0
Review Article

Celebrating the Centenary of Timoshenko's Study of Effects of Shear Deformation and Rotary Inertia

[+] Author and Article Information
Isaac Elishakoff

Fellow ASME
Department of Ocean and
Mechanical Engineering,
Florida Atlantic University,
Boca Raton, FL 33431-0991
e-mail: elishako@fau.edu

Julius Kaplunov

School of Computing and Mathematics,
Keele University,
Keele,
Staffordshire ST5 5BG, UK
e-mail: j.kaplunov@keele.ac.uk

Evgeniya Nolde

Department of Mathematics,
Brunel University,
Uxbridge,
Middlesex UB8 3PH, UK
e-mail: Evgeniya.Nolde@brunel.ac.uk

This paper is dedicated to blessed memories of our teachers, Professors V.V. Bolotin (1926–2008) and A.L. Goldenveizer (1910–2003), who instilled in us unyielding love of structural mechanics.Manuscript received May 29, 2015; final manuscript received October 29, 2015; published online December 11, 2015. Assoc. Editor: Prashant K Purohit.

Appl. Mech. Rev 67(6), 060802 (Dec 11, 2015) (11 pages) Paper No: AMR-15-1067; doi: 10.1115/1.4031965 History: Received May 29, 2015; Revised October 29, 2015

