epoxy,” Carbon, 82, pp. 214–228. [CrossRef]
Wagner, H. D. , and Vaia, R. A. , 2004, “ Nanocomposites: Issues at the Interface,” Mater. Today, 7(11), pp. 38–42. [CrossRef]
Ding, W. , Eitan, A. , Fisher, F. T. , Chen, X. , Dikin, D. A. , Andrews, R. , Brinson, L. C. , Schadler, L. S. , and Ruoff, R. S. , 2003, “ Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites,” Nano Lett., 3(11), pp. 1593–1597. [CrossRef]
Loh, O. , and Espinosa, H. D. , 2012, “ Nanoelectromechanical Contact Switches,” Nat. Nanotechnol., 7, pp. 283–295. [CrossRef] [PubMed]
Eom, K. , Park, H. S. , Yoon, D. S. , and Kwon, T. , 2011, “ Nanomechanical Resonators and Their Applications in Biological/Chemical Detection: Nanomechanics Principles,” Phys. Rep.-Rev. Sect. Phys., Lett., 503(4–5), pp. 115–163.
Han, J.-W. , Ahn, J.-H. , Kim, M.-W. , Lee, J. O. , Yoon, J.-B. , and Choi, Y.-K. , 2010, “ Nanowire Mechanical Switch With a Built-In Diode,” Small, 6(11), pp. 1197–1200. [CrossRef] [PubMed]
Li, Q. , Koo, S.-M. , Edelstein, M. D. , Suehle, J. S. , and Richter, C. A. , 2007, “ Silicon Nanowire Electromechanical Switches for Logic Device Application,” Nanotechnology, 18(31), p. 315202. [CrossRef]
Feng, X. L. , Matheny, M. H. , Zorman, C. A. , Mehregany, M. , and Roukes, M. L. , 2010, “ Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires,” Nano Lett. 10(8), pp. 2891–2896. [CrossRef] [PubMed]
Husain, A. , Hone, J. , Postma, H. W. C. , Huang, X. M. H. , Drake, T. , Barbic, M. , Scherer, A. , and Roukes, M. L. , 2003, “ Nanowire-Based Very-High-Frequency Electromechanical Resonator,” Appl. Phys. Lett., 83(6), pp. 1240–1242. [CrossRef]
Feng, X. L. , He, R. , Yang, P. , and Roukes, M. L. 2007, “ Very High Frequency Silicon Nanowire Electromechanical Resonators,” Nano Lett. 7(7), pp. 1953–1959. [CrossRef]
Li, M. , Bhiladvala, R. B. , Morrow, T. J. , Sioss, J. A. , Lew, K.-K. , Redwing, J. M. , Keating, C. D. , and Mayer, T. S. , 2008, “ Bottom-Up Assembly of Large-Area Nanowire Resonator Arrays,” Nat. Nanotechnol., 3, pp. 88–92. [CrossRef] [PubMed]
Huang, Y. , Bai, X. , and Zhang, Y. , 2006, “ In Situ Mechanical Properties of Individual ZnO Nanowires and the Mass Measurement of Nanoparticles,” J. Phys. Condens. Matter, 18, pp. L179–L184. [CrossRef]
Yang, Y. T. , Callegari, C. , Feng, X. L. , Ekinci, K. L. , and Roukes, M. L. , 2006, “ Zeptogram-Scale Nanomechanical Mass Sensing,” Nano Lett., 6(4), pp. 583–586. [CrossRef] [PubMed]
He, R. R. , Feng, X. L. , Roukes, M. L. , and Yang, P. D. , 2008, “ Self-Transducing Silicon Nanowire Electromechanical Systems at Room Temperature,” Nano Lett., 8(6), pp. 1756–1761. [CrossRef] [PubMed]
Lou, L. , Zhang, S. , Park, W.-T. , Tsai, J. M. , Kwong, D.-L. , and Lee, C. , 2012, “ Optimization of NEMS Pressure Sensors With a Multilayered Diaphragm Using Silicon Nanowires as Piezoresistive Sensing Elements,” J. Micromech. Microeng., 22(5), p. 55012. [CrossRef]
He, R. R. , and Yang, P. D. , 2006, “ Giant Piezoresistance Effect in Silicon Nanowires,” Nat. Nanotechnol., 1, pp. 42–46. [CrossRef] [PubMed]
Kanda, Y. , 1991, “ Piezoresistance Effect of Silicon,” Sens. Actuators A, 28(2), pp. 83–91. [CrossRef]
Rowe, A. C. H. , 2014, “ Piezoresistance in Silicon and Its Nanostructures,” J. Mater. Res., 29(6), pp. 731–744. [CrossRef]
