Bewley,
T.
, 2001, “
Flow Control: New Challenges for a New Renaissance,” Prog. Aerosp. Sci.,
37(1), pp. 21–58.

[CrossRef]
Collis,
S.
,
Joslin,
R.
,
Seifert,
A.
, and
Theofilis,
V.
, 2004, “
Issues in Active Flow Control: Theory, Control, Simulation, and Experiment,” Prog. Aerosp. Sci.,
40(4), pp. 237–289.

[CrossRef]
Kim,
J.
, and
Bewley,
T.
, 2007, “
A Linear Systems Approach to Flow Control,” Ann. Rev. Fluid Mech.,
39(1), pp. 383–417.

[CrossRef]
Cattafesta,
L.
,
Song,
Q.
,
Williams,
D.
,
Rowley,
C.
, and
Alvi,
F.
, 2008, “
Active Control of Flow-Induced Cavity Oscillations,” Prog. Aerosp. Sci.,
44(7), pp. 479–502.

[CrossRef]
Sipp,
D.
,
Marquet,
O.
,
Meliga,
P.
, and
Barbagallo,
A.
, 2010, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach,” ASME Appl. Mech. Rev.,
63(3), p. 030801.

[CrossRef]
Brunton,
S.
, and
Noack,
B.
, 2015, “
Closed-Loop Turbulence Control: Progress and Challenges,” ASME Appl. Mech. Rev.,
67(5), p. 050801.

[CrossRef]
Gad-el Hak,
M.
, 2001, The MEMS Handbook,
CRC Press, Boca Raton, FL.

Rathnasingham,
R.
, and
Breuer,
K.
, 2003, “
Active Control of Turbulent Boundary Layers,” J. Fluid Mech.,
495, pp. 209–233.

[CrossRef]
Erdmann,
R.
,
Pätzold,
A.
,
Engert,
M.
,
Peltzer,
I.
, and
Nitsche,
W.
, 2011, “
On Active Control of Laminar–Turbulent Transition on Two-Dimensional Wings,” Philos. Trans. R. Soc. London A,
369(1940), pp. 1382–1395.

[CrossRef]
Juillet,
F.
,
McKeon,
B.
, and
Schmid,
P.
, 2014, “
Experimental Control of Natural Perturbations in Channel Flow,” J. Fluid Mech.,
752, pp. 296–309.

[CrossRef]
Cattafesta,
L.
,
Garg,
S.
,
Choudhari,
M.
, and
Li,
F.
, 1997, “
Active Control of Flow Induced Cavity Resonance,” AIAA Paper No. 97-1804.

Mongeau,
L.
,
Kook,
H.
, and
Franchek,
M.
, 1998, “
Active Control of Flow-Induced Cavity Resonance,” AIAA/CEAS Paper No. 98-2349.

Williams,
D.
, and
Morrow,
J.
, 2001, “
Adaptive Control of Multiple Acoustic Modes in Cavities,” AIAA Paper No. 2001-2769.

Williams,
D.
,
Rowley,
C.
,
Colonius,
T.
,
Murray,
R.
,
MacMartin,
D.
,
Fabris,
D.
, and
Albertson,
J.
, 2002, “
Model-Based Control of Cavity Oscillations. Part I: Experiments,” AIAA Paper No. 2002-0971.

Kegerise,
M.
,
Cattafesta,
L.
, and
Ha,
C.
, 2002, “
Adaptive Identification and Control of Flow-Induced Cavity Oscillations,” AIAA Paper No. 2002-3158.

Cabell,
R.
,
Kegerise,
M.
,
Cox,
D.
, and
Gibbs,
G.
, 2006, “
Experimental Feedback Control of Flow-Induced Cavity Tones,” AIAA J.,
44(8), pp. 1807–1816.

[CrossRef]
Samimy,
M.
,
Debiasi,
M.
,
Caraballo,
E.
,
Serrani,
A.
,
Yuan,
X.
,
Little,
J.
, and
Myatt,
J.
, 2007, “
Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models,” J. Fluid Mech.,
579, pp. 315–346.