This study revisits Timoshenko beam theory (TBT). It discusses at depth a more consistent and simpler governing differential equation. The so-called second spectrum is also addressed. Then, we provide the asymptotic justification of the aforementioned differential equation along with detailed discussion of the boundary and initial conditions. The paper also presents remarks of historical character, in the context of other pertinent studies.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Berdichevskii, V. L. , and Kvashnina, S. S. , 1974, “ On Equations Describing the Transverse Vibrations of Elastic Bars,” J. Appl. Math. Mech., 40(1), pp. 104–119 (Prikl. Mat. Mekh., 40(1), pp. 120–135). [CrossRef]
Sayir, M. , 1980, “ Flexural Vibrations of Strongly Anisotropic Beams,” Ing. Arch., 49, pp. 309–330. [CrossRef]
Goldenveizer, A. L. , Kaplunov, J. D. , and Nolde, E. V. , 1993, “ On Timoshenko–Reissner Type Theories of Plates and Shells,” Int. J. Solids Struct., 30(5), pp. 675–694. [CrossRef]
Bhaskar, A. , 2009, “ Elastic Waves in Timoshenko Beams: The “Lost and Found” of an Eigenmode,” Proc. R. Soc. A, 465(2101), pp. 239–255. [CrossRef]
Timoshenko, S. P. , 1916, Course of Elasticity Theory. Part 2—Columns and Plates, A. E. Collins Publishers, St. Petersburg, 1916 (in Russian) (2nd ed., Naukova Dumka, Kiev, 1972).
Timoshenko, S. P. , 1920, “ On the Differential Equation for the Flexural Vibrations of Prismatical Rods,” Glas. Hrvat. Prirodosl. Drus., Zagreb, 32, Nr. 2, pp. 55–57 (in English).
Timoshenko, S. P. , 1921, “ On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars,” Philos. Mag., 41(245), pp. 744–746. [CrossRef]
Kaplunov, J. D. , Kossovich, L. Y. , and Nolde, E. V. , 1998, Dynamics of Thin Walled Elastic Bodies, Academic Press, San Diego, CA.
Rayleigh Lord (J. W. S. Strutt), 1877–1878, The Theory of Sound, Macmillan, London.
Bresse, J. A. C. , 1859, Cours de Mécanique Appliquée, Mallet-Bachelier, Paris (in French).
Timoshenko, S. P. , 1921, “ On the Additional Deflection Due to Shearing,” Glas. Hrvat. Prirodosl. Drus., Zagreb, 33, Part 1, Nr. 1, pp. 50–52 (in English).
Laura, P. P. A. , Rossi, R. E. , and Maurizi, M. , 1992, Vibrating Timoshenko Beams: A Tribute to the 70th Anniversary of the Publication of Professor S. Timoshenko's Epoch Making Contribution, Institute of Applied Mechanics and Department of Engineering, Universidad Nacional del Sur, Bahia Blanca, Argentina.
Pisarenko, G. S. , 1991, Stepan Prokopievich Timoshenko, 1878–1972, Nauka, Moscow (in Russian).
Grigolyuk, E. I. , 2000, S.P. Timoshenko: Life and Destiny, Krylov State Research Centre, St. Petersburg (in Russian).
Gere, J. M. , Herrmann, G. , Kays, W. M. , and Lee, E. H. , 1972, “ Memorial Resolution, Stephen P. Timoshenko (1878–1972),” Stanford Historical Society, Stanford, CA, http://historicalsociety.stanford.edu/pdfmem/TimoshenkoS.pdf
Simha, K. R. Y. , 2002, “ Timoshenko: Father of Engineering Mechanics,” Resonance, 7(10), pp. 2–3. [CrossRef]
Felippa, C. A. , 2005, “ The Amusing History of Shear Flexible Beam Elements,” IACM Expressions, 17(5), pp. 13–17.
Koiter, W. T. , 1977, “ Discussion: ‘Timoshenko Beam Theory is Not Always More Accurate Than Elementary Beam Theory’ (Nicholson, J. W., and Simmonds, J. G., 1977, ASME J. Appl. Mech., 44, pp. 337–338),” ASME J. Appl. Mech., 44(2), pp. 357–358. [CrossRef]