Boukai, A. I. , Bunimovich, Y. , Tahir-Kheli, J. , Yu, J. K. , Goddard, W. A. , and Heath, J. R. , 2008, “ Silicon Nanowires as Efficient Thermoelectric Materials,” Nature, 451, pp. 168–171. [CrossRef] [PubMed]
Chen, J. , Yang, J. , Li, Z. , Fan, X. , Zi, Y. , Jing, Q. , Guo, H. , Wen, Z. , Pradel, K. C. , Niu, S. , and Wang, Z. L. , 2015, “ Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach Toward Blue Energy,” ACS Nano, 9(3), pp. 3324–3331. [CrossRef] [PubMed]
Fan, F.-R. , Tian, Z.-Q. , and Lin Wang, Z. , 2012, “ Flexible Triboelectric Generator,” Nano Energy 1(2), pp. 328–334. [CrossRef]
Xu, S. , Qin, Y. , Xu, C. , Wei, Y. , Yang, R. , and Wang, Z. L. , 2010, “ Self-Powered Nanowire Devices,” Nat. Nanotechnol., 5, pp. 366–373. [CrossRef] [PubMed]
Agrawal, R. , and Espinosa, H. D. , 2011, “ Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation,” Nano Lett., 11(2), pp. 786–790. [CrossRef] [PubMed]
Dai, S. , Gharbi, M. , Sharma, P. , and Park, H. S. , 2011, “ Surface Piezoelectricity: Size Effects in Nanostructures and the Emergence of Piezoelectricity in Non-Piezoelectric Materials,” J. Appl. Phys., 110(10), p. 104305. [CrossRef]
Yan, Z. , and Jiang, L. Y. , 2011, “ The Vibrational and Buckling Behaviors of Piezoelectric Nanobeams With Surface Effects,” Nanotechnology, 22(24), p. 245703. [CrossRef] [PubMed]
Wang, G.-F. , and Feng, X.-Q. , 2010, “ Effect of Surface Stresses on the Vibration and Buckling of Piezoelectric Nanowires,” EPL (Europhys. Lett.), 91(5), p. 56007. [CrossRef]
Boukamp, B. A. , Lesh, G. C. , and Huggins, R. A. , 1981, “ All-Solid Lithium Electrodes With Mixed-Conductor Matrix,” J. Electrochem. Soc., 128(4), pp. 725–729. [CrossRef]
Huang, J. Y. , Zhong, L. , Wang, C. M. , Sullivan, J. P. , Xu, W. , Zhang, L. Q. , Mao, S. X. , Hudak, N. S. , Liu, X. H. , Subramanian, A. , Fan, H. , Qi, L. , Kushima, A. , and Li, J. , 2010, “ In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode,” Science, 330(6010), pp. 1515–1520. [CrossRef] [PubMed]
Karki, K. , Epstein, E. , Cho, J.-H. , Jia, Z. , Li, T. , Picraux, S. T. , Wang, C. , and Cumings, J. , 2012, “ Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes,” Nano Lett., 12(3), pp. 1392–1397. [CrossRef] [PubMed]
McDowell, M. T. , Lee, S. W. , Nix, W. D. , and Cui, Y. , 2013, “ 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries,” Adv. Mater., 25(36), pp. 4966–4985. [CrossRef] [PubMed]
Liu, X. H. , Wang, J. W. , Huang, S. , Fan, F. , Huang, X. , Liu, Y. , Krylyuk, S. , Yoo, J. , Dayeh, S. A. , Davydov, A. V. , Mao, S. X. , Picraux, S. T. , Zhang, S. , Li, J. , Zhu, T. , and Huang, J. Y. , 2012, “ In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon,” Nat. Nanotechnol., 7, pp. 749–756. [CrossRef] [PubMed]
Liu, X. H. , Zheng, H. , Zhong, L. , Huang, S. , Karki, K. , Zhang, L. Q. , Liu, Y. , Kushima, A. , Liang, W. T. , Wang, J. W. , Cho, J.-H. , Epstein, E. , Dayeh, S. A. , Picraux, S. T. , Zhu, T. , Li, J. , Sullivan, J. P. , Cumings, J. , Wang, C. , Mao, S. X. , Ye, Z. Z. , Zhang, S. , and Huang, J. Y. , 2011, “ Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation,” Nano Lett., 11(8), pp. 3312–3318. [CrossRef] [PubMed]
Chen, J. , Conache, G. , Pistol, M.-E. , Gray, S. M. , Borgström, M. T. , Xu, H. , Xu, H. Q. , Samuelson, L. , and Håkanson, U. , 2010, “ Probing Strain in Bent Semiconductor Nanowires With Raman Spectroscopy,” Nano Lett., 10(4), pp. 1280–1286. [CrossRef] [PubMed]