[CrossRef]
Becker,
R.
,
Garwon,
M.
,
Guknecht,
C.
,
Barwolff,
G.
, and
King,
R.
, 2005, “
Robust Control of Separated Shear Flows in Simulation and Experiment,” J Process Control,
15(6), pp. 691–700.

[CrossRef]
Henning,
L.
, and
King,
R.
, 2007, “
Robust Multivariable Closed-Loop Control of a Turbulent Backward-Facing Step Flow,” J. Aircr.,
44(1), pp. 201–208.

[CrossRef]
Pastoor,
M.
,
Henning,
L.
,
Noack,
B.
,
King,
R.
, and
Tadmor,
G.
, 2008, “
Feedback Shear Layer Control for Bluff Body Drag Reduction,” J. Fluid Mech.,
608, pp. 161–196.

[CrossRef]
Gautier,
N.
, and
Aider,
J.-L.
, 2014, “
Feed-Forward Control of a Perturbed Backward-Facing Step Flow,” J. Fluid Mech.,
759, pp. 181–196.

[CrossRef]
Gautier,
N.
,
Aider,
J.-L.
,
Duriez,
T.
,
Noack,
B.
,
Segond,
M.
, and
Abel,
M.
, 2015, “
Closed-Loop Separation Control Using Machine Learning,” J. Fluid Mech.,
770, pp. 442–457.

[CrossRef]
Gharib,
M.
, 1987, “
Response of the Cavity Shear Layer Oscillations to External Forcing,” AIAA J.,
25(1), pp. 43–47.

[CrossRef]
Roussopoulos,
K.
, and
Monkewitz,
P.
, 1996, “
Nonlinear Modelling of Vortex Shedding Control in Cylinder Wakes,” Physica D,
97(1), pp. 264–273.

[CrossRef]
Illingworth,
S.
,
Naito,
H.
, and
Fukagata,
K.
, 2014, “
Active Control of Vortex Shedding: An Explanation of the Gain Window,” Phys. Rev. E,
90(4), p. 043014.

[CrossRef]
Yan,
P.
,
Debiasi,
M.
,
Yuan,
X.
,
Little,
J.
,
Ozbay,
H.
, and
Samimy,
M.
, 2006, “
Experimental Study of Linear Closed-Loop Control of Subsonic Cavity Flow,” AIAA J.,
44(5), pp. 929–938.

[CrossRef]
Kestens,
T.
, and
Nicoud,
F.
, 1998, “
Active Control of an Unsteady Flow Over a Rectangular Cavity,” AIAA Paper No. 98-2348.

Fabbiane,
N.
,
Semeraro,
O.
,
Bagheri,
S.
, and
Henningson,
D.
, 2014, “
Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows,” ASME Appl. Mech. Rev.,
66(6), p. 060801.

Fabbiane,
N.
,
Simon,
B.
,
Fischer,
F.
,
Grundmann,
S.
,
Bagheri,
S.
, and
Henningson,
D.
, 2015, “
On the Role of Adaptivity for Robust Laminar Flow Control,” J. Fluid Mech.,
767, pp. R1–R2.

[CrossRef]
Gunzburger,
M.
, 2003, Perspectives in Flow Control and Optimization, Vol.
5,
SIAM, Philadelphia, PA.

Skogestad,
S.
, and
Postlethwaite,
I.
, 2007, Multivariable Feedback Control: Analysis and Design, Vol.
2,
Wiley,
New York.

Joshi,
S.
,
Speyer,
J.
, and
Kim,
J.
, 1997, “
A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow,” J. Fluid Mech.,
332, pp. 157–184.

Bewley,
T.
, and
Liu,
S.
, 1998, “
Optimal and Robust Control and Estimation of Linear Paths to Transition,” J. Fluid Mech.,
365, pp. 305–349.