Rankine, W. J. W. , 1858, A Manual of Applied Mechanics, Richard Griffin and Co., London, pp. 342–344.
Grigolyuk, E. I. , and Selezov, I. T. , 1973, “ Nonclassical Theories of Vibrations of Columns, Plates, and Shells,” Advances in Science and Technology, Series. Mechanics of Deformable Solids, Vol. 5, VINITI Publishers, Moscow (in Russian).
Selezov, I. , 2009, private communication.
Simmonds, J. G. , 2003, “ In Support of A. L. Gol'denveiser's Approach to Refining Classical Plate and Shell Theories,” Izvestiya VUZov, Severo-Kavkazskii Region: Estestvennye Nauki, Special Issue: Non-Linear Problems in Continuum Mechanics, pp. 75–76.
Flügge, W. , 1942, “ Die Ausbreitung von Biegungswellen in Staben,” Z. Angew. Math. Mech., 22(6), pp. 312–318 (in German). [CrossRef]
Flügge, W. , 1939, “ Stephen Timoshenko Zum 60,” Z. Angew. Math. Mech., 19(1), pp. 63–64 (in German). [CrossRef]
Flügge, W. , ed., 1962, Handbook of Engineering Mechanics, McGraw-Hill, New York.
Young, D. H. , 1962, “ Continuous Systems,” Handbook of Engineering Mechanics, W. Flügge , ed., McGraw-Hill, New York, pp. 61.14–61.18.
Zajac, E. E. , 1962, “ Propagation of Elastic Waves,” Handbook of Engineering Mechanics, W. Flügge , ed., McGraw-Hill, New York, pp. 64.9–64.11.
Kurrer, K. E. , 2008, The History of Theory of Structures: From Arch Analysis to Computational Mechanics, Ernst & Sohn, Berlin.
Timoshenko, S. P. , 1975, Strength and Vibrations of Structural Elements, E. I. Grigolyuk , ed., Nauka, Moscow (in Russian), p. 10.
Young, D. H. , 1954, “ Collected Papers of Stephen P. Timoshenko,” ASME J. Appl. Mech., 21(4), pp. 418–419.
Young, D. H. , 1972, “ Stephen P. Timoshenko: 1878–1972,” ASME Appl. Mech. Rev., 25(7), pp. 759–763.
Stephen, N. G. , 2006, “ The Second Frequency Spectrum of Timoshenko Beams—Further Assessment,” J. Sound Vib., 292, pp. 372–389. [CrossRef]
Goens, E. , 1931, “ Uber die Bestimmung des Elastizitatsmoduls von Staben mit Hilfe von Biegungsschwingungen,” Ann. Phys., 403(6), pp. 649–678 (in German). [CrossRef]
Trail-Nash, R. W. , and Collar, A. R. , 1953, “ The Effects of Shear Flexibility and Rotatory Inertia on the Bending Vibrations of Beams,” Q. J. Mech. Appl. Math., 6(Pt. 2), pp. 186–222. [CrossRef]
Abbas, B. A. H. , and Thomas, J. , 1977, “ The Second Frequency Spectrum of Timoshenko Beams,” J. Sound Vib., 51(1), pp. 123–137. [CrossRef]
Bhashyam, G. R. , and Prathap, G. , 1981, “ The Second Frequency Spectrum of Timoshenko Beams,” J. Sound Vib., 76(3), pp. 407–420. [CrossRef]
Hathout, I. , Leipholz, H. , and Singhal, K. , 1980, “ Sensitivity of the Frequencies of Clamped Timoshenko Beams,” J. Eng. Sci. Univ. Riyadh, 6, pp. 113–121.
Levinson, M. , and Cooke, D. W. , 1982, “ On the Two Frequency Spectra of Timoshenko Beams,” J. Sound Vib., 84(3), pp. 319–326. [CrossRef]
Stephen, N. G. , 1982, “ The Second Frequency Spectrum of Timoshenko Beams,” J. Sound Vib., 80(4), pp. 578–582. [CrossRef]
Stephen, N. G. , and Puchegger, S. , 2006, “ On the Valid Frequency Range of Timoshenko Beam Theory,” J. Sound Vib., 297(3–5), pp. 1082–1087. [CrossRef]
Nesterenko, V. V. , 1993, “ A Theory for Transverse Vibrations of the Timoshenko Beam,” J. Appl. Math. Mech., 57(4), pp. 669–677. [CrossRef]
Chervyakov, A. M. , and Nesterenko, V. V. , 1993, “ Is it Possible to Assign Physical Meaning to Field Theory With Higher Derivatives?,” Phys. Rev. D, 48(12), pp. 5811–5817. [CrossRef]
