Review Article

Computational Modeling of the Female Pelvic Support Structures and Organs to Understand the Mechanism of Pelvic Organ Prolapse: A Review

[+] Author and Article Information
Arnab Chanda

Department of Aerospace Engineering and Mechanics,
University of Alabama,
Tuscaloosa, AL 35487
e-mail: achanda@crimson.ua.edu

Vinu Unnikrishnan

Assistant Professor
Department of Aerospace Engineering and Mechanics,
University of Alabama,
Tuscaloosa, AL 35487
e-mail: vunnikrishnan@ua.edu

Samit Roy

William D. Jordan Professor
Department of Aerospace Engineering and Mechanics,
University of Alabama,
Tuscaloosa, AL 35487
e-mail: sroy@eng.ua.edu

Holly E. Richter

J Marion Sims Professor of Obstetrics and Gynecology,
Urology and Geriatrics
Division of Urogynecology
and Pelvic Reconstructive Surgery,
Department of Obstetrics and Gynecology,
University of Alabama at Birmingham,
Birmingham, AL 35233
e-mail: hrichter@uabmc.edu

1Corresponding author.

Manuscript received February 1, 2015; final manuscript received June 30, 2015; published online July 27, 2015. Assoc. Editor: Ellen Kuhl.

Appl. Mech. Rev 67(4), 040801 (Jul 27, 2015) (14 pages) Paper No: AMR-15-1015; doi: 10.1115/1.4030967 History: Received February 01, 2015

Pelvic organ prolapse (POP) is an abnormality of the female pelvic anatomy due to events, such as multiple child births, menopause, and morbid obesity, which may lead to weakening of the pelvic floor striated muscles and smooth musculo-connective tissues. POP leads to dropping of the pelvic organs, namely, the bladder, uterus, and rectum into the vaginal canal and eventual protrusion, causing vaginal pain, pressure, difficulty emptying the bladder and rectum, and sexual dysfunction. Each year, close to 300,000 POP surgeries are performed in the U.S., out of which more than 60% of patients may face relapse conditions. A closer look into the problem reveals that POP surgery failures may be attributed mainly to the lack of understanding among medical practitioners on the mechanics of prolapse. In the literature, there have been attempts in the engineering community to understand prolapse using phenomenological computational modeling. This paper reviews the development and study of these numerical models, aimed at understanding the mechanics of POP. The various computational challenges related to geometry creation, material modeling, finite-element (FE) modeling, and boundary conditions (BCs) will be discussed and significant future research directions will also be highlighted in this review.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Brubaker, L. , Bump, R. , Jacquetin, B. , Schuessler, B. , Weidner, A. , Zimmern, P. , and Milani, R. , 2002, “Pelvic Organ Prolapse,” 2nd International Consultation on Incontinence, Paris, July 1–3, 2001, Plymouth Distributors, Plymouth, UK, pp. 243–265.
Jelovsek, J. E. , Maher, C. , and Barber, M. D. , 2007, “Pelvic Organ Prolapse,” Lancet, 369(9566), pp. 1027–1038. [CrossRef] [PubMed]
Kuncharapu, I. , Majeroni, B. A. , and Johnson, D. W. , 2010, “Pelvic Organ Prolapse,” Am. Fam. Physician, 81(9), pp. 1111–1117. [PubMed]
Weber, A. M. , and Richter, H. E. , 2005, “Pelvic Organ Prolapse,” Obstet. Gynecol., 106(3), pp. 615–634. [CrossRef] [PubMed]
White, G. R. , 1909, “Cystocele,” South. Med. J., 2(12), pp. 1707–1710.
Nygaard, I. E. , and Heit, M. , 2004, “Stress Urinary Incontinence,” Obstet. Gynecol., 104(3), pp. 607–620. [CrossRef] [PubMed]
Felt-Bersma, R. J. , and Cuesta, M. A. , 2001, “Rectal Prolapse, Rectal Intussusception, Rectocele, and Solitary Rectal Ulcer Syndrome,” Gastroenterol. Clin. North Am., 30(1), pp. 199–222. [CrossRef] [PubMed]
Doshani, A. , Teo, R. E. , Mayne, C. J. , and Tincello, D. G. , 2007, “Uterine Prolapse,” BMJ, 335(7624), pp. 819–823. [CrossRef] [PubMed]
Carey, M. , and Slack, M. , 1993, “Vaginal Vault Prolapse,” Br. J. Hosp. Med., 51(8), pp. 417–420.
Ashton-Miller, J. A. , and DeLancey, J. , 2007, “Functional Anatomy of the Female Pelvic Floor,” Ann. N. Y. Acad. Sci., 1101(1), pp. 266–296. [CrossRef] [PubMed]
Allen, R. , Hosker, G. , Smith, A. , and Warrell, D. , 1990, “Pelvic Floor Damage and Childbirth: A Neurophysiological Study,” BJOG: Int. J. Obstet. Gynaecol., 97(9), pp. 770–779. [CrossRef]
Dunivan, G. C. , Cichowski, S. B. , Komesu, Y. M. , Fairchild, P. S. , Anger, J. T. , and Rogers, R. G. , 2014, “Ethnicity and Variations of Pelvic Organ Prolapse Bother,” Int. Urogynecology J., 25(1), pp. 53–59. [CrossRef]
Graham, C. A. , and Mallett, V. T. , 2001, “Race as a Predictor of Urinary Incontinence and Pelvic Organ Prolapse,” Am. J. Obstet. Gynecol., 185(1), pp. 116–120. [CrossRef] [PubMed]
Camacho, D. L. , Hopper, R. H. , Lin, G. M. , and Myers, B. S. , 1997, “An Improved Method for Finite Element Mesh Generation of Geometrically Complex Structures With Application to the Skullbase,” J. Biomech., 30(10), pp. 1067–1070. [CrossRef] [PubMed]
Chanda, A. , 2014, “Pumping Potential of a Two-Layer Left-Ventricle-Like Flexible Matrix Composite (FMC) Structure,” Master's thesis, Rochester Institute of Technology, Rochester, NY.
Feola, A. , Pal, S. , Moalli, P. , Maiti, S. , and Abramowitch, S. , 2013, “Varying Degrees of Nonlinear Mechanical Behavior Arising From Geometric Differences of Urogynecological Meshes,” ASME Paper No. SBC2012-80227.