Han, X. , Kou, L. , Lang, X. , Xia, J. , Wang, N. , Qin, R. , Lu, J. , Xu, J. , Liao, Z. , Zhang, X. , Shan, X. , Song, X. , Gao, J. , Guo, W. , and Yu, D. , 2009, “ Electronic and Mechanical Coupling in Bent ZnO Nanowires,” Adv. Mater., 21(48), pp. 4937–4941. [CrossRef] [PubMed]
Wei, B. , Zheng, K. , Ji, Y. , Zhang, Y. , Zhang, Z. , and Han, X. , 2012, “ Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain,” Nano Lett., 12(9), pp. 4595–4599. [CrossRef] [PubMed]
Sun, L. , Kim, D. H. , Oh, K. H. , and Agarwal, R. , 2013, “ Strain-Induced Large Exciton Energy Shifts in Buckled CdS Nanowires,” Nano Lett., 13(8), pp. 3836–3842. [CrossRef] [PubMed]
Campbell, G. H. , McKeown, J. T. , and Santala, M. K. , 2014, “ Time Resolved Electron Microscopy for In Situ Experiments,” Appl. Phys. Rev., 1(4), p. 41101. [CrossRef]
Kim, J. S. , Lagrange, T. , Reed, B. W. , Taheri, M. L. , Armstrong, M. R. , King, W. E. , Browning, N. D. , and Campbell, G. H. , 2008, “ Imaging of Transient Structures Using Nanosecond In Situ TEM,” Science, 321(5895), pp. 1472–1475. [CrossRef] [PubMed]
Xu, F. , Durham, J. W. , Wiley, B. J. , and Zhu, Y. , 2011, “ Strain-Release Assembly of Nanowires on Stretchable Substrates,” ACS Nano, 5(2), pp. 1556–1563. [CrossRef] [PubMed]
Cao, Z. , Tao, L. , Akinwande, D. , Huang, R. , and Liechti, K. M. , 2015, “ Mixed-Mode Interactions Between Graphene and Substrates by Blister Tests,” ASME J. Appl. Mech., 82(8), p. 081008. [CrossRef]
Feng, X. , Meitl, M. A. , Bowen, A. M. , Huang, Y. , Nuzzo, R. G. , and Rogers, J. A. , 2007, “ Competing Fracture in Kinetically Controlled Transfer Printing,” Langmuir, 23(25), pp. 12555–12560. [CrossRef] [PubMed]
Meitl, M. A. , Zhu, Z. T. , Kumar, V. , Lee, K. J. , Feng, X. , Huang, Y. Y. , Adesida, I. , Nuzzo, R. G. , and Rogers, J. A. , 2006, “ Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nat. Mater., 5, pp. 33–38. [CrossRef]
Liu, X. , Long, Y.-Z. , Liao, L. , Duan, X. , and Fan, Z. 2012, “ Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics,” ACS Nano, 6(3), pp. 1888–9000. [CrossRef] [PubMed]
Schaedler, T. A. , Jacobsen, A. J. , Torrents, A. , Sorensen, A. E. , Lian, J. , Greer, J. R. , Valdevit, L. , and Carter, W. B. , 2011, “ Ultralight Metallic Microlattices,” Science, 334(6058), pp. 962–965. [CrossRef] [PubMed]
Meza, L. R. , Das, S. , and Greer, J. R. , 2014, “ Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices,” Science, 345(6202), pp. 1322–1326.
Zheng, X. , Lee, H. , Weisgraber, T. H. , Shusteff, M. , DeOtte, J. , Duoss, E. B. , Kuntz, J. D. , Biener, M. M. , Ge, Q. , Jackson, J. A. , Kucheyev, S. O. , Fang, N. X. , and Spadaccini, C. M. , 2014, “ Ultralight, Ultrastiff Mechanical Metamaterials,” Science, 344(6190), pp. 1373–1377. [CrossRef] [PubMed]
Bhushan, B. , and Marti, O. , 2010, Scanning Probe Microscopy—Principle of Operation, Instrumentation, and Probes (Springer Handbook of Nanotechnology), Springer, Berlin, pp. 573–617.
Yuya, P. A. , Hurley, D. C. , and Turner, J. A. , 2008, “ Contact-Resonance Atomic Force Microscopy for Viscoelasticity,” J. Appl. Phys., 104(7), p. 74916. [CrossRef]
Gao, H. , Ji, B. , Jager, I. L. , Arzt, E. , and Fratzl, P. , 2003, “ Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature,” Proc. Natl. Acad. Sci. U.S.A., 100(10), pp. 5597–5600. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 4

