0
Review Article

A Review on Bistable Composite Laminates for Morphing and Energy Harvesting

[+] Author and Article Information
Samir A. Emam

Mem. ASME
Department of Mechanical Engineering,
United Arab Emirates University,
P. O. Box 15551,
Al Ain, United Arab Emirates
e-mail: semam@uaeu.ac.ae

Daniel J. Inman

Department of Aerospace Engineering,
University of Michigan,
Ann Arbor, 48109 MI
e-mail: daninman@umich.edu

1Corresponding author.

2On leave from Department of Mechanical Design and Production, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt.

Manuscript received February 27, 2015; final manuscript received November 10, 2015; published online December 11, 2015. Assoc. Editor: Rui Huang.

Appl. Mech. Rev 67(6), 060803 (Dec 11, 2015) (15 pages) Paper No: AMR-15-1031; doi: 10.1115/1.4032037 History: Received February 27, 2015; Revised November 10, 2015

Bistable composite laminates have received a considerable attention due to their fabulous behavior and potential for morphing and energy harvesting. A bistable or multistable laminate is a type of composite structure that exhibits multiple stable static configurations. The characterization of unsymmetric fiber-reinforced laminated composite plates as a bistable structure is well established and quantitatively determined after about 30 years of research. As predicting cured shapes of unsymmetric composite laminates became well identified, attention was directed to the design of these structures for morphing applications. Bistable composite laminates have attracted researchers as a morphing structure because a bistable structure settles at one of its equilibrium positions without demanding continuous power to remain there. If the structure is triggered to leave an equilibrium position, it will snap or jump to the other equilibrium position. The snapthrough response is highly geometrically nonlinear. With the increased demand for broadband vibration energy harvesters, bistable composite laminates, which are able to gain large-amplitude vibrations in snapthrough motion, have recently attracted attention. This paper aims to summarize, review, and assess references and findings concerned with the response of bistable composite laminates for morphing and energy harvesting to date. It also highlights the remaining challenges and possible future research work as research in bistable composites transitions from phenomena to application.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hyer, M. W. , 1981, “ Some Observations on the Cured Shape of Thin Unsymmetric Laminates,” J. Compos. Mater., 15(2), pp. 175–194. [CrossRef]
Hyer, M. W. , 1981, “ Calculation of the Room-Temperature Shapes of Unsymmetric Laminates,” Report No. NASA-CR-163993.
Hyer, M. W. , 1982, “ The Room-Temperature Shapes of Four-Layer Unsymmetric Cross-Ply Laminates,” J. Compos. Mater., 16(4), pp. 318–340. [CrossRef]
Smith, C. B. , 1953, “ Some New Types of Orthotropic Plates Laminated of Orthotropic Material,” ASME J. Appl. Mech., 20(2), pp. 286–288.
Reissner, E. , and Stavsky, Y. , 1961, “ Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates,” ASME J. Appl. Mech., 28(3), pp. 402–408. [CrossRef]
Whitney, J. M. , and Liessa, A. W. , 1969, “ Analysis of Heterogeneous of Anisotropic Plates,” ASME J. Appl. Mech., 36(2), pp. 261–269. [CrossRef]
Ashton, J. E. , and Love, T. S. , 1969, “ Experimental Study of the Stability of Composite Plates,” J. Compos. Mater., 3(2), pp. 230–242. [CrossRef]
Ashton, J. E. , 1969, “ Approximate Solutions for Unsymmetrically Laminated Plates,” J. Compos. Mater., 3(1), pp. 189–191. [CrossRef]