Huiskes, R. , and Chao, E. , 1983, “A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade,” J. Biomech., 16(6), pp. 385–409. [CrossRef] [PubMed]
Jenson, D. , and Unnikrishnan, V. , 2014, “Energy Dissipation of Nanocomposite Based Helmets for Blast-Induced Traumatic Brain Injury Mitigation,” Compos. Struct., 121, pp. 211–216. [CrossRef]
Larrabee, W. F. , 1986, “A Finite Element Model of Skin Deformation. I. Biomechanics of Skin and Soft Tissue: A Review,” Laryngoscope, 96(4), pp. 399–405. [PubMed]
Pal, S. , Thunes, J. , Moalli, P. , Abramowitch, S. , and Maiti, S. , 2013, “A Continuum Material Model for Urogynecogical Meshes,” ASME Paper No. SBC2013-14717.
Richmond, B. G. , Wright, B. W. , Grosse, I. , Dechow, P. C. , Ross, C. F. , Spencer, M. A. , and Strait, D. S. , 2005, “Finite Element Analysis in Functional Morphology,” Anat. Rec., Part A, 283(2), pp. 259–274. [CrossRef]
Samani, A. , Bishop, J. , Yaffe, M. J. , and Plewes, D. B. , 2001, “Biomechanical 3-D Finite Element Modeling of the Human Breast Using MRI Data,” IEEE Trans. Med. Imaging, 20(4), pp. 271–279. [CrossRef] [PubMed]
Unnikrishnan, G. U. , 2008, “Computational Modeling of Biological Cells and Soft Tissues,” Ph.D. thesis, Texas A&M University, College Station, TX.
Unnikrishnan, V. , Unnikrishnan, G. , and Reddy, J. , 2010, “Multiscale Computational Analysis of Biomechanical Systems,” IUTAM Symposium on Multi-Functional Material Structures and Systems, Springer, Berlin, pp. 123–131.
Woo, S. L.-Y. , Abramowitch, S. D. , Kilger, R. , and Liang, R. , 2006, “Biomechanics of Knee Ligaments: Injury, Healing, and Repair,” J. Biomech., 39(1), pp. 1–20. [CrossRef] [PubMed]
Yoganandan, N. , Kumaresan, S. , Voo, L. , and Pintar, F. A. , 1996, “Finite Element Applications in Human Cervical Spine Modeling,” Spine, 21(15), pp. 1824–1834. [CrossRef] [PubMed]
Feola, A. J. , 2011, “Impact of Vaginal Synthetic Prolapse Meshes on the Mechanics of the Host Tissue Response,” Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA.
Barone, W. R. , Amini, R. , Maiti, S. , Moalli, P. , and Abramowitch, S. , 2013, “The Impact of Boundary Conditions on Surface Curvature Measurements of Polypropylene Mesh in Response to Uniaxial Loading,” ASME Paper No. SBC2013-14598.
Unnikrishnan, G. U. , Unnikrishnan, V. U. , Reddy, J. N. , and Lim, C. T. , 2010, “Review on the Constitutive Models of Tumor Tissue for Computational Analysis,” ASME Appl. Mech. Rev., 63(4), p. 040801. [CrossRef]
Scheepers, F. , Parent, R. E. , Carlson, W. E. , and May, S. F. , 1997, “Anatomy-Based Modeling of the Human Musculature,” 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97), Los Angeles, Aug. 3-8, ACM Press/Addison-Wesley Publishing, New York, pp. 163–172.
Janda, S. , 2006, “Biomechanics of the Pelvic Floor Musculature,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
Petros, P. E. P. , and Ulmsten, U. I. , 1990, “An Integral Theory of Female Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 69(S153), pp. 7–31. [CrossRef] [PubMed]
Pato, M. P. M. , and Areias, P. , 2010, “Active and Passive Behaviors of Soft Tissues: Pelvic Floor Muscles,” Int. J. Numer. Methods Biomed. Eng., 26(6), pp. 667–680.
Beck, J. J. , Elzevier, H. W. , Pelger, R. , Putter, H. , and Voorham-van der Zalm, P. J. , 2009, “Multiple Pelvic Floor Complaints are Correlated With Sexual Abuse History,” J. Sex. Med., 6(1), pp. 193–198. [CrossRef] [PubMed]
Berti, G. , 2004, “Image-Based Unstructured 3D Mesh Generation for Medical Applications,” European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskylä, Finland, July 24–28.
Betschart, C. , Kim, J. , Miller, J. M. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2014, “Comparison of Muscle Fiber Directions Between Different Levator Ani Muscle Subdivisions: In Vivo MRI Measurements in Women,” Int. Urogynecology J., 25(9), pp. 1263–1268. [CrossRef]
Brandao, S. , T. Da Roza , Parente, M. , Ramos, I. , Mascarenhas, T. , and Natal Jorge, R. M. , 2013, “Magnetic Resonance Imaging of the Pelvic Floor: From Clinical to Biomechanical Imaging,” Proc. Inst. Mech. Eng., Part H, 227(12), pp. 1324–1332. [CrossRef]
Chen, L. , Ashton-Miller, J. A. , Hsu, Y. , and DeLancey, J. , 2006, “Interaction Among Apical Support, Levator Ani Impairment, and Anterior Vaginal Wall Prolapse,” Obstet. Gynecol., 108(2), pp. 324–332. [CrossRef] [PubMed]
Da Roza, T. , Jorge, R. M. N. , Parente, M. P. L. , da Silva Tavares, J. M. R. , Saleme, C. , Barbosa, M. , Mascarenhas, T. , and Loureiro, J. , 2009, “Geometric Analysis of Female Pelvic Floor Muscles by Using Manual Segmentation,” ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (VipIMAGE 2009-II), Porto, Portugal, Oct. 14–16.
da Roza, T. , Parente, M. , Jorge, R. N. , Mascarenhas, T. , Loureiro, J. , and Duarte, S. , 2011, “Analysis of the Contraction of the Pelvic Floor Through the Finite Element Method Considering Different Pathologies,” Technology Medical Science, Taylor and Francis, London, pp. 39–42.
da Silva-Filho, A. L. , Martins, P. A. , Parente, M. P. , Saleme, C. S. , Roza, T. , Pinotti, M. , Mascarenhas, T. , and Jorge, R. M. N. , 2010, “Translation of Biomechanics Research to Urogynecology,” Arch. Gynecol. Obstet., 282(2), pp. 149–155. [CrossRef] [PubMed]
d'Aulignac, D. , Martins, J. , and Pires, E. , 2004, “Physical Modeling of the Pelvic Floor Muscles Using Shell Elements,” European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyväskylä, Finland, July 24–28.