[CrossRef]
Cortelezzi,
L.
,
Speyer,
J.
,
Lee,
K.
, and
Kim,
J.
, 1998, “
Robust Reduced-Order Control of Turbulent Channel Flows Via Distributed Sensors and Actuators,” 37th IEEE Conference on Decision and Control (CDC), Tampa, FL, Dec. 16–18, Vol.
2, pp. 1906–1911.

Lee,
K.
,
Cortelezzi,
L.
,
Kim,
J.
, and
Speyer,
J.
, 2001, “
Application of Reduced-Order Controller to Turbulent Flows for Drag Reduction,” Phys. Fluids,
13(5), pp. 1321–1330.

[CrossRef]
Lauga,
E.
, and
Bewley,
T.
, 2004, “
Performance of a Linear Robust Control Strategy on a Nonlinear Model of Spatially Developing Flows,” J. Fluid Mech.,
512, pp. 343–374.

[CrossRef]
Gavarini,
M.
,
Bottaro,
A.
, and
Nieuwstadt,
F.
, 2005, “
Optimal and Robust Control of Streaks in Pipe Flow,” J. Fluid Mech.,
537, pp. 187–219.

[CrossRef]
Laub,
A.
,
Heath,
M.
,
Paige,
C.
, and
Ward,
R.
, 1987, “
Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms,” IEEE Trans. Autom. Control,
32(2), pp. 115–122.

[CrossRef]
Willcox,
K.
, and
Peraire,
J.
, 2002, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition,” AIAA J.,
40(11), pp. 2323–2330.

[CrossRef]
Rowley,
C.
, 2005, “
Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition,” Int. J. Bifurcation Chaos,
15(3), pp. 997–1013.

[CrossRef]
Ilak,
M.
, and
Rowley,
C.
, 2008, “
Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition,” Phys. Fluids,
20(3), p. 034103.

[CrossRef]
Bagheri,
S.
,
Henningson,
D.
,
Hoepffner,
J.
, and
Schmid,
P.
, 2009, “
Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows,” ASME Appl. Mech. Rev.,
62(2), p. 020803.

[CrossRef]
Barbagallo,
A.
,
Sipp,
D.
, and
Schmid,
P.
, 2009, “
Closed-Loop Control of an Open Cavity Flow Using Reduced-Order Models,” J. Fluid Mech.,
641(1), pp. 1–50.

[CrossRef]
Ahuja,
S.
, and
Rowley,
C.
, 2010, “
Feedback Control of Unstable Steady States of Flow Past a Flat Plate Using Reduced-Order Estimators,” J. Fluid Mech.,
645, pp. 447–478.

[CrossRef]
Van Dooren,
P.
,
Gallivan,
K.
, and
Absil,
P.-A.
, 2008, “
H

_{2}-Optimal Model Reduction of MIMO Systems,” Appl. Math. Lett.,
21(12), pp. 1267–1273.

[CrossRef]
Gugercin,
S.
,
Antoulas,
A.
, and
Beattie,
C.
, 2008, “

*H*_{2} Model Reduction for Large-Scale Linear Dynamical Systems,” SIAM J. Matrix Anal. Appl.,
30(2), pp. 609–638.

[CrossRef]
Juang,
J.
, and
Pappa,
R.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control Dyn.,
8(5), pp. 620–627.

[CrossRef]
Guzmán Iñigo,
J.
, 2015, “
Estimation and Control of Noise Amplifier Flows Using Data-Based Approaches,” Ph.D. thesis, Ecole Polytechnique, Palaiseau, France.

Van Overschee,
P.
, and
De Moor,
B.
, 1996, Subspace Identification for Linear Systems,
Kluwer Academic Publishers,
Dordrecht, the Netherlands.

Guzmán Iñigo,
J.
,
Sipp,
D.
, and
Schmid,
P.
, 2014, “
A Dynamic Observer to Capture and Control Perturbation Energy in Noise Amplifiers,” J. Fluid Mech.,
758, pp. 728–753.

[CrossRef]
Ljung,
L.
, 1999, System Identification: Theory for the User,
Prentice Hall, Upper Saddle River, NJ.