Bert, C. W. , and Mayberry, B. L. , 1969, “ Free Vibrations of Unsymmetrically Laminated Anisotropic Plates With Clamped Edges,” J. Compos. Mater., 3(2), pp. 282–293. [CrossRef]
Leissa, A. W. , and Whitney, J. M. , 1970, “ Analysis of a Simply Supported Laminated Anisotropic Rectangular Plate,” AIAA J., 8(1), pp. 28–33. [CrossRef]
Thornton, E. A. , and Clary, R. R. , 1974, “ A Correlation Study of Finite-Element Modeling for Vibrations of Composite Material Panels,” 3rd Conference on Composite Materials: Testing and Design, pp. 111–129.
Hyer, M. W. , and Bhavani, P. C. , 1984, “ Suppression of Anticlastic Curvature in Isotropic and Composite Plate,” Int. J. Solids Struct., 20(6), pp. 553–570. [CrossRef]
Hamamoto, A. , and Hyer, M. W. , 1987, “ Non-Linear Temperature-Curvature Relationships for Unsymmetric Graphite-Epoxy Laminates,” Int. J. Solids Struct., 23(7), pp. 919–935. [CrossRef]
Betts, D. N. , Salo, I. T. , Bowen, C. R. , and Kim, H. A. , 2010, “ Characterisation and Modelling of the Cured Shapes of Arbitrary Layup Bistable Composite Laminates,” Compos. Struct., 92(7), pp. 1694–1700. [CrossRef]
Dang, J. , and Tang, Y. , 1986, “ Calculation of the Room-Temperature Shapes of Unsymmetric Laminates,” International Symposium on Composite Materials and Structures, Beijing, June 10–13, Technomic Publishing, Lancaster, PA, pp. 201–206.
Jun, W. J. , and Hong, C. S. , 1992, “ Cured Shapes of Unsymmetric Laminates With Arbitrary Lay-Up Angles,” J. Reinf. Plast. Compos., 11(12), pp. 1352–1366. [CrossRef]
Peeters, L. J. B. , Powell, P. C. , and Warnet, L. , 1996, “ Thermally Induced Shapes of Unsymmetric Laminates,” J. Compos. Mater., 30(5), pp. 603–626. [CrossRef]
Dano, M. L. , and Hyer, M. W. , 1998, “ Thermally Induced Deformation Behavior of Unsymmetric Laminates,” Int. J. Solids Struct., 35(17), pp. 2101–2120. [CrossRef]
Dano, M. L. , and Hyer, M. W. , 2002, “ Snap-Through of Unsymmetric Fiber-Reinforced Composite Laminates,” Int. J. Solids Struct., 39(1), pp. 175–198. [CrossRef]
Mattioni, F. , Weaver, P. M. , and Friswell, M. I. , 2009, “ Multistable Composite Plates With Piecewise Variation of Lay-Up in the Platform,” Int. J. Solids Struct., 46(1), pp. 151–164. [CrossRef]
Diaconu, C. G. , Weaver, P. M. , and Mattioni, F. , 2008, “ Concepts for Morphing Airfoil Sections Using Bi-Stable Laminated Composite Structures,” Thin-Walled Struct., 46(6), pp. 689–701. [CrossRef]
Schlecht, M. , Schulte, K. , and Hyer, M. W. , 1995, “ Advanced Calculation of the Room-Temperature Shapes of Thin Unsymmetric Composite Laminates,” Compos. Struct., 32(1–4), pp. 627–633. [CrossRef]
Schlecht, M. , and Schulte, K. , 1999, “ Advanced Calculations of the Room-Temperature Shapes of Unsymmetric Laminates,” J. Compos. Mater., 33(16), pp. 1472–1490. [CrossRef]
Giddings, P. F. , Bowen, C. R. , Salo, A. I. T. , Kim, H. A. , and Ive, A. , 2010, “ Bistable Composite Laminates: Effects of Laminate Composition on Cured Shape and Response to Thermal Load,” Compos. Struct., 92(9), pp. 2220–2225. [CrossRef]
Brampton, C. J. , Betts, D. N. , Bowen, C. R. , and Kim, H. A. , 2013, “ Sensitivity of Bistable Laminates to Uncertainties in Material Properties, Geometry and Environmental Conditions,” Compos. Struct., 102, pp. 276–286. [CrossRef]
Diaconu, C. G. , Weaver, P. M. , and Arrieta, A. F. , 2009, “ Dynamic Analysis of Bi-Stable Composite Plates,” J. Sound Vib., 322(4–5), pp. 987–1004. [CrossRef]
Vogl, G. A. , and Hyer, M. W. , 2011, “ Natural Vibration of Unsymmetric Cross-Ply Laminates,” J. Sound Vib., 330(20), pp. 4764–4779. [CrossRef]