Hao, Z. , Wan, C. , Gao, X. , and Ji, T. , 2011, “The Effect of Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model,” ASME J. Biomech. Eng., 133(10), p. 101006. [CrossRef]
Lee, S.-L. , Horkaew, P. , Darzi, A. , and Yang, G.-Z. , 2003, “Optimal Scan Planning With Statistical Shape Modelling of the Levator Ani,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2003, Springer, Berlin, pp. 714–721 .
Lee, S.-L. , Horkaew, P. , Darzi, A. , and Yang, G.-Z. , 2004, “Statistical Shape Modelling of the Levator Ani With Thickness Variation,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004, Springer, Berlin, pp. 258–265.
Lee, S.-L. , Darzi, A. , and Yang, G.-Z. , 2005, “Subject Specific Finite Element Modelling of the Levator Ani,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005, Springer, Berlin, pp. 360–367.
Lee, S.-L. , Horkaew, P. , Caspersz, W. , Darzi, A. , and Yang, G.-Z. , 2005, “Assessment of Shape Variation of the Levator Ani With Optimal Scan Planning and Statistical Shape Modeling,” J. Comput. Assisted Tomogr., 29(2), pp. 154–162. [CrossRef]
Lee, S.-L. , Tan, E. , Khullar, V. , Gedroyc, W. , Darzi, A. , and Yang, G.-Z. , 2009, “Physical-Based Statistical Shape Modeling of the Levator Ani,” IEEE Trans. Med. Imaging, 28(6), pp. 926–936. [CrossRef] [PubMed]
Li, X. , Kruger, J. A. , Chung, J.-H. , Nash, M. P. , and Nielsen, P. M. , 2008, “Modelling the Pelvic Floor for Investigating Difficulties During Childbirth,” Proc. SPIE, 6916, p. 69160V.
Li, X. , 2011, “Modelling Levator Ani Mechanics During the Second Stage of Labour,” Ph.D. thesis, The University of Auckland, Auckland, New Zealand.
Lien, K.-C. , Mooney, B. , DeLancey, J. O. , and Ashton-Miller, J. A. , 2004, “Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth,” Obstet. Gynecol., 103(1), pp. 31–40. [CrossRef] [PubMed]
Marani, E. , and Koch, W. F. , 2014, “Concepts and Approaches in the Study of the Pelvis,” The Pelvis, Springer, Berlin, pp. 111–141.
Martins, P. A. , Jorge, R. M. N. , Ferreia, A. J. , Saleme, C. S. , Roza, T. , Parente, M. M. , Pinotti, M. , Mascarenhas, T. , Santos, A. , and Santos, L. , 2010, “Vaginal Tissue Properties Versus Increased Intra-Abdominal Pressure: A Preliminary Biomechanical Study,” Gynecol. Obstet. Invest., 71(3), pp. 145–150. [CrossRef] [PubMed]
Nguyen, O. T.-M. , 2012, “Characterizing the Muscle Architecture in Cadaveric Female Pelvic Floor Muscles,” Master's thesis, University of California, San Diego.
Noakes, K. F. , Bissett, I. P. , Pullan, A. J. , and Cheng, L. K. , 2008, “Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor and Anal Canal for Finite Element Analysis,” Ann. Biomed. Eng., 36(6), pp. 1060–1071. [CrossRef] [PubMed]
Noakes, K. F. , Pullan, A. J. , Bissett, I. P. , and Cheng, L. K. , 2008, “Subject Specific Finite Elasticity Simulations of the Pelvic Floor,” J. Biomech., 41(14), pp. 3060–3065. [CrossRef] [PubMed]
Parente, M. L. , Jorge, R. N. , Mascarenhas, T. , Fernandes, A. , and Martins, J. , 2006, “The Biomechanical Behavior of the Pelvic Floor Muscles During a Vaginal Delivery,” III European Conference on Computational Mechanics, Springer, Berlin, pp. 678–678.
Parente, M. , Jorge, R. N. , Mascarenhas, T. , Fernandes, A. , and Martins, J. , 2008, “Deformation of the Pelvic Floor Muscles During a Vaginal Delivery,” Int. Urogynecology J., 19(1), pp. 65–71. [CrossRef]
Parente, M. , Jorge, R. , Mascarenhas, T. , Fernandes, A. , and Martins, J. , 2009, “The Influence of an Occipito-Posterior Malposition on the Biomechanical Behavior of the Pelvic Floor,” Eur. J. Obstet. Gynecol. Reprod. Biol., 144(Suppl. 1), pp. S166–S169. [CrossRef] [PubMed]
Parente, M. , Natal Jorge, R. , Mascarenhas, T. , Fernandes, A. , and Martins, J. , 2009, “The Influence of the Material Properties on the Biomechanical Behavior of the Pelvic Floor Muscles During Vaginal Delivery,” J. Biomech., 42(9), pp. 1301–1306. [CrossRef] [PubMed]
Parente, M. P. , Jorge, R. M. N. , Mascarenhas, T. , and Silva-Filho, A. L. , 2010, “The Influence of Pelvic Muscle Activation During Vaginal Delivery,” Obstet. Gynecol., 115(4), pp. 804–808. [CrossRef] [PubMed]
Pato, M. , and Areias, P. , 2010, “Active and Passive Behaviors of Soft Tissues: Pelvic Floor Muscles,” Int. J. Numer. Methods Biomed. Eng., 26(6), pp. 667–680.
Pu, F. , Jin, D. , Li, S. , Li, D. , Niu, H. , Yang, Y. , and Fan, Y. , 2007, “Reconstruction of Three-Dimensional Model of Normal Female Pelvic Cavity Based on Magnetic Resonance Imaging,” IEEE/ICME International Conference on Complex Medical Engineering (CME 2007), Beijing, China, May 23–27, pp. 732–735.
Roza, T. , Saleme, C. S. , Jorge, R. N. , Barbosa, M. P. , Parente, M. , Filho, A. L. , Mascarenhas, T. , and Loureiro, J. , 2009, “Establishment of the Moment of Inertia of Female Pelvic Floor Muscles by Using Manual Segmentation,” 7th EUROMECH Solid Mechanics Conference (ESMC7), Lisbon, Portugal, Sept. 7–11.