AFM lateral force mode. Force–displacement curves during a sequence of repeated loading and unloading cycles of a Au NW. (Reprinted with permission from Wu et al. [42]. Copyright 2005 by Nature Publishing Group).

Grahic Jump Location
Fig. 3

AFM contact mode. (a) (Top) AFM cantilever deflection versus piezo-actuator position and (bottom) NW deflection at a fixed position along the NW length as a function of the applied force. Note that the NW deflection equals the piezo-actuator displacement subtracted by the AFM cantilever deflection. In the case of AFM tip directly on top of the substrate (line A), the piezo-actuator displacement equals the AFM cantilever deflection, neglecting the indentation into the substrate. (b) Deflection profile along the NW length at a constant applied force for a cantilever NW (top) and a double-clamped NW (bottom). (Reprinted with permission from Paulo et al. [43]. Copyright 2005 by American Institute of Physics).

Grahic Jump Location
Fig. 2

Overview of the major experimental methods for testing 1D nanostructures based on AFM: (a) contact mode, (b) lateral force mode, (c) AFM nanoindentation mode, and (d) contact resonance mode

Grahic Jump Location
Fig. 1

Key developments in the experimental methods for measuring mechanical properties of 1D nanostructures including CNTs and crystalline NWs in the last two decades. 1: AFM lateral bending [38], 2: AFM normal bending [39], 3: nanoindentation [40], 4: AFM contact resonance [41], 5: AFM lateral bending [42], 6: AFM normal bending [43], 7: AFM nanoindentation [44], 8: thermal resonance in TEM [45], 9: electrostatic resonance in TEM [46], 10: tension in SEM [47], 11: mechanical resonance in SEM [48], 12: MEMS tension in SEM [49], 13: resonance in SEM [50], 14: MEMS tension in TEM [98], 15: tension in SEM [51,52], 16: tension and bending in SEM [53], 17: MEMS tension in SEM at high temperature [54], 18: MEMS tension (relaxation) in SEM [55], and 19: MEMS tension in SEM at high strain rate [56]

Grahic Jump Location
Fig. 5

(a) Bending test. An NW clamped on a nanomanipulator probe is bent in an MEMS device. (Reprinted with permission from Cheng et al. [101]. Copyright 2015 by Nature Publishing Group.) (b) Buckling test. An NW is compressed to buckling between a nanomanipulator probe (actuator) and an AFM cantilever (load sensor) (from Ref. [53]). (c) Tension test. An NW is pulled between a nanomanipulator probe (actuator) and an AFM cantilever (load sensor). (Reprinted with permission from Zhu et al. [51]. Copyright 2009 by American Chemical Society.) (d) Resonance test. An NW clamped on a nanomanipulator probe is excited to resonance by mechanical vibration. (Reproduced with permission from Qin et al. [61]. Copyright 2012 by Wiley).

Grahic Jump Location
Fig. 6

(a) Force–displacement curve in a buckling test. (Reprinted with permission from Cheng et al. [101]. Copyright 2015 by Nature Publishing Group.) (b) Stress–strain curve in a tension test. (Reprinted with permission from Zhu et al. [51]. Copyright 2009 by American Chemical Society.) (c) Amplitude–frequency curve showing a resonance peak in a resonance test. (Reprinted with permission from Chang et al. [102]. Copyright 2016 by Elsevier).

Grahic Jump Location
Fig. 7

(a) An integrated MEMS testing stage for mechanical testing of single NWs (from Ref. [49]). The stage includes a thermal actuator and a capacitive load sensor with a gap in between, across which the NW sample is mounted. (b) An MEMS stage for fatigue testing. (Reprinted with permission from Hosseinian and Pierron [124]. Copyright 2013 by Royal Society of Chemistry.) Compared to the one in (a), one more capacitive sensor is included to measure sample displacement digitally. (c) An MEMS stage including an on-chip heater based on Joule heating (the boxed region in the center). (Reprinted with permission from Chang and Zhu [54]. Copyright 2013 by American Institute of Physics.) This stage features a symmetric actuator and load sensor design to ensure the same temperature at both ends of the sample.

Grahic Jump Location
Fig. 8

(a) The deflection profiles along the NW sample length under AFM contact mode. (Left) For an NW with diameter of 65.9 nm (small diameter), the deflection profile was fitted best with doubly clamped boundary condition; (right) for an NW with diameter of 125.5 nm (large diameter), the deflection profile was fitted better with simply supported boundary condition. (Reprinted with permission from Chen et al. [59]. Copyright 2006 American Institute of Physics.) (b) The resonance frequency as a function of the clamp size for a ZnO NW under resonance in SEM. (Left) The resonance peaks for different clamp sizes, and (right) the resonance frequency increases with the increasing clamp size. (Reproduced with permission from Qin et al. [61]. Copyright 2012 by Wiley).