Betts, D. N. , Bowen, C. R. , Kim, H. A. , Guyer, R. A. , Bas, P. , and Inman, D. J. , 2014, “ Modelling the Dynamic Response of Bistable Composite Plates for Piezoelectric Energy Harvesting,” 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, MD, Jan. 13–17, AIAA Paper No. 2014-0154.
Cho, M. , Choi, M. H. , Chung, H. C. , Ahn, K. J. , and Eom, Y. S. , 1998, “ A Study on the Room-Temperature Curvature Shapes of Unsymmetric Laminates Including Slippage Effects,” J. Compos. Mater., 32(5), pp. 460–482. [CrossRef]
Moore, M. , Ziaei-Rad, S. , and Salehi, H. , 2013, “ Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers,” Appl. Compos. Mater., 20(1), pp. 87–106. [CrossRef]
Eckstein, E. , Pirrera, A. , and Weaver, P. M. , 2013, “ Morphing High-Temperature Composite Plates Utilizing Thermal Gradients,” Compos. Struct., 100, pp. 363–372. [CrossRef]
Daynes, S. , Potter, K. D. , and Weaver, P. M. , 2008, “ Bistable Prestressed Buckled Laminates,” Compos. Sci. Technol., 68(15–16), pp. 3431–3437. [CrossRef]
Daton-Lovett, A. , 1996, “ An Extendible Member, Patent Cooperation Treaty Application,” Patent No. PCT/GB97/00839.
Zhang, Z. , Wu, H. , He, X. , Wu, H. , Bao, Y. , and Chai, G. , 2013, “ The Bistable Behaviors of Carbon-Fiber/Epoxy Anti-Symmetric Composite Shells,” Composites, Part B, 47, pp. 190–199. [CrossRef]
Iqbal, K. , Pellegrino, S. , and Daton-Lovett, A. , 1998, “ Bi-Stable Composite Slit Tubes,” IUTAM–IASS Symposium on Deployable Structures: Theory and Applications, Cambridge, UK, Sept. 6–9, pp. 153–162.
Guest, S. D. , and Pellegrino, S. , 2006, “ Analytical Models for Bistable Cylindrical Shells,” Proc. R. Soc. A, 462(2067), pp. 839–854. [CrossRef]
Iqbal, K. , and Pellegrino, S. , 2000, “ Bi-Stable Composite Shells,” AIAA Paper No. 2000–1385.
Lei, Y. M. , and Yao, X. F. , 2009, “ Experimental Study of Bistable Behaviors of Deployable Composite Structure,” J. Reinf. Plast. Compos., 29(6), pp. 865–873.
Zhang, Z. , Wu, H. , Wu, H. , He, X. , Bao, Y. , and Chai, G. , 2013, “ Bistable Characteristics of Irregular Anti-Symmetric Lay-Up Composite Cylindrical Shells,” Int. J. Struct. Stab. Dyn., 13(6), p. 1350029. [CrossRef]
Zhang, Z. , Wu, H. , Ye, G. , Wu, H. , He, X. , and Chai, G. , 2014, “ Systematic Experimental and Numerical Study of Bistable Snap Processes for Anti-Symmetric Cylindrical Shells,” Compos. Struct., 112(1), pp. 368–377. [CrossRef]
Li, H. , Dai, F. , Weaver, P. M. , and Du, S. , 2014, “ Bistable Hybrid Symmetric Laminates,” Compos. Struct., 116(1), pp. 782–792. [CrossRef]
Dai, F. , Li, H. , and Du, S. , 2013, “ Cured Shape and Snap-Through of Bistable Twisting Hybrid [0/90/Metal]T Laminates,” Compos. Sci. Technol., 86, pp. 76–81. [CrossRef]
Dano, M. L. , and Hyer, M. W. , 1996, “ The Response of Unsymmetric Laminates to Simple Applied Forces,” Mech. Compos. Mater. Struct., 3(1), pp. 65–80. [CrossRef]
Pirrera, D. , Avitabile, P. M. , and Weaver, P. M. , 2010, “ Bistable Plates for Morphing Structures: A Refined Analytical Approach With High-Order Polynomials,” Int. J. Solids Struct., 47(25–26), pp. 3412–3425. [CrossRef]
Pirrera, A. , Avitabile, D. , and Weaver, P. M. , 2012, “ On the Thermally Induced Bistability of Composite Cylindrical Shells for Morphing Structures,” Int. J. Solids Struct., 49(5), pp. 685–700. [CrossRef]
Tawfik, S. , Xinyan Tan, T. , Ozbay, S. , and Armanios, E. , 2007, “ Anticlastic Stability Modeling for Cross-Ply Composites,” J. Compos. Mater., 41(11), pp. 1325–1338. [CrossRef]