Saleme, C. , Parente, M. , Jorge, R. N. , Pinotti, M. , Silva-Filho, A. , Roza, T. , Mascarenhas, T. , and Tavares, J. M. R. , 2011, “An Approach on Determining the Displacements of the Pelvic Floor During Voluntary Contraction Using Numerical Simulation and MRI,” Comput. Methods Biomech. Biomed. Eng., 14(04), pp. 365–370. [CrossRef]
Tuttle, L. J. , Nguyen, O. T. , Cook, M. S. , Alperin, M. , Shah, S. B. , Ward, S. R. , and Lieber, R. L. , 2014, “Architectural Design of the Pelvic Floor is Consistent With Muscle Functional Subspecialization,” Int. Urogynecology J., 25(2), pp. 205–212. [CrossRef]
Voorham-van der Zalm, P. J. , Lycklama Nijeholt, G. A. , Elzevier, H. W. , Putter, H. , and Pelger, R. , 2008, “Diagnostic Investigation of the Pelvic Floor: A Helpful Tool in the Approach in Patients With Complaints of Micturition, Defecation, and/or Sexual Dysfunction,” J. Sex. Med., 5(4), pp. 864–871. [CrossRef] [PubMed]
Voorham-van der Zalm, P. J. , Voorham, J. C. , van den Bos, T. W. , Ouwerkerk, T. J. , Putter, H. , Wasser, M. N. , Webb, A. , DeRuiter, M. C. , and Pelger, R. , 2013, “Reliability and Differentiation of Pelvic Floor Muscle Electromyography Measurements in Healthy Volunteers Using a New Device: The Multiple Array Probe Leiden (MAPLE),” Neurourol. Urodyn., 32(4), pp. 341–348. [CrossRef] [PubMed]
Yan, X. , Kruger, J. A. , Nash, M. P. , and Nielsen, P. M. , 2011, “A Quantitative Description of Pelvic Floor Muscle Fibre Organisation,” Computational Biomechanics for Medicine, Springer, Berlin, pp. 119–130.
Fuchs, T. J. , and Buhmann, J. M. , 2011, “Computational Pathology: Challenges and Promises for Tissue Analysis,” Comput. Med. Imaging Graphics, 35(7), pp. 515–530. [CrossRef]
Louis, D. N. , Gerber, G. K. , Baron, J. M. , Bry, L. , Dighe, A. S. , Getz, G. , Higgins, J. M. , Kuo, F. C. , Lane, W. J. , and Michaelson, J. S. , 2014, “Computational Pathology: An Emerging Definition,” Arch. Pathol. Lab. Med., 138(9), pp. 1133–1138. [CrossRef] [PubMed]
Bay, T. , Chen, Z.-W. , Raffin, R. , Daniel, M. , Joli, P. , Feng, Z.-Q. , and Bellemare, M.-E. , 2012, “Geometric Modeling of Pelvic Organs With Thickness,” Proc. SPIE, 8290, p. 82900I.
Bhattarai, A. , Frotscher, R. , Sora, M.-C. , and Staat, M. , 2014, “A 3D Finite Element Model of the Female Pelvic Floor for the Reconstruction of Urinary Incontinence,” Rev. Urol., 16(5), pp. S2–S10.
Chen, L. , 2008, “Biomechanical Analyses of Anterior Vaginal Wall Prolapse: MR Imaging and Computer Modeling Studies,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
Chen, L. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2009, “A 3D Finite Element Model of Anterior Vaginal Wall Support to Evaluate Mechanisms Underlying Cystocele Formation,” J. Biomech., 42(10), pp. 1371–1377. [CrossRef] [PubMed]
Chen, Z. , Joli, P. , and Feng, Z.-Q. , 2011, “Finite Element Modeling of Interactions Between Pelvic Organs Due to Pressure,” 10th National Symposium on Structural Design (CSMA 2011), Giens, France, May 9–13.
Chen, Z. , Joli, P. , and Feng, Z.-Q. , 2012, “Finite Element Modelling for the Study of Pelvic Organ Prolapse,” J. Biomech., 45(Suppl. 1), p. S66. [CrossRef]
Chen, Z.-W. , Joli, P. , Feng, Z.-Q. , Rahim, M. , Pirro, N. , and Bellemare, M.-E. , 2014, “Female Patient-Specific Finite Element Modeling of Pelvic Organ Prolapse (POP),” J. Biomech., 48(2), pp. 238–245. [CrossRef] [PubMed]
Cheng, L. K. , Noakes, K. F. , Bissett, I. P. , and Pullan, A. J. , 2007, “Anatomically Realistic Finite Element Simulations of Pelvic Floor Mechanics,” PAMM, 7(1), pp. 4020031–4020032. [CrossRef]
Cosson, M. , Rubod, C. , Vallet, A. , Witz, J. , Dubois, P. , and Brieu, M. , 2013, “Simulation of Normal Pelvic Mobilities in Building an MRI-Validated Biomechanical Model,” Int. Urogynecology J., 24(1), pp. 105–112. [CrossRef]
Cosson, M. , Rubod, C. , Vallet, A. , Witz, J.-F. , and Brieu, M. , 2011, “Biomechanical Modeling of Pelvic Organ Mobility: Towards Personalized Medicine,” Bull. Acad. Natl. Med., 195(8), pp. 1869–83. [PubMed]
d'Aulignac, D. , Martins, J. , Pires, E. , Mascarenhas, T. , and Jorge, R. N. , 2005, “A Shell Finite Element Model of the Pelvic Floor Muscles,” Comput. Methods Biomech. Biomed. Eng., 8(5), pp. 339–347. [CrossRef]
Larson, K. A. , Hsu, Y. , Chen, L. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2010, “Magnetic Resonance Imaging-Based Three-Dimensional Model of Anterior Vaginal Wall Position at Rest and Maximal Strain in Women With and Without Prolapse,” Int. Urogynecology J., 21(9), pp. 1103–1109. [CrossRef]
Larson, K. A. , Luo, J. , Guire, K. E. , Chen, L. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2012, “3D Analysis of Cystoceles Using Magnetic Resonance Imaging Assessing Midline, Paravaginal, and Apical Defects,” Int. Urogynecology J., 23(3), pp. 285–293. [CrossRef]
Fielding, J. R. , Dumanli, H. , Schreyer, A. G. , Okuda, S. , Gering, D. T. , Zou, K. H. , Kikinis, R. , and Jolesz, F. A. , 2000, “MR-Based Three-Dimensional Modeling of the Normal Pelvic Floor in Women: Quantification of Muscle Mass,” Am. J. Roentgenol., 174(3), pp. 657–660. [CrossRef]
Larson, K. A. , Luo, J. , Yousuf, A. , Ashton-Miller, J. A. , and Delancey, J. O. , 2012, “Measurement of the 3D Geometry of the Fascial Arches in Women With a Unilateral Levator Defect and ‘Architectural Distortion’,” Int. Urogynecology J., 23(1), pp. 57–63. [CrossRef]
Lecomte-Grosbras, P. , Diallo, M. N. , Witz, J.-F. , Marchal, D. , Dequidt, J. , Cotin, S. , Cosson, M. , Duriez, C. , and Brieu, M. , 2013, “Towards a Better Understanding of Pelvic System Disorders Using Numerical Simulation,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, Springer, Berlin.