Manevich, A. I. , 2015, “ Dynamics of Timoshenko Beam on Linear and Nonlinear Foundation Phase Relations, Significance of the Second Spectrum, Stability,” J. Sound Vib., 344, pp. 209–220. [CrossRef]
Elishakoff, I. , 2010, “ An Equation Both More Consistent and Simper Than the Bresse–Timoshenko Equation,” Advances in Mathematical Modeling and Experimental Methods for Materials and Structures: The Jacob Aboudi Volume, R. Gilat and L. Banks-Sills , eds., Springer, Berlin, pp. 249–254.
Elishakoff, I. , and Lubliner, E. , 1985, “ Random Vibration of a Structure Via Classical and Nonclassical Theories,” Probabilistic Methods in Mechanics and Structures, S. Eggwertz and N. Lind , eds., Springer, Berlin, pp. 455–467.
Elishakoff, I. , and Livshits, D. , 1989, “ Some Closed-Form Solutions in Random Vibration of Bresse–Timoshenko Beams,” Probab. Eng. Mech., 4(1), pp. 49–54. [CrossRef]
Lottati, I. , and Elishakoff, I. , 1987, “ Influence of the Shear Deformation and Rotary Inertia on the Flutter of a Cantilever Subjected to a Follower Force—Exact and Symbolic Manipulation Solutions,” Refined Dynamical Theories in Beams, Plates and Shells and Their Applications, I. Elishakoff and H. Irretier , eds., Springer, Berlin, pp. 261–273.
Elishakoff, I. , and Abramovich, H. , 1992, “ Note on Dynamic Response of Large Space Structures,” J. Sound Vib., 156(1), pp. 178–184. [CrossRef]
Elishakoff, I. , Baruch, M. , Zhu, L. , and Caimi, R. , 1995, “ Random Vibration of Space Shuttle Weather Protection Systems,” Shock Vib., 2(2), pp. 111–118. [CrossRef]
Pielorz, A. , 1996, “ Discrete-Continuous Models in the Analysis of Low Structures Subject to Kinetic Excitations Caused by Transversal Waves,” Mech. Teor. Stosow. (J. Theor. Appl. Mech.), 3(34), pp. 547–566.
Falsone, G. , Settineri, D. , and Elishakoff, I. , 2015, “ A New Class of Interdependent Shape Polynomials for the FE Dynamic Analysis of Mindlin Plate Timoshenko Beam,” Meccanica, 50(3), pp. 767–780. [CrossRef]
Elishakoff, I. , and Pentaras, D. , 2009, “ Natural Frequencies of Carbon Nanotubes Based on Simplified Bresse–Timoshenko Theory,” J. Comput. Theor. Nanosci., 6(7), pp. 1527–1531. [CrossRef]
Elishakoff, I. , Challamel, N. , Soret, C. , Bekel, Y. , and Gomez, T. , 2013, “ Virus Sensor Based on Single-Walled Carbon Nanotube: Improved Theory Incorporating Surface Effects,” Philos. Trans. R. Soc. A, 371(1993), p. 20120424. [CrossRef]
Elishakoff, I. , and Soret, C. , 2013, “ A Consistent Set of Nonlocal Bresse–Timoshenko Equations for Nanobeams With Surface Effects,” ASME J. Appl. Mech., 80(6), p. 061001. [CrossRef]
Tseitlin, A. I. , 1961a, “ On the Effect of Shear Deformation and Rotary Inertia in Vibrations of Beams on Elastic Foundation,” J. Appl. Math. Mech., 25(2), pp. 531–535 (Prikl. Mat. Mekh., 25(2), pp. 362–364, in Russian). [CrossRef]
Tseitlin, A. I. , 1961b, “ About the Solution of Timoshenko's Equation for the Beam on Elastic Foundation,” Proceedings of the Kazakh Branch of the Academy of Civil Engineering and Architecture of the USSR, Vol. 3, pp. 250–254 (in Russian).
Szidarovsky, J. , 1962, “ Natural Vibration of a Bar Under Axial Force, Taking Into Consideration the Effect of Shearing Force and Rotatory Inertia,” Acta Tech. Acad. Sci. Hung., 39(1–2), pp. 29–41.