Cantera, M. A. , Romera, J. M. , Adarraga, I. , and Mujika, F. , 2015, “ Modelling and Testing of the Snap-Through Process of Bi-Stable Cross-Ply Composites,” Compos. Struct., 120, pp. 41–52. [CrossRef]
Schultz, M. R. , and Hyer, M. W. , 2003, “ Snap-Through of Unsymmetric Cross-Ply Laminates Using Piezoelectric Actuators,” J. Intell. Mater. Syst. Struct., 14(12), pp. 795–814. [CrossRef]
Barbarino, S. , Bilgen, O. , Ajaj, R. M. , Friswell, M. I. , and Inman, D. J. , 2011, “ A Review of Morphing Aircraft,” J. Intell. Mater. Syst. Struct., 22(9), pp. 823–877. [CrossRef]
Thill, C. , Etches, J. , Bond, I. , Potter, K. , and Weaver, P. , 2008, “ Morphing Skins,” Aeronaut. J., 112(1129), pp. 117–139.
Lachenal, X. , Daynes, S. , and Weaver, P. M. , 2013, “ Review of Morphing Concepts and Materials for Wind Turbine Blade Applications,” Wind Energy, 16(2), pp. 283–307. [CrossRef]
Daynes, S. , and Weaver, P. M. , 2013, “ Review of Shape-Morphing Automobile Structures: Concepts and Outlook,” Proc. Inst. Mech. Eng., Part D, 227(11), pp. 1603–1622. [CrossRef]
Portela, P. , Camanho, P. , Weaver, P. , and Bond, I. , 2008, “ Analysis of Morphing, Multi Stable Structures Actuated by Piezoelectric Patches,” Comput. Struct., 86(3–5), pp. 347–356. [CrossRef]
Bowen, C. R. , Butler, R. , Jervis, V. , Kim, H. A. , and Salo, A. I. T. , 2007, “ Morphing and Shape Control Using Unsymmetrical Composites,” J. Intell. Mater. Syst. Struct., 18(1), pp. 89–98. [CrossRef]
Bowen, C. R. , Giddings, P. F. , Salo, A. I. T. , and Kim, H. A. , 2011, “ Modeling and Characterization of Piezoelectrically Actuated Bistable Composites,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 58(9), pp. 1737–1750. [CrossRef]
Arrieta, A. F. , Neild, S. A. , and Wagg, D. J. , 2009, “ Nonlinear Dynamic Response and Modeling of a Bistable Composite Plate for Applications to Adaptive Structures,” Nonlinear Dyn., 58(1), pp. 259–272. [CrossRef]
Arrieta, A. F. , Wagg, D. J. , and Neild, S. A. , 2011, “ Dynamic Snap-Through for Morphing of Bistable Composite Plates,” J. Intell. Mater. Syst. Struct., 22(2), pp. 103–112. [CrossRef]
Arrieta, A. F. , Spelsberg-Korspeter, G. , Hagedorn, P. , Neild, S. A. , and Wagg, D. J. , 2011, “ Low-Order Model for the Dynamics of Bistable Composite Plates,” J. Intell. Mater. Syst. Struct., 22(17), pp. 2025–2043. [CrossRef]
Arrieta, A. F. , Bilgen, O. , Friswell, M. I. , and Hagedorn, P. , 2012, “ Dynamic Control for Morphing of Bistable Composites,” J. Intell. Mater. Syst. Struct., 24(3), pp. 266–273. [CrossRef]
Potter, K. , Weaver, P. M. , Abu Seman, A. , and Shah, S. , 2007, “ Phenomena in the Bifurcation of Unsymmetric Composite Plates,” Composites, Part A, 38(1), pp. 100–106. [CrossRef]
Panesar, A. S. , and Weaver, P. M. , 2012, “ Optimisation of Blended Bistable Laminates for a Morphing Flap,” Compos. Struct., 94(10), pp. 3092–3105. [CrossRef]
Gude, M. , Hufenbach, W. , and Kirvel, C. , 2011, “ Piezoelectrically Driven Morphing Structures Based on Bistable Unsymmetric Laminates,” Compos. Struct., 93(2), pp. 377–382. [CrossRef]
Betts, D. N. , Kim, H. A. , and Bowen, C. R. , 2011, “ Modeling and Optimization of Bistable Composite Laminates for Piezoelectric Actuation,” J. Intell. Mater. Syst. Struct., 22(18), pp. 2181–2191. [CrossRef]
Sousa, C. S. , Camanho, P. P. , and Suleman, A. , 2013, “ Analysis of Multistable Variable Stiffness Composite Plates,” Compos. Struct., 98, pp. 34–46. [CrossRef]
Mattioni, F. , Weaver, P. M. , Potter, K. D. , and Friswell, M. I. , 2008, “ Analysis of Thermally Induced Multistable Composites,” Int. J. Solids Struct., 45(2), pp. 657–675. [CrossRef]