Luo, J. , 2012, “Biomechanical Analyses of Posterior Vaginal Prolapse: MR Imaging and Computer Modeling Studies,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
Martins, J. , Pato, M. , Pires, E. , Jorge, R. N. , Parente, M. , and Mascarenhas, T. , 2007, “Finite Element Studies of the Deformation of the Pelvic Floor,” Ann. N. Y. Acad. Sci., 1101(1), pp. 316–334. [CrossRef] [PubMed]
Mayeur, O. , Lamblin, G. , Lecomte-Grosbras, P. , Brieu, M. , Rubod, C. , and Cosson, M. , 2014, “FE Simulation for the Understanding of the Median Cystocele Prolapse Occurrence,” Biomedical Simulation, Springer, Berlin, pp. 220–227.
Noakes, K. , 2007, “Anatomically Realistic Finite Element Models of the Pelvic Floor and Anal Canal: Towards Understanding the Mechanisms of Defaecation,” Ph.D. thesis, University of Auckland, Auckland, New Zealand.
Noakes, K. F. , Bissett, I. P. , Pullan, A. J. , and Cheng, L. K. , 2006, “Anatomically Based Computational Models of the Male and Female Pelvic Floor and Anal Canal,” 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'06), New York, Aug. 30–Sept. 3, pp. 3815–3818.
Ramanah, R. , Berger, M. B. , Chen, L. , Riethmuller, D. , and DeLancey, J. O. , 2012, “See It in 3D!: Researchers Examined Structural Links Between the Cardinal and Uterosacral Ligaments,” Am. J. Obstet. Gynecol., 207(5), pp. 437.e1–437.e7. [CrossRef]
Rubod, C. , Boukerrou, M. , Rousseau, J. , Viard, R. , Brieu, M. , and Dubois, P. , 2006, “A Biomechanical Model of the Pelvic Cavity: First Steps,” 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'06), New York, Aug. 30–Sept. 3, pp. 968–971.
Singh, K. , Jakab, M. , Reid, W. , Berger, L. A. , and Hoyte, L. , 2003, “Three-Dimensional Magnetic Resonance Imaging Assessment of Levator Ani Morphologic Features in Different Grades of Prolapse,” Am. J. Obstet. Gynecol., 188(4), pp. 910–915. [CrossRef] [PubMed]
Spirka, T. , Kenton, K. , Brubaker, L. , and Damaser, M. , 2011, “Pathway to Finite Element Analysis of Stress Urinary Incontinence Mechanics,” ASME Paper No. SBC2011-53050.
Spirka, T. A. , 2010, “Finite Element Modeling of Stress Urinary Incontinence Mechanics,” Ph.D. thesis, Cleveland State University, Cleveland, OH.
Li, D. , and Guo, M. , 2007, “Morphology of the Levator Ani Muscle,” Dis. Colon Rectum, 50(11), pp. 1831–1839. [CrossRef] [PubMed]
Baiamonte, T. , Abbate, M. , Pizzarello, F. , Lozada, J. , and James, R. , 1995, “The Experimental Verification of the Efficacy of Finite Element Modeling to Dental Implant Systems,” J. Oral Implantol., 22(2), pp. 104–110.
Bro-Nielsen, M. , 1998, “Finite Element Modeling in Surgery Simulation,” Proc. IEEE, 86(3), pp. 490–503. [CrossRef]
Conte, V. , Munoz, J. J. , and Miodownik, M. , 2008, “A 3D Finite Element Model of Ventral Furrow Invagination in the Drosophila melanogaster Embryo,” J. Mech. Behave. Biomed. Mater., 1(2), pp. 188–198. [CrossRef]
Diller, K. , and Hayes, L. , 1983, “A Finite Element Model of Burn Injury in Blood-Perused Skin,” ASME J. Biomech. Eng., 105(3), pp. 300–307. [CrossRef]
Dumont, E. R. , Piccirillo, J. , and Grosse, I. R. , 2005, “Finite Element Analysis of Biting Behavior and Bone Stress in the Facial Skeletons of Bats,” Anat. Rec. Part A, 283(2), pp. 319–330. [CrossRef]
Gan, R. Z. , Feng, B. , and Sun, Q. , 2004, “Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission,” Ann. Biomed. Eng., 32(6), pp. 847–859. [CrossRef] [PubMed]
Korioth, T. , and Versluis, A. , 1997, “Modeling the Mechanical Behavior of the Jaws and Their Related Structures by Finite Element (FE) Analysis,” Crit. Rev. Oral Biol. Med., 8(1), pp. 90–104. [CrossRef] [PubMed]
Kunzelman, K. , Cochran, R. , Chuong, C. , Ring, W. , Verrier, E. , and Eberhart, R. , 1993, “Finite Element Analysis of the Mitral Valve,” J. Heart Valve Disease, 2(3), pp. 326–340.
Oomens, C. , Maenhout, M. , Van Oijen, C. , Drost, M. , and Baaijens, F. , 2003, “Finite Element Modelling of Contracting Skeletal Muscle,” Philos. Trans. R. Soc. London, Ser. B, 358(1437), pp. 1453–1460. [CrossRef]
Peña, A. , Bolton, M. D. , Whitehouse, H. , and Pickard, J. D. , 1999, “Effects of Brain Ventricular Shape on Periventricular Biomechanics: A Finite Element Analysis,” Neurosurgery, 45(1), pp. 107–116. [CrossRef] [PubMed]
Prendergast, P. , 1997, “Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design,” Clin. Biomech., 12(6), pp. 343–366. [CrossRef]
Taylor, C. A. , Hughes, T. J. , and Zarins, C. K. , 1998, “Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158(1), pp. 155–196. [CrossRef]
Wang, W. , and Eisenberg, S. R. , 1994, “A Three-Dimensional Finite Element Method for Computing Magnetically Induced Currents in Tissues,” IEEE Trans. Magn., 30(6), pp. 5015–5023. [CrossRef]
Unnikrishnan, G. U. , Unnikrishnan, V. U. , and Reddy, J. N. , 2012, “Finite Element Model for Nutrient Distribution Analysis of a Hollow Fiber Membrane Bioreactor,” Int. J. Numer. Methods Biomed. Eng., 28(2), pp. 229–238. [CrossRef]
Unnikrishnan, G. U. , Unnikrishnan, V. U. , and Reddy, J. N. , 2009, “Tissue–Fluid Interface Analysis Using Biphasic Finite Element Method,” Comput. Methods Biomech. Biomed. Eng., 12(2), pp. 165–172. [CrossRef]
Unnikrishnan, G. U. , Unnikrishnan, V. U. , and Reddy, J. N. , 2007, “Constitutive Material Modeling of Cell: A Micromechanics Approach,” ASME J. Biomech. Eng., 129(3), pp. 315–323. [CrossRef]
Cheng, I. , Firouzmanesh, A. , Leleve, A. , Shen, R. , Moreau, R. , Brizzi, V. , Pham, M.-T. , Redarce, T. , Lermusiaux, P. , and Basu, A. , 2012, “Enhanced Segmentation and Skeletonization for Endovascular Surgical Planning,” Proc. SPIE, 8316, p. 83162W.