Cherkasov, A. P. , 1964, “ Influence of Shear Force and Rotary Inertia on Dynamic Stability of Columns,” Proceedings of the Kharkov Civil Engineering Institute, Vol. 16, pp. 21–32 (in Russian).
Vorobyev, N. L. , 1968, “ Towards Questions of Qualitative Methods of Determination of Critical Forces and Free Vibration Frequencies of Columns,” Problems of Reliability and Serviceability of Agrarian Machines, Rostov-on-Don, pp. 20–29 (in Russian).
Sabodash, B. A. , 1979, “ Dynamic Stability of Beams With Shear Deformation and Rotary Inertia Taken Into Account,” Prikl. Mekh. (Appl. Mech.), 15(5), pp. 73–78 (in Russian).
Berdichevsky, V. L. , 1973, “ Dynamic Theory of Thin Elastic Plates,” Izv. AN SSSR, Mekh. Tverd. Tela, 8(6), pp. 99–109.
Stephen, N. G. , and Levinson, M. , 1979, “ A Second Order Beam Theory,” J. Sound Vib., 67(3), pp. 293–305. [CrossRef]
Stephen, N. G. , 1997, “ Mindlin Plate Theory: Best Shear Coefficient and Higher Spectra Validity,” J. Sound Vib., 202(4), pp. 539–553. [CrossRef]
Belov, A. V. , Kaplunov, J. D. , and Nolde, E. V. , 1999, “ A Refined Asymptotic Model of Fluid-Structure Interaction in Scattering by Elastic Shells,” Flow, Turbul. Combust., 61, pp. 255–267. [CrossRef]
Kaplunov, J. D. , Nolde, E. V. , and Shorr, B. F. , 2005, “ A Perturbation Approach for Evaluating Natural Frequencies of Moderately Thick Elliptic Plates,” J. Sound Vib., 281, pp. 905–919. [CrossRef]
Pichugin, A. V. , Askes, H. , and Tyas, A. , 2008, “ Asymptotic Equivalence of Homogenisation Procedures and Fine-Tuning of Continuum Theories,” J. Sound Vib., 313(3–5), pp. 858–874. [CrossRef]
Prathap, G. , 1983, “ The Two Frequency Spectra of Timoshenko Beams—A Re-Assessment,” J. Sound Vib., 90(3), pp. 443–446. [CrossRef]
Anderson, R. A. , 1953, “ Flexural Vibrations in Uniform Beams According to the Timoshenko Theory,” ASME J. Appl. Mech., 20, pp. 504–510.
Dolph, C. L. , 1954, “ On the Timoshenko Theory of Transverse Beam Vibrations,” Q. J. Appl. Math., 12, pp. 175–187.
Aalami, B. , and Atzori, B. , 1974, “ Flexural Vibrations and Timoshenko's Beam Theory,” AIAA J., 12(5), pp. 679–685. [CrossRef]
Barr, A. D. S. , 1993, “ Parametric Vibration in Beams,” Proceedings of the 14th Canadian Congress of Applied Mechanics, Vol. 1, Queen's University, Kingston, ON, pp. 3–9.
Chan, K. T. , Wang, X. Q. , So, R. M. S. , and Reid, S. R. , 2001, “ Superposed Standing Waves in a Timoshenko Beam,” Proc. R. Soc. London, A, 458, pp. 83–108. [CrossRef]
Dixit, A. , 2013, “ Mechanics-Based Explanation of the Second Frequency Branch of Timoshenko Beam Theory,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, MA, AIAA, Reston, VA, April 8–11, pp. 1–15.
Dym, C. L. , and Shames, I. H. , 1972, Solid Mechanics: A Variational Approach, McGraw-Hill, New York.
Le, K. C. , 1999, Vibrations of Shells and Rods, Springer, Berlin.
Berdichevsky, V. L. , 2009, Variational Principles in Continuum Mechanics, Springer, Berlin.
Kaplunov, J. D. , 1995, “ Long-Wave Vibrations of a Thin-Walled Body With Fixed Faces,” Q. J. Mech. Appl. Math., 48(3), pp. 311–327. [CrossRef]
Kaplunov, J. D. , and Nolde, E. V. , 2002, “ Long-Wave Vibrations of a Nearly Incompressible Isotropic Plate With Fixed Faces,” Q. J. Mech. Appl. Math., 55(3), pp. 345–356. [CrossRef]
Kaplunov, J. D. , and Markushevich, D. G. , 1993, “ Plane Vibrations and Radiation of an Elastic Layer Lying on a Liquid Half-Space,” Wave Motion, 17(3), pp. 199–211. [CrossRef]