Ma,
Z.
,
Ahuja,
S.
, and
Rowley,
C.
, 2011, “
Reduced-Order Models for Control of Fluids Using the Eigensystem Realization Algorithm,” Theor. Comput. Fluid Dyn.,
25(1–4), pp. 233–247.

[CrossRef]
Belson,
B.
,
Semeraro,
O.
,
Rowley,
C.
, and
Henningson,
D.
, 2013, “
Feedback Control of Instabilities in the Two-Dimensional Blasius Boundary Layer: The Role of Sensors and Actuators,” Phys. Fluids,
25(5), p. 054106.

[CrossRef]
Huang,
S.-C.
, and
Kim,
J.
, 2008, “
Control and System Identification of a Separated Flow,” Phys. Fluids,
20(10), p. 101509.

[CrossRef]
Hervé,
A.
,
Sipp,
D.
,
Schmid,
P.
, and
Samuelides,
M.
, 2012, “
A Physics-Based Approach to Flow Control Using System Identification,” J. Fluid Mech.,
702, pp. 26–58.

[CrossRef]
Dovetta,
N.
,
Schmid,
P.
, and
Sipp,
D.
, 2016, “
Uncertainty Propagation in Model Extraction by System Identification and Its Implication for Control Design,” J. Fluid Mech.,
791, pp. 214–236.

[CrossRef]
Juang,
J.
, 1994, Applied System Identification,
Prentice Hall, Upper Saddle River, NJ.

Brunton,
S.
,
Dawson,
S.
, and
Rowley,
C.
, 2014, “
State-Space Model Identification and Feedback Control of Unsteady Aerodynamic Forces,” J. Fluids Struct.,
50, pp. 253–270.

[CrossRef]
Juillet,
F.
,
Schmid,
P.
, and
Huerre,
P.
, 2013, “
Control of Amplifier Flows Using Subspace Identification Techniques,” J. Fluid Mech.,
725, pp. 522–565.

[CrossRef]
Illingworth,
S.
,
Morgans,
A.
, and
Rowley,
C.
, 2011, “
Feedback Control of Flow Resonances Using Balanced Reduced-Order Models,” J. Sound Vib.,
330(8), pp. 1567–1581.

[CrossRef]
Illingworth,
S.
,
Morgans,
A.
, and
Rowley,
C.
, 2012, “
Feedback Control of Cavity Flow Oscillations Using Simple Linear Models,” J. Fluid Mech.,
709, pp. 223–248.

[CrossRef]
Dahan,
J.
,
Morgans,
A.
, and
Lardeau,
S.
, 2012, “
Feedback Control for Form-Drag Reduction on a Bluff Body With a Blunt Trailing Edge,” J. Fluid Mech.,
704, pp. 360–387.

[CrossRef]
Gelb,
A.
, and
Vander-Velde,
W.
, 1968, Multiple-Input Describing Functions and Nonlinear System Design,
McGraw-Hill, New York.

Ionita,
A.
, and
Antoulas,
A.
, 2014, “
Data-Driven Parametrized Model Reduction in the Loewner Framework,” SIAM J. Sci. Comput.,
36(3), pp. A984–A1007.

[CrossRef]
Rowley,
C.
,
Williams,
D.
,
Colonius,
T.
,
Murray,
R.
,
MacMartin,
D.
, and
Fabris,
D.
, 2002, “
Model-Based Control of Cavity Oscillations. Part II: System Identification and Analysis,” AIAA Paper No. 2002-972.

Rowley,
C.
,
Williams,
D.
,
Colonius,
T.
,
Murray,
R.
, and
MacMynowski,
D.
, 2006, “
Linear Models for Control of Cavity Flow Oscillations,” J. Fluid Mech.,
547, pp. 317–330.

[CrossRef]
Poussot-Vassal,
C.
, and
Sipp,
D.
, 2015, “
Parametric Reduced Order Dynamical Model Construction of a Fluid Flow Control Problem,” IFAC,
48(26), pp. 133–138.