Harandi, N. M. , Abugharbieh, R. , and Fels, S. , 2004, Minimally Interactive MRI Segmentation for Subject-Specific Modelling of the Tongue, Bio-Imaging and Visualization for Patient-Customized Simulations, Springer, Berlin, pp. 53–64.
Khalvati, F. , Gallego-Ortiz, C. , Balasingham, S. , and Martel, A. , 2015, “Automated Segmentation of Breast in 3-D MR Images Using a Robust Atlas,” IEEE Trans. Med. Imaging, 34(1), pp. 116–125. [CrossRef] [PubMed]
Top, A. , Hamarneh, G. , and Abugharbieh, R. , 2011, Active Learning for Interactive 3D Image Segmentation, Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011, Springer, Berlin, pp. 603–610.
Parikh, M. , Rasmussen, M. , Brubaker, L. , Salomon, C. , Sakamoto, K. , Evenhouse, R. , Ai, Z. , and Damaser, M. S. , 2004, “Three Dimensional Virtual Reality Model of the Normal Female Pelvic Floor,” Ann. Biomed. Eng., 32(2), pp. 292–296. [CrossRef] [PubMed]
Chen, L. , Hsu, Y. , Ashton-Miller, J. , and DeLancey, J. , 2006, “Measurement of the Pubic Portion of the Levator Ani Muscle in Women With Unilateral Defects in 3-D Models From MR Images,” Int. J. Gynecol. Obstet., 92(3), pp. 234–241. [CrossRef]
Saleme, C. S. , Rocha, D. N. , Del Vecchio, S. , da Silva Filho, A. L. , and Pinotti, M. , 2007, “Development of a Device to Measure Multidirectional Isometric Pelvic Floor Strength,” 19th International Congress of Mechanical Engineering (COBEM 2007), Brasilia, Brazil, Nov. 5–9.
Humphrey, J. , and Yin, F. , 1987, “On Constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function,” ASME J. Biomech. Eng., 109(4), pp. 298–304. [CrossRef]
Machairiotis, N. , Tourountous, I. , Karamperis, A. , Zarogoulidis, P. , Oikonomou, A. , Theodoros, R. , Palouki, P. , Hohenforst-Schmidt, W. , Zissimopoulos, A. , and Machairiotis, C. , 2013, “Postpartum Vaginal Cystic Lesions: Everyday Practice or a Differential Diagnosis Challenge?,” Eur. J. Med. Res., 18(1), pp. 20–25. [CrossRef] [PubMed]
Hsu, Y. , Chen, L. , Delancey, J. O. , and Ashton-Miller, J. A. , 2005, “Vaginal Thickness, Cross-Sectional Area, and Perimeter in Women With and Those Without Prolapse,” Obstet. Gynecol., 105(5 Pt. 1), pp. 1012–1017. [CrossRef] [PubMed]
Luo, J. , Betschart, C. , Chen, L. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2014, “Using Stress MRI to Analyze the 3D Changes in Apical Ligament Geometry From Rest to Maximal Valsalva: A Pilot Study,” Int. Urogynecology J., 25(2), pp. 197–203. [CrossRef]
Spirka, T. , Kenton, K. , Brubaker, L. , and Damaser, M. S. , 2013, “Effect of Material Properties on Predicted Vesical Pressure During a Cough in a Simplified Computational Model of the Bladder and Urethra,” Ann. Biomed. Eng., 41(1), pp. 185–194. [CrossRef] [PubMed]
Spirka, T. , Kenton, K. , Butler, R. S. , Damaser, M. S. , and Brubaker, L. , 2008, “Biomechanical Relationships Between Urodynamic Pressures During Cough and Valsalva in Normal and Stress Incontinent Women,” Neurourology and Urodynamics, Vol. 27, Wiley, New York, pp. 139–140. [PubMed] [PubMed]
Rubod, C. , Lecomte-Grosbras, P. , Brieu, M. , Giraudet, G. , Betrouni, N. , and Cosson, M. , 2013, “3D Simulation of Pelvic System Numerical Simulation for a Better Understanding of the Contribution of the Uterine Ligaments,” Int. Urogynecology J., 24(12), pp. 2093–2098. [CrossRef]
Petros, P. , 2004, The Female Pelvic Floor: Function, Dysfunction and Management According to the Integral Theory; With 3 Tables, Springer, Berlin.
Petros, P. E. P. , 2011, The Female Pelvic Floor: Function, Dysfunction and Management According to the Integral Theory, Springer, Berlin.
Chen, L. , Ramanah, R. , Hsu, Y. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2013, “Cardinal and Deep Uterosacral Ligament Lines of Action: MRI Based 3D Technique Development and Preliminary Findings in Normal Women,” Int. Urogynecology J., 24(1), pp. 37–45. [CrossRef]
Bartscht, K. D. , and DeLancey, J. , 1988, “A Technique to Study the Passive Supports of the Uterus,” Obstet. Gynecol., 72(6), pp. 940–943. [PubMed]
Yamada, H. , and Evans, F. , 1970, Strength of Biological Materials, Williams & Wilkins, Baltimore, MD.
Chantereau, P. , Brieu, M. , Kammal, M. , Farthmann, J. , Gabriel, B. , and Cosson, M. , 2014, “Mechanical Properties of Pelvic Soft Tissue of Young Women and Impact of Aging,” Int. Urogynecology J., 25(11), pp. 1547–1553. [CrossRef]
Green, T., Jr. , 1975, “Urinary Stress Incontinence: Differential Diagnosis, Pathophysiology, and Management,” Am. J. Obstet. Gynecol., 122(3), pp. 368–400. [PubMed]
Rogers, R. G. , 2008, “Urinary Stress Incontinence in Women,” N. Engl. J. Med., 358(10), pp. 1029–1036. [CrossRef] [PubMed]
Haslam, J. , 2003, “Stress Urinary Incontinence,” Primary Health Care, 13(4), pp. 43–49. [CrossRef]
Laycock, J. , 2008, Stress Urinary Incontinence, Springer, London, pp. 221–227.