Bowen, C. R. , Betts, D. N. , Giddings, P. F. , Salo, A. I. T. , and Kim, H. A. , 2012, “ A Study of Bistable Laminates of Generic Lay-Up for Adaptive Structures,” Strain, 48(3), pp. 235–240. [CrossRef]
Schultz, M. R. , 2008, “ A Concept for Airfoil-Like Active Bistable Twisting Structures,” J. Intell. Mater. Syst. Struct., 19(2), pp. 157–169. [CrossRef]
Hufenbach, W. , Gude, M. , and Kroll, L. , 2002, “ Design of Multistable Composites for Application in Adaptive Structures,” Compos. Sci. Technol., 62(16), pp. 2201–2207. [CrossRef]
Hufenbach, W. , Gude, M. , and Czulak, A. , 2006, “ Actor-Initiated Snap-Through of Unsymmetric Composites With Multiple Deformation States,” J. Mater. Process. Technol., 175(1–3), pp. 225–230. [CrossRef]
Hufenbach, W. , and Gude, M. , 2002, “ Analysis and Optimisation of Multistable Composites Under Residual Stresses,” Compos. Struct., 55(3), pp. 319–327. [CrossRef]
Daynes, S. , and Weaver, P. , 2010, “ Analysis of Unsymmetric CFRP-Metal Hybrid Laminates for Use in Adaptive Structures,” Composites, Part A, 41(11), pp. 1712–1718. [CrossRef]
Fernandes, F. , Maurini, C. , and Vidoli, S. , 2010, “ Multiparameter Actuation for Shape Control of Bistable Composite Plates,” Int. J. Solids Struct., 47(10), pp. 1449–1458. [CrossRef]
Mattioni, F. , Weaver, P. M. , Potter, K. D. , and Friswell, M. I. , 2008, “ The Application of Thermally Induced Multistable Composites to Morphing Aircraft Structures,” Proc. SPIE, 6930, p. 693012.
Potter, K. D. , and Weaver, P. M. , 2004, “ A Concept for the Generation of Out-of-Plane Distortion From Tailored FRP Laminates,” Composites, Part A, 35(12), pp. 1353–1361. [CrossRef]
Kebadze, E. , Guest, S. D. , and Pellegrino, S. , 2004, “ Bistable Prestressed Shell Structures,” Int. J. Solids Struct., 41(11), pp. 2801–2820. [CrossRef]
Shaw, A. D. , Neild, S. A. , Wagg, D. J. , Weaver, P. M. , and Carrella, A. , 2013, “ A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation,” J. Sound Vib., 332(34), pp. 6265–6275. [CrossRef]
Tawfik, S. A. , Dancila, D. S. , and Armanios, E. , 2011, “ Platform Effects Upon the Bistable Response of Cross-Ply Composite Shells,” Composites, Part A, 42(7), pp. 825–833. [CrossRef]
Pirrera, A. , Lachenal, X. , Daynes, S. , Weaver, P. M. , and Chenchiah, I. V. , 2013, “ Multi-Stable Cylindrical Lattices,” J. Mech. Phys. Solids, 61(11), pp. 2087–2107. [CrossRef]
Daynes, S. , Weaver, P. M. , and Potter, K. D. , 2009, “ Aeroelastic Study of Bistable Composite Airfoils,” J. Aircr., 46(6), pp. 2169–2173. [CrossRef]
Daynes, S. , Nall, S. J. , Weaver, P. M. , Potter, K. D. , Margaris, P. , and Mellor, P. H. , 2009, “ On a Bistable Flap for an Airfoil,” AIAA Paper No. 2009-2103.
Mattioni, F. , Gatto, A. , Weaver, P. M. , Friswell, M. I. , and Potter, K. D. , 2006, “ The Application of Residual Stress Tailoring of Snap-Through Composites for Variable Sweep Wings,” AIAA Paper No. 2006-1972.
Vidoli, S. , and Maurini, C. , 2008, “ Tristability of Thin Orthotropic Shells With Uniform Initial Curvature,” Proc. R. Soc. A, 464(2099), pp. 2949–2966. [CrossRef]
Arrieta, A. F. , Neild, S. A. , and Wagg, D. J. , 2011, “ On the Cross-Well Dynamics of a Bi-Stable Composite Plate,” J. Sound Vib., 330(14), pp. 3424–3441. [CrossRef]
Nayfeh, A. H. , 2000, Nonlinear Interactions, Analytical, Computational, and Experimental Methods, Wiley-VCH, New York.
Elvin, N. , and Erturk, A. , 2013, Advances in Energy Harvesting Methods, Springer, New York.
Harne, R. L. , and Wang, K. W. , 2013, “ A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems,” Smart Mater. Struct., 22(2), p. 023001. [CrossRef]