Kaplunov, J. D. , Nolde, E. V. , and Veksler, N. D. , 1994, “ Asymptotic Formulae for the Modal Resonance of Peripheral Waves in the Scattering of an Obliquely Incident Plane Acoustic Wave by a Cylindrical Shell,” Acustica, 80, pp. 280–293.
Ryazantseva, M. Y. , 1989, “ High-Frequency Vibrations of Symmetrical Sandwich Plates,” Mech. Solids, 24(5), pp. 175–181.
Kaplunov, J. D. , Kossovich, L. Y. , and Rogerson, G. A. , 2000, “ Direct Asymptotic Integration of the Equations of Transversely Isotropic Elasticity for a Plate Near Cut-Off Frequencies,” Q. J. Mech. Appl. Math., 53(2), pp. 323–341. [CrossRef]
Pichugin, A. V. , and Gogerson, G. A. , 2001, “ A Two-Dimensional Model for Extensional Motion of a Pre-Stressed Incompressible Elastic Layer Near Cut-Off Frequencies,” IMA J. Appl. Math., 66(4), pp. 357–385. [CrossRef]
Kaplunov, J. D. , Nolde, E. V. , and Rogerson, G. A. , 2002, “ An Asymptotically Consistent Model for Long-Wave High-Frequency Motion in a Prestressed Elastic Plate,” Math. Mech. Solids, 7(6), pp. 581–606. [CrossRef]
Lutianov, M. , and Rogerson, G. A. , 2010, “ Long Wave Motion in Layered Elastic Media,” Int. J. Eng. Sci., 48(12), pp. 1856–1871. [CrossRef]
Van Dyke, M. D. , 1975, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA.
Andrianov, I. , Awrejcewicz, J. , and Manevitch, L. I. , 2004, Asymptotical Mechanics of Thin-Walled Structures, Springer, Berlin.
Love, A. E. H. , 1944, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York.
Bishop, R. E. D. , 1952, “ Longitudinal Waves in Beams,” Aeronaut.l Quar., 3(2), pp. 280–293.
Shatalov, M. , Marais, J. , Fedotov, J. , and Tenkam, M. J. , 2011, “ Longitudinal Vibrationn of Isotropic Solid Rods: From Classical to Modern Theories,” Advances in Computer Science and Engineering, M. Schmidt , ed., InTech Open, Rijeka, Croatia, pp. 187–214.
Stephen, N. G. , 1981, “ Considerations on Second Order Beam Theories,” Int. J. Solids Struct., 17(3), pp. 325–333. [CrossRef]
Young, D. H. , 1953, Biographical Sketch, The Collected Papers, S. P. Timoshenko , ed., McGraw-Hill, New York, p. XVIII.
Timoshenko, S. P. , 1968, As I Remember: The Autobiography of Stephen P. Timoshenko, D. Van Nostrand, Princeton, NJ, pp. 128–129.
Hodges, D. H. , 2006, Nonlinear Composite Beam Theory, AIAA, Reston, VA.
Berdichevsky, V. L. , 1976, “ Equations of the Theory of Anisotropic Inhomogeneous Rods,” Dokl. Akad. Nauk SSSR, 228, pp. 558–561.
Berdichevsky, V. L. , and Starosel'skii, L. A. , 1983, “ On the Theory of Curvilinear Timoshenko-Type Rods,” J. Appl. Math. Mech. (Prikl. Mat. Mekh.), 47(6), pp. 809–817. [CrossRef]
Popescu, B. , and Hodges, D. H. , 2000, “ On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory,” Int. J. Solids Struct., 37(3), pp. 535–558. [CrossRef]
Kathnelson, A. N. , 1994, “ Improved Beam Vibration Equations: Asymptotic Approach,” J. Sound Vib., 178(2), pp. 265–268. [CrossRef]
Goldenveizer, A. L. , 1958, “ On Reissner's Theory of Bending of Plates,” Izv. AN SSSR, Otd. Tekhn. Nauk., 4, pp. 102–109.
Duva, J. M. , and Simmonds, J. G. , 1991, “ The Usefulness of Elementary Theory for the Linear Vibrations of Layered, Orthotropic Elastic Beams and Corrections Due to Two-Dimensional End Effects,” ASME J. Appl. Mech., 58(1), pp. 175–180. [CrossRef]