McGuire, E. J. , Lytton, B. , Pepe, V. , and Kohorn, E. I. , 1976, “Stress Urinary Incontinence,” Obstet. Gynecol., 47(3), pp. 255–264. [PubMed]
Bai, S. , Jeon, M. , Kim, J. , Chung, K. , Kim, S. , and Park, K. , 2002, “Relationship Between Stress Urinary Incontinence and Pelvic Organ Prolapse,” Int. Urogynecology J., 13(4), pp. 256–260. [CrossRef]
Gardy, M. , Kozminski, M. , DeLancey, J. , Elkins, T. , and McGuire, E. , 1991, “Stress Incontinence and Cystoceles,” J. Urol., 145(6), pp. 1211–1213. [PubMed]
DeLancey, J. O. , Miller, J. M. , Kearney, R. , Howard, D. , Reddy, P. , Umek, W. , Guire, K. E. , Margulies, R. U. , and Ashton-Miller, J. A. , 2007, “Vaginal Birth and De Novo Stress Incontinence: Relative Contributions of Urethral Dysfunction and Mobility,” Obstet. Gynecol., 110(2 Pt. 1), pp. 354–362. [CrossRef] [PubMed]
Reddy, P. , 2010, “Stress Urinary Incontinence,” Obstetrics and Gynecology for Postgraduates, Vol. 2, P. K. Sabaratnam Arulkumaran , and S. Gopalan , eds., Stosius Inc/Advent Books, Beverly Hills, CA, p. 11.
Rortveit, G. , Daltveit, A. K. , Hannestad, Y. S. , and Hunskaar, S. , 2003, “Urinary Incontinence After Vaginal Delivery or Cesarean Section,” N. Engl. J. Med., 348(10), pp. 900–907. [CrossRef] [PubMed]
Zhang, Y. , Kim, S. , Erdman, A. G. , Roberts, K. P. , and Timm, G. W. , 2009, “Feasibility of Using a Computer Modeling Approach to Study SUI Induced by Landing a Jump,” Ann. Biomed. Eng., 37(7), pp. 1425–1433. [CrossRef] [PubMed]
Zhang, Y. , Sweet, R. M. , Metzger, G. J. , Burke, D. , Erdman, A. G. , and Timm, G. W. , 2009, “Advanced Finite Element Mesh Model of Female SUI Research During Physical and Daily Activities,” Stud. Health Technol. Inf., 142(1), pp. 447–452.
Bastiaanssen, E. , Van Leeuwen, J. , Vanderschoot, J. , and Redert, P. , 1996, “A Myocybernetic Model of the Lower Urinary Tract,” J. Theor. Biol., 178(2), pp. 113–133. [CrossRef] [PubMed]
Bastiaanssen, E. , Vanderschoot, J. , and J. Van Leeuwen , 1996, “State-Space Analysis of a Myocybernetic Model of the Lower Urinary Tract,” J. Theor. Biol., 180(3), pp. 215–227. [CrossRef] [PubMed]
Damaser, M. S. , and Lehman, S. L. , 1995, “The Effect of Urinary Bladder Shape on Its Mechanics During Filling,” J. Biomech., 28(6), pp. 725–732. [CrossRef] [PubMed]
Hosein, R. A. , and Griffiths, D. J. , 1990, “Computer Simulation of the Neural Control of Bladder and Urethra,” Neurourol. Urodyn., 9(6), pp. 601–618. [CrossRef]
Regnier, C. H. , Kolsky, H. , Richardson, P. D. , Ghoniem, G. M. , and Susset, J. G. , 1983, “The Elastic Behavior of the Urinary Bladder for Large Deformations,” J. Biomech., 16(11), pp. 915–922. [CrossRef] [PubMed]
Torzen, A. , 1986, “Assessment of Fiber Strength in a Urinary Bladder by Using Experimental Pressure Volume Curves: An Analytical Method,” ASME J. Biomech. Eng., 108(4), pp. 301–305. [CrossRef]
Haridas, B. , Hong, H. , Minoguchi, R. , Owens, S. , and Osborn, T. , 2006, “PelvicSim—A Computational-Experimental System for Biomechanical Evaluation of Female Pelvic Floor Organ Disorders and Associated Minimally Invasive Interventions,” Stud. Health Technol. Inf., 119, pp. 182–187.
Yamada, H. , 1970, Strength of Biological Materials, F. G. Evans, ed., Williams & Wilkens, Baltimore, MD.