Bewley,
T.
,
Temam,
R.
, and
Ziane,
M.
, 2000, “
A General Framework for Robust Control in Fluid Mechanics,” Physica D,
138(3), pp. 360–392.

[CrossRef]
Bewley,
T.
,
Moin,
P.
, and
Temam,
R.
, 2001, “
DNS-Based Predictive Control of Turbulence: An Optimal Benchmark for Feedback Algorithms,” J. Fluid Mech.,
447, pp. 179–225.

[CrossRef]
Wei,
M.
, and
Freund,
J.
, 2006, “
A Noise-Controlled Free Shear Flow,” J. Fluid Mech.,
546, pp. 123–152.

[CrossRef]
Cherubini,
S.
,
Robinet,
J.-C.
, and
De Palma,
P.
, 2013, “
Nonlinear Control of Unsteady Finite-Amplitude Perturbations in the Blasius Boundary-Layer Flow,” J. Fluid Mech.,
737, pp. 440–465.

[CrossRef]
Zuccher,
S.
,
Luchini,
P.
, and
Bottaro,
A.
, 2004, “
Algebraic Growth in a Blasius Boundary Layer: Optimal and Robust Control by Mean Suction in the Nonlinear Regime,” J. Fluid Mech.,
513, pp. 135–160.

[CrossRef]
Aubry,
N.
,
Holmes,
P.
,
Lumley,
J.
, and
Stone,
E.
, 1988, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech.,
192, pp. 115–173.

[CrossRef]
Berkooz,
G.
,
Holmes,
P.
, and
Lumley,
J.
, 1993, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Ann. Rev. Fluid Mech.,
25(1), pp. 539–575.

[CrossRef]
Noack,
B.
,
Afanasiev,
K.
,
Morzynski,
M.
,
Tadmor,
G.
, and
Thiele,
F.
, 2003, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake,” J. Fluid Mech.,
497, pp. 335–363.

[CrossRef]
King,
R.
,
Seibold,
M.
,
Lehmann,
O.
,
Noack,
B.
,
Morzyński,
M.
, and
Tadmor,
G.
, 2005, “
Nonlinear Flow Control Based on a Low Dimensional Model of Fluid Flow,” Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems,
Springer,
Berlin, pp. 369–386.

Couplet,
M.
,
Basdevant,
C.
, and
Sagaut,
P.
, 2005, “
Calibrated Reduced-Order POD-Galerkin System for Fluid Flow Modelling,” J. Comput. Phys.,
207(1), pp. 192–220.

[CrossRef]
Bergmann,
M.
,
Cordier,
L.
, and
Brancher,
J.
, 2005, “
Optimal Rotary Control of the Cylinder Wake Using Proper Orthogonal Decomposition Reduced-Order Model,” Phys. Fluids,
17(9), p. 097101.

[CrossRef]
Bergmann,
M.
, and
Cordier,
L.
, 2008, “
Optimal Control of the Cylinder Wake in the Laminar Regime by Trust-Region Methods and POD Reduced-Order Models,” J. Comput. Phys.,
227(16), pp. 7813–7840.

[CrossRef]
Bergmann,
M.
,
Bruneau,
C.-H.
, and
Iollo,
A.
, 2009, “
Enablers for Robust POD models,” J. Comput. Phys.,
228(2), pp. 516–538.

[CrossRef]
Gillies,
E.
, 1998, “
Low-Dimensional Control of the Circular Cylinder Wake,” J. Fluid Mech.,
371(1), pp. 157–178.

[CrossRef]
Cordier,
L.
,
Noack,
B.
,
Tissot,
G.
,
Lehnasch,
G.
,
Delville,
J.
,
Balajewicz,
M.
,
Daviller,
G.
, and
Niven,
R.
, 2013, “
Identification Strategies for Model-Based Control,” Exp. Fluids,
54(8), pp. 1–21.

[CrossRef]
Chaturantabut,
S.
, and
Sorensen,
D.
, 2010, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation,” SIAM J. Sci. Comput.,
32(5), pp. 2737–2764.

[CrossRef]
Fosas de Pando,
M.
,
Schmid,
P.
, and
Sipp,
D.
, 2013, “
Nonlinear Model-Order Reduction for Oscillator Flows Using POD-DEIM,” 66th Annual Meeting of the APS Division of Fluid Dynamics, Pittsburgh, PA, Nov. 24–26, Paper No. M25.00006.

Ştefănescu,
R.
,
Sandu,
A.
, and
Navon,
I.
, 2015, “
POD/DEIM Reduced-Order Strategies for Efficient Four Dimensional Variational Data Assimilation,” J. Comput. Phys.,
295, pp. 569–595.

[CrossRef]
Dandois,
J.
, and
Pamart,
P.
, 2013, “
NARX Modeling and Extremum-Seeking Control of a Separation,” Aerosp. Lab J.,
6, epub.

Burl,
J.
, 1999, Linear Optimal Control,
Addison-Wesley Longman, Menlo Park, CA.

Cortelezzi,
L.
,
Lee,
K.
,
Kim,
J.
, and
Speyer,
J.
, 1998, “
Skin-Friction Drag Reduction Via Robust Reduced-Order Linear Feedback Control,” Int. J. Comput. Fluid Dyn.,
11(1–2), pp. 79–92.

[CrossRef]
Bagheri,
S.
,
Brandt,
L.
, and
Henningson,
D.
, 2009, “
Input–Output Analysis, Model Reduction and Control of the Flat-Plate Boundary Layer,” J. Fluid Mech.,
620(1), pp. 263–298.

[CrossRef]
Barbagallo,
A.
,
Dergham,
G.
,
Sipp,
D.
,
Schmid,
P.
, and
Robinet,
J.-C.
, 2012. “
Closed-Loop Control of Unsteadiness Over a Rounded Backward-Facing Step,” J. Fluid Mech.,
703, pp. 326–362.

[CrossRef]
Zhao,
H.
, and
Bau,
H.
, 2006, “
Limitations of Linear Control of Thermal Convection in a Porous Medium,” Phys. Fluids,
18(7), p. 074109.

[CrossRef]
Horowitz,
I.
, 1993, Quantitative Feedback Design.
QFT Publications, Boulder, CO.

Vinnicombe,
G.
, 2001. Uncertainty and Feedback: H_{∞} Loop-Shaping and the ν-Gap Metric,
World Scientific, Singapore.

Kook,
H.
,
Mongeau,
L.
, and
Franchek,
M.
, 2002, “
Active Control of Pressure Fluctuations Due to Flow Over Helmholtz Resonators,” J. Sound Vib.,
255(1), pp. 61–76.

[CrossRef]
Doyle,
J.
, 1978, “
Guaranteed Margins for LQG Regulators,” IEEE Trans. Autom. Control,
23(4), pp. 756–757.

[CrossRef]
Zames,
G.
, 1981, “
Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses,” IEEE Trans. Autom. Control,
26(2), pp. 301–320.

[CrossRef]
Zhou,
K.
,
Doyle,
J.
, and
Glover,
K.
, 1996, Robust and Optimal Control, Vol.
40,
Prentice Hall, Upper Saddle River, NJ.

Apkarian,
P.
, and
Noll,
D.
, 2006, “
Nonsmooth H

_{∞} Synthesis,” IEEE Trans. Autom. Control,
51(2), pp. 382.

[CrossRef]
Petersen,
I.
, and
Tempo,
R.
, 2014, “
Robust Control of Uncertain Systems: Classical Results and Recent Developments,” Automatica,
50(5), pp. 1315–1335.

[CrossRef]
Jones,
B.
,
Heins,
P.
,
Kerrigan,
E.
,
Morrison,
J.
, and
Sharma,
A.
, 2015, “
Modelling for Robust Feedback Control of Fluid Flows,” J. Fluid Mech.,
769, pp. 687–722.