Duva, J. M. , and Simmonds, J. G. , 1992, “ The Influence of Two-Dimensional End Effects on the Natural Frequencies of Cantilevered Beams in Shear,” ASME J. Appl. Mech., 59(1), pp. 230–232. [CrossRef]
Simmonds, J. G. , 2008, “ Discussion: ‘New First-Order Shear Deformation Plate Theories' (Shimpi, R. P., Patel, H. G., and Arya, H., 2007, ASME J. Appl. Mech., 74, pp. 523–533),” ASME J. Appl. Mech., 75(4), p. 045503. [CrossRef]
Shimpi, R. P. , Patel, H. G. , and Arya, H. , 2007, “ New First-Order Shear Deformation Plate Theories,” ASME J. Appl. Mech., 74(3), pp. 523–533. [CrossRef]
Simmonds, J. G. , 2008, private communication.
Simmonds, J. G. , 2009, private communications.
Reissner, E. , 1944, “ On the Theory of Bending of Elastic Plates,” J. Math. Phys. (Cambridge, MA), 23, pp. 184–191.
Reissner, E. , 1945, “ The Effect of Transverse-Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12, pp. A67–A77.
Gregory, R. D. , and Wan, F. Y. M. , 1984, “ Decaying States of Plane Strain in a Semi-Infinite Strip and Boundary Conditions for Plate Theory,” J. Elasticity, 14(1), pp. 27–64. [CrossRef]
Babenkova, E. , and Kaplunov, J. , 2004, “ Low-Frequency Decay Conditions for a Semi-Infinite Elastic Strip,” Proc. R. Soc. Lond. A, 460(2048), pp. 2153–2169. [CrossRef]
Bolotin, V. V. , 1961, “ An Asymptotic Method for the Study of the Problem of Eigenvalues for Rectangular Regions,” Problems in Continuum Mechanics: Muskhelishvili Anniversary Volume, SIAM, Philadelphia, PA, pp. 56–68.
King, W. W. , 1974, “ Applications of Bolotin's Method to Vibrations of Plates,” AIAA J., 12(3), pp. 399–401. [CrossRef]
Elishakoff, I. , 1976, “ Bolotin's Dynamic Edge Effect Method,” Shock Vib. Dig., 8(1), pp. 95–104. [CrossRef]
Kaplunov, J. D. , Nolde, E. V. , and Rogerson, G. A. , 2006, “ An Asymptotic Analysis of Initial-Value Problems for Thin Elastic Plates,” Proc. R. Soc. London A, 462(2073), pp. 2541–2561. [CrossRef]
Nolde, E. , 2007, “ Qualitative Analysis of Initial-Value Problems for a Thin Elastic Strip,” IMA J. Appl. Math., 72(3), pp. 348–375. [CrossRef]
Grigolyuk, E. I. , 1971, “ S. P. Timoshenko and His Works in the Field of Stability of Deformable Systems,” Stability of Beams, Plates and Shells, E. I. Grigolyuk , ed., Nauka, Moscow, pp. 731–800 (in Russian).
Grigolyuk, E. I. , 1972, “ Problems of Strength, Vibrations and Stability of Engineering Constructions and Their Modeling in Works by S.P. Timoshenko,” Theory of Plates and Shells, Kazan’ University Publishing, Kazan, Russia, Vol. 9, pp. 3–54 (in Russian).
Grigolyuk, E. I ., 1975 , “ S.P. Timoshenko and His Works in Problems of Mechanics of Deformable Solids and Analysis of Engineering Constructions,” S.P. Timoshenko: Static and Dynamic Problems in Theory of Elasticity, Naukova Dumka Publishers, Kiev, pp. 515–542 (in Russian).
Simha, K. R. Y. , 2002, “ Timoshenko and His Books,” Resonance, 7(10), pp. 45–53. [CrossRef]
Timoshenko, S. P. , 1953, History of Strength of Materials: With a Brief Account of the History of Elasticity and Theory of Structures, McGraw-Hill, New York, pp. 146–152.
Timoshenko, S. P. , 1972, Course of Elasticity Theory, 2nd ed., Naukova Dumka Publishers, Kiev (in Russian).
Filin, A. P. , 2007, Essays About Scientists-Mechanicists, Strategiya Publishers, Moscow (in Russian), p. 784.

Figures

Grahic Jump Location
Fig. 1

A cantilever beam of length 2L vibrating with wavelength l, lL

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In