Weber, A. M. , Walters, M. D. , Ballard, L. A. , Booher, D. L. , and Piedmonte, M. R. , 1998, “Posterior Vaginal Prolapse and Bowel Function,” Am. J. Obstet. Gynecol., 179(6), pp. 1446–1450. [CrossRef] [PubMed]
Parks, A. , Porter, N. , and Hardcastle, J. , 1966, “The Syndrome of the Descending Perineum,” Proc. R. Soc. Med., 59(6), pp. 477–482. [PubMed]
Henry, M. , Parks, A. , and Swash, M. , 1982, “The Pelvic Floor Musculature in the Descending Perineum Syndrome,” Br. J. Surg., 69(8), pp. 470–472. [CrossRef] [PubMed]
Bristow, R. E. , del Carmen, M. G. , Kaufman, H. S. , and Montz, F. J. , 2003, “Radical Oophorectomy With Primary Stapled Colorectal Anastomosis for Resection of Locally Advanced Epithelial Ovarian Cancer,” J. Am. Coll. Surg, 197(4), pp. 565–574. [CrossRef] [PubMed]
Comiter, C. V. , Vasavada, S. P. , Barbaric, Z. L. , Gousse, A. E. , and Raz, S. , 1999, “Grading Pelvic Prolapse and Pelvic Floor Relaxation Using Dynamic Magnetic Resonance Imaging,” Urology, 54(3), pp. 454–457. [CrossRef] [PubMed]
Gousse, A. E. , Barbaric, Z. L. , Safir, M. H. , Madjar, S. , Marumoto, A. K. , and Raz, S. , 2000, “Dynamic Half Fourier Acquisition, Single Shot Turbo Spin-Echo Magnetic Resonance Imaging for Evaluating the Female Pelvis,” J. Urol., 164(5), pp. 1606–1613. [CrossRef] [PubMed]
Kelvin, F. , and Maglinte, D. , 1997, “Dynamic Cystoproctography of Female Pelvic Floor Defects and Their Interrelationships,” Am. J. Roentgenol., 169(3), pp. 769–774. [CrossRef]
Kester, R. R. , Leboeuf, L. , Amendola, M. A. , Kim, S. S. , Benoit, A. , and Gousse, A. E. , 2003, “Value of Express T2—Weighted Pelvic MRI in the Preoperative Evaluation of Severe Pelvic Floor Prolapse: A Prospective Study,” Urology, 61(6), pp. 1135–1139. [CrossRef] [PubMed]
Lewicky-Gaupp, C. , Yousuf, A. , Larson, K. A. , Fenner, D. E. , and Delancey, J. O. , 2010, “Structural Position of the Posterior Vagina and Pelvic Floor in Women With and Without Posterior Vaginal Prolapse,” Am. J. Obstet. Gynecol., 202(5), pp. 497.e1–497.e6. [CrossRef]
Milani, R. , Salvatore, S. , Soligo, M. , Pifarotti, P. , Meschia, M. , and Cortese, M. , 2005, “Functional and Anatomical Outcome of Anterior and Posterior Vaginal Prolapse Repair With Prolene Mesh,” BJOG: Int. J. Obstet. Gynaecol., 112(1), pp. 107–111. [CrossRef]
Miller, D. , Milani, A. L. , Sutherland, S. E. , Navin, B. , and Rogers, R. G. , 2012, “Informed Surgical Consent for a Mesh/Graft-Augmented Vaginal Repair of Pelvic Organ Prolapse,” Int. Urogynecology J., 23(1), pp. 33–42. [CrossRef]
Withagen, M. , Milani, A. , De Leeuw, J. , and Vierhout, M. , 2012, “Development of De Novo Prolapse in Untreated Vaginal Compartments After Prolapse Repair With and Without Mesh: A Secondary Analysis of a Randomised Controlled Trial,” BJOG: Int. J. Obstet. Gynaecol., 119(3), pp. 354–360. [CrossRef]
Dannecker, C. , and Anthuber, C. , 2000, “The Effects of Childbirth on the Pelvic-Floor,” J. Perinat. Med., 28(3), pp. 175–184. [PubMed]
DeLancey, J. O. , 1993, “Childbirth, Continence, and the Pelvic Floor,” N. Engl. J. Med., 329(26), pp. 1956–1957. [CrossRef] [PubMed]
Dietz, H. , and Wilson, P. , 2005, “Childbirth and Pelvic Floor Trauma,” Best Pract. Res. Clin. Obstet. Gynaecol., 19(6), pp. 913–924. [CrossRef] [PubMed]
Dietz, H. P. , and Bennett, M. , 2003, “The Effect of Childbirth on Pelvic Organ Mobility,” Obstet. Gynecol., 102(2), pp. 223–228. [CrossRef] [PubMed]
Dietz, H. P. , and Lanzarone, V. , 2005, “Levator Trauma After Vaginal Delivery,” Obstet. Gynecol., 106(4), pp. 707–712. [CrossRef] [PubMed]
Gregory, W. T. , and Nygaard, I. , 2004, “Childbirth and Pelvic Floor Disorders,” Clin. Obstet. Gynecol., 47(2), pp. 394–403. [CrossRef] [PubMed]
Handa, V. L. , Blomquist, J. L. , McDermott, K. C. , Friedman, S. , and Munoz, A. , 2012, “Pelvic Floor Disorders After Childbirth: Effect of Episiotomy, Perineal Laceration, and Operative Birth,” Obstet. Gynecol., 119(2 Pt. 1), pp. 233–239. [CrossRef] [PubMed]
Meyer, S. , Schreyer, A. , De Grandi, P. , and Hohlfeld, P. , 1998, “The Effects of Birth on Urinary Continence Mechanisms and Other Pelvic-Floor Characteristics,” Obstet. Gynecol., 92(4 Pt. 1), pp. 613–618. [CrossRef] [PubMed]
Peschers, U. M. , Schaer, G. N. , DeLancey, J. O. , and Schuessler, B. , 1997, “Levator Ani Function Before and After Childbirth,” BJOG: Int. J. Obstet. Gynaecol., 104(9), pp. 1004–1008. [CrossRef]
Phillips, C. , and Monga, A. , 2005, “Childbirth and the Pelvic Floor: The Gynaecological Consequences,” Rev. Gynaecol. Pract., 5(1), pp. 15–22. [CrossRef]
Sampselle, C. M. , 1990, “Changes in Pelvic Muscle Strength and Stress Urinary Incontinence Associated With Childbirth,” J. Obstet., Gynecol., Neonat. Nurs., 19(5), pp. 371–380. [CrossRef]
Sato, T. , Konishi, F. , Minakami, H. , Nakatsubo, N. , Kanazawa, K. , Sato, I. , Itoh, K. , and Nagai, H. , 2001, “Pelvic Floor Disturbance After Childbirth,” Dis. Colon Rectum, 44(8), pp. 1155–1161. [CrossRef] [PubMed]
Snooks, S. , Henry, M. , and Swash, M. , 1985, “Faecal Incontinence Due to External Anal Sphincter Division in Childbirth is Associated With Damage to the Innervation of the Pelvic Floor Musculature: A Double Pathology,” BJOG: Int. J. Obstet. Gynaecol., 92(8), pp. 824–828. [CrossRef]
Snooks, S. , Swash, M. , Henry, M. , and Setchell, M. , 1986, “Risk Factors in Childbirth Causing Damage to the Pelvic Floor Innervation,” Int. J. Colorectal Dis., 1(1), pp. 20–24. [CrossRef] [PubMed]
Snooks, S. , Swash, M. , Setchell, M. , and Henry, M. , 1984, “Injury to Innervation of Pelvic Floor Sphincter Musculature in Childbirth,” Lancet, 324(8402), pp. 546–550. [CrossRef]
Sze, E. H. , Sherard, G. B., III , and Dolezal, J. M. , 2002, “Pregnancy, Labor, Delivery, and Pelvic Organ Prolapse,” Obstet. Gynecol., 100(5 Pt. 1), pp. 981–986. [CrossRef] [PubMed]
Ashton-Miller, J. A. , and DeLancey, J. O. , 2009, “On the Biomechanics of Vaginal Birth and Common Sequelae,” Annu. Rev. Biomed. Eng., 11, pp. 163–176. [CrossRef] [PubMed]
Bailet, M. , Zara, F. , and Promayon, E. , 2014, “Biomechanical Model of the Fetal Head for Interactive Childbirth Simulation,” Surgetica Conference (SURGETICA'2014), Chambéry