Grahic Jump Location
Fig. 9

The Young's modulus of ZnO NWs as a function of the NW diameter. The stiffening size effect is more pronounced under bending (buckling) than under tension (from Ref. [53]).

Grahic Jump Location
Fig. 11

Fracture strength as a function of NW diameter for (a) Si [51,88,127,189194], (b) ZnO [53,68,92,94,195], and (c) SiC. (Reprinted with permission from Cheng et al. [196]. Copyright 2014 by American Chemical Society.) (d) Ag [102,168170,197,198] and (e) Cu. (Reprinted with permission from Richter et al. [52]. Copyright 2009 by American Chemical Society).

Grahic Jump Location
Fig. 12

(a) Fracture strength of Si NWs and thin films as a function of side surface area. (Reprinted with permission from Zhu et al. [51]. Copyright 2009 by American Chemical Society.) (b) Weibull statistics applied to fracture strength data of ZnO NWs correlating to surface area (left) and point defects (right). (Reprinted with permission from He et al. [210]. Copyright 2011 by American Institute of Physics).

Grahic Jump Location
Fig. 10

(a) Elasticity size effect of Si NWs [51,67,153,161, 162165]. The data are normalized by the bulk value in the 〈111〉 orientation. (b) Elasticity size effect of ZnO NWs [50,68,95, 98,166,167]. The data are normalized by the bulk value in the [0001] orientation. (c) Elasticity size effect of Ag NWs [41,60, 102,168171]. The data are normalized by the bulk value in the 〈110〉 orientation.

Grahic Jump Location
Fig. 13

(a) Stress–strain curve (left) and TEM image of the fracture surface (right) of a Pd NW. (Reprinted with permission from Chen et al. [218]. Copyright 2015 by Nature Publishing Group.) (b) TEM image showing two partial dislocations. (Reprinted with permission from Narayanan et al. [197]. Copyright 2015 by American Chemical Society.) (c) Stress–strain curve (left) and a sequence of SEM images showing the twin propagation and superplasticity (right) of a Au NW. (Reprinted with permission from Seo et al. [179]. Copyright 2011 by American Chemical Society).

Grahic Jump Location
Fig. 14

(a) Recoverable plasticity (from Ref. [55]) and (b) Bauschinger effect (Reprinted with permission from Bernal et al. [187]. Copyright 2015 by American Chemical Society.) for pentatwinned Ag NWs.

Grahic Jump Location
Fig. 15

(a) Anelastic strain as a function of recovery time for six different durations of holding time. The NW diameter was 54 nm and the initial bending strain was 1.94%. (b) A sequence of SEM images showing the recovery process of a ZnO NW after the bending load was removed. Scale bar: 2 μm. (Reprinted with permission from Cheng et al. [101]. Copyright 2015 by Nature Publishing Group).

Grahic Jump Location
Fig. 16

(a) Field-effect transistors based on Ge/Si NW arrays with different channel widths that can be printed on flexible substrates. (Reprinted with permission from Fan et al. [261]. Copyright 2009 by Wiley.) (b) A 3D coiled Si NW (due to buckling) under stretching. (Reprinted with permission from Xu et al. [245]. Copyright 2011 by American Chemical Society.) (c) Resistance as a function of applied strain during loading, unloading, and reloading (left) and the schematic of the corresponding mechanism. (Reprinted with permission from Xu and Zhu [12]. Copyright 2012 by Wiley.) (d) A pressure sensor array. (Reprinted with permission from Yao and Zhu [246]. Copyright 2014 by Royal Society of Chemistry).

Grahic Jump Location
Fig. 17

(a) Piezoelectric energy harvesting based on an array of ZnO NWs. (Reprinted with permission from Wang and Song [5]. Copyright 2006 by American Association for the Advancement of Science). (b) Si NW anodes exhibited near theoretical specific capacity. (Reprinted with permission from Chan et al. [8]. Copyright 2008 by Nature Publishing Group).

Grahic Jump Location
Fig. 18

(a) Optical image of a buckled CdS NW (left) and the corresponding PL mapping (right). (Reprinted with permission from Sun et al. [315]. Copyright 2013 by American Chemical Society.) (b) A single ZnO NW under tension in SEM (top) and the CL signal as a function of the applied strain. (Reprinted with permission from Wei et al. [314]. Copyright 2012 by American Chemical Society).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In