Giomi, L. , and Mahadevan, L. , 2012, “ Multi-Stability of Free Spontaneously Curved Anisotropic Strips,” Proc. R. Soc. A, 468(2138), pp. 511–530. [CrossRef]
Gigliotti, M. , Wisnom, M. R. , and Potter, K. D. , 2003, “ Development of Curvature During the Cure of AS4/8552 [0/90] Unsymmetric Composite Plates,” Compos. Sci. Technol., 63(2), pp. 187–197. [CrossRef]
Seffen, K. A. , 2007, “ ‘Morphing’ Bistable Orthotropic Elliptical Shallow Shells,” Proc. R. Soc. A, 463(2077), pp. 67–83. [CrossRef]
Brinkmeyer, A. , Santer, M. , Pirrera, A. , and Weaver, P. M. , 2012, “ Pseudo-Bistable Self-Actuated Domes for Morphing Applications,” Int. J. Solids Struct., 49(9), pp. 1077–1087. [CrossRef]
Brinkmeyer, A. , Pirrera, A. , Santer, M. , and Weaver, P. M. , 2013, “ Pseudo-Bistable Pre-Stressed Morphing Composite Panels,” Int. J. Solids Struct., 50(7–8), pp. 1033–1043. [CrossRef]
Coburn, B. H. , Pirrera, A. , Weaver, P. M. , and Vidoli, S. , 2013, “ Tristability of an Orthotropic Doubly Curved Shell,” Compos. Struct., 96, pp. 446–454. [CrossRef]
Eckstein, E. , Pirrera, A. , and Weaver, P. M. , 2014, “ Multi-Mode Morphing Using Initially Curved Composite Plates,” Compos. Struct., 109, pp. 240–245. [CrossRef]
Daynes, S. , Weaver, P. M. , and Trevarthen, J. A. , 2011, “ A Morphing Composite Air Inlet With Multiple Stable Shapes,” J. Intell. Mater. Syst. Struct., 22(9), pp. 961–973. [CrossRef]
Dai, F. , Li, H. , and Du, S. , 2012, “ Design and Analysis of a Tri-Stable Structure Based on Bi-Stable Laminates,” Composites, Part A, 43(9), pp. 1497–1504. [CrossRef]
Dai, F. , Li, H. , and Du, S. , 2013, “ A Multi-Stable Wavy Skin Based on Bi-Stable Laminates,” Composites, Part A, 45, pp. 102–108. [CrossRef]
Dai, F. , Li, H. , and Du, S. , 2013, “ A Multi-Stable Lattice Structure and Its Snap-Through Behavior Among Multiple States,” Compos. Struct., 97, pp. 56–63. [CrossRef]
Daynes, S. , Nall, S. J. , Weaver, P. M. , Potter, K. D. , Margaris, P. , and Mellor, P. H. , 2010, “ Bistable Composite Flap for an Airfoil,” J. Aircr., 47(1), pp. 334–338. [CrossRef]
Erturk, A. , and Inman, D. J. , 2011, “ Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling,” J. Sound Vib., 330(10), pp. 2339–2353. [CrossRef]
Pellegrini, S. P. , Tolou, N. , Schenk, M. , and Herder, J. L. , 2013, “ Bistable Vibration Energy Harvesters: A Review,” J. Intell. Mater. Syst. Struct., 24(11), pp. 1303–1312. [CrossRef]
Arrieta, A. F. , Hagedorn, P. , Erturk, A. , and Inman, D. J. , 2010, “ A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting,” Appl. Phys. Lett., 97(10), p. 104102. [CrossRef]
Betts, D. N. , Kim, H. A. , Bowen, C. R. , and Inman, D. J. , 2012, “ Optimal Configurations of Bistable Piezo-Composites for Energy Harvesting,” Appl. Phys. Lett., 100(11), p. 114104. [CrossRef]
Betts, D. N. , Kim, H. A. , Bowen, C. R. , and Inman, D. J. , 2012, “ Static and Dynamic Analysis of Bistable Piezoelectric-Composite Plates for Energy Harvesting,” 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials, Honolulu, HI, Apr. 23–26, AIAA Paper No. 2012-1492.
Betts, D. N. , Bowen, C. R. , Kim, H. A. , Gathercole, N. , Clarke, C. T. , and Inman, D. J. , 2013, “ Nonlinear Dynamics of a Bistable Piezoelectric Composite Energy Harvester for Broadband Application,” Eur. Phys. J.: Spec. Top., 222(7), pp. 1553–1562. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Laminated shapes: (a) the flat shape, (b) the unstable saddle shape, (c) and (d) two stable cylindrical shapes (reproduced with permission from Hyer [2])