[CrossRef]
Aleksić-Roeßner,
K.
,
King,
R.
,
Lehmann,
O.
,
Tadmor,
G.
, and
Morzyński,
M.
, 2014, “
On the Need of Nonlinear Control for Efficient Model-Based Wake Stabilization,” Theor. Comput. Fluid Dyn.,
28(1), pp. 23–49.

[CrossRef]
Tachim Medjo,
T.
, 2001, “
Robust Control Problems in Fluid Mechanics,” Physica D,
149(4), pp. 278–292.

[CrossRef]
Hu,
C.
, and
Temam,
R.
, 2001, “
Robust Boundary Control for the Kuramoto-Sivashinsky Equation,” Conference on Optimal Control and Partial Differential Equation, Paris, Dec. 4, 2000, pp. 353–362.

Tachim Medjo,
T.
, and
Tcheugoue Tebou,
L.
, 2004, “
Adjoint-Based Iterative Method for Robust Control Problems in Fluid Mechanics,” SIAM J. Numer. Anal.,
42(1), pp. 302–325.

[CrossRef]
Tachim Medjo,
T.
, and
Tchegoue Tebou,
L.
, 2005, “
Robust Control Problems in Fluid Flows,” Discrete Control Dyn. Syst.,
12(3), pp. 437–463.

Huerre,
P.
, and
Rossi,
M.
, 1998, “
Hydrodynamic Instabilities in Open Flows,” Collection Alea Saclay Monographs and Texts in Statistical Physics, Cambridge University Press, Cambridge, UK, pp. 81–294.

Schmid,
P.
, 2007, “
Nonmodal Stability Theory,” Ann. Rev. Fluid Mech.,
39(1), pp. 129–162.

[CrossRef]
Sipp,
D.
, and
Lebedev,
A.
, 2007, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows,” J. Fluid Mech.,
593, pp. 333–358.

[CrossRef]
Blackburn,
H.
,
Barkley,
D.
, and
Sherwin,
S.
, 2008, “
Convective Instability and Transient Growth in Flow Over a Backward-Facing Step,” J. Fluid Mech.,
603, pp. 271–304.

[CrossRef]
Barbagallo,
A.
,
Sipp,
D.
, and
Schmid,
P.
, 2011, “
Input–Output Measures for Model Reduction and Closed-Loop Control: Application to Global Modes,” J. Fluid Mech.,
685, pp. 23–53.

[CrossRef]
Matsumoto,
J.
, and
Kawahara,
M.
, 2000, “
Stable Shape Identification for Fluid-Structure Interaction Problem Using MINI Element,” ASME J. Appl. Mech.,
3, pp. 263–274.

[CrossRef]
Amestoy,
P.
,
Duff,
I.
,
L'Excellent,
J.-Y.
, and
Koster,
J.
, 2001, “
A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,” SIAM J. Matrix Anal. Appl.,
23(1), pp. 15–41.

[CrossRef]
Lehoucq,
R.
,
Sorensen,
D.
, and
Yang,
C.
, 1998, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods, Vol.
6,
SIAM, Philadelphia, PA.

Antoulas,
A.
, 2005, Approximation of Large-Scale Dynamical Systems,
SIAM, Philadelphia, PA.

Kwakernaak,
H.
, and
Sivan,
R.
, 1972, “
The Maximally Achievable Accuracy of Linear Optimal Regulators and Linear Optimal Filters,” IEEE Trans. Autom. Control,
17(1), pp. 79–86.

[CrossRef]
Chen,
K.
, and
Rowley,
C.
, 2011, “
H

_{2} Optimal Actuator and Sensor Placement in the Linearised Complex Ginzburg-Landau System,” J. Fluid Mech.,
681, pp. 241–260.

[CrossRef]
Dreyfus,
G.
,
Martinez,
J.-M.
,
Samuelides,
M.
,
Gordon,
M.
,
Badran,
F.
, and
Thiria,
S.
, 2011, Apprentissage statistique: Réseaux de neurones-Cartes topologiques-Machines à vecteurs Supports,
Eyrolles, Paris.