Grahic Jump Location
Fig. 2

Geometry of a composite laminate. (a) Cross section view and (b) top view.

Grahic Jump Location
Fig. 3

Glass-fiber reinforced plastics (GFRP) prestressed buckled laminates (Reproduced with permission from Daynes et al. [32]. Copyright 2008 by Elsevier Ltd.)

Grahic Jump Location
Fig. 4

Two stable shapes of antisymmetric laminate (Reproduced with permission from Zhang et al. [40]. Copyright 2014 by Elsevier Ltd.)

Grahic Jump Location
Fig. 5

Stable configurations of two BHSLs (Reproduced with permission from Li et al. [41]. Copyright 2014 by Elsevier Ltd.)

Grahic Jump Location
Fig. 6

Snapthrough load versus aspect ratio for an unsymmetric laminate (Reproduced with permission from Tawfik et al. [46]. Copyright 2007 by SAGE Publications.)

Grahic Jump Location
Fig. 7

Stable configurations of [0/90/0MFC]T (Reproduced with permission from Bowen et al. [55]. Copyright 2011 by IEEE.)

Grahic Jump Location
Fig. 8

Variable stiffness laminate based on (a) curvilinear-fiber model and (b) straight-fiber laminate model (Reproduced with permission from Sousa et al. [64]. Copyright 2012 by Elsevier Ltd.) and (Reproduced with permission from Mattioni et al. [65]. Copyright 2007 by Elsevier Ltd.)

Grahic Jump Location
Fig. 9

Model of a trailing edge box (a) and the first stable shape of the trailing edge box (b) (Reproduced with permission from Diaconu et al. [21]. Copyright 2007 by Elsevier Ltd.

Grahic Jump Location
Fig. 10

Hybrid laminates (Reproduced with permission from Daynes and Weaver [71]. Copyright 2007 by Elsevier Ltd.)

Grahic Jump Location
Fig. 11

Stacking sequence and stable shapes of a bistable panel. (a) Stacking sequence for the bistable laminate, (b) first stable shape, and (c) second stable shape (Reproduced with permission from Mattioni et al. [65]. Copyright 2007 by Elsevier Ltd.)

Grahic Jump Location
Fig. 12

The bistable winglet. (a) Extended configuration and (b) deployed configuration (Reproduced with permission from Mattioni et al. [73]. Copyright 2008 by SPIE.)

Grahic Jump Location
Fig. 13

Experimental model for variable camber trailing edge: (a) deployed configuration and (b) extended configuration (Reproduced with permission from Mattioni et al. [73]. Copyright 2008 by SPIE.)

Grahic Jump Location
Fig. 14

Plots of (a) force–displacement and (b) stiffness-displacement resulted from a quasi-static test where dotted lines represent measured data (Reproduced with permission from Shaw et al. [76]. Copyright 2013 by Elsevier Ltd.)

Grahic Jump Location
Fig. 15

Design of an airfoil section with bistable composite flap (Reproduced with permission from Daynes et al. [79]. Copyright 2009 by S. Daynes, P. M. Weaver, and K. D. Potter.)

Grahic Jump Location
Fig. 16

Bistable trailing edge of an airfoil. (a) Flab at 0 deg and (b) flap at 10 deg (Reproduced with permission from Daynes et al. [80]. Copyright 2009 by S. Daynes, S. J. Nall, P. M. Weaver, K. D. Potter, P. Margaris, and P. H. Mellor.)

Grahic Jump Location
Fig. 17

A swept wing configuration (Reproduced with permission from Mattioni et al. [81]. Copyright 2006 by F. Mattioni, A. Gatto, P. M. Weaver, M. I. Friswell, and K. D. Potter.)

Grahic Jump Location
Fig. 18

Stable states of a bistable plate: (a) stable state 1 and (b) stable state 2 (Reproduced with permission from Arrieta et al. [57]. Copyright 2011 by SAGE Publications.)

Grahic Jump Location
Fig. 19

Comparison of dynamic snapthrough for four-ply bistable plate-MFC with only shaker and shaker plus MFC-actuation (Reproduced with permission from Arrieta et al. [57]. Copyright 2011 by SAGE Publications.)

Grahic Jump Location
Fig. 20

Comparison of the average power outputs of a linear and nonlinear energy harvesters (Reproduced with permission from Erturk and Inman [99]. Copyright 2010 by Elsevieer Ltd.)

Grahic Jump Location
Fig. 21

Actuation arrangement of a bistable laminate with 40% piezoelectric covering 2012 by AIP Publishing LLC.) (Reproduced with permission from Betts et al. [102]. Copyright 2012 by AIP Publishing LLC.)

Grahic Jump Location
Fig. 22

Variation of the electric power with the piezoelectric area while varying (a) the piezoelectric patch directions angle and (b) the number of plies of 0.125 mm thickness each (Reproduced with permission from Betts et al. [102]. Copyright 2012 by AIP Publishing LLC.)

Grahic Jump Location
Fig. 23

Voltage outputs for (a) low amplitude oscillation, (b) nonuniform behavior and chaotic snapthrough, (c) intermittent snapthrough, and (d) repeated snapthrough (Reproduced with permission from Betts et al. [104]. Copyright 2012 by AIP Publishing LLC.)

Grahic Jump Location
Fig. 24

Experimentally observed mode types associated with all combinations of drive frequency and acceleration (Reproduced with permission from Betts et al. [28]. Copyright 2014 by Betts et al.)

Grahic Jump Location
Fig. 25

Average power outputs and associated modes for 10 g excitations. Experimental (black symbols) and modeling results (gray) (Reproduced with permission from Betts et al. [28]. Copyright Betts et al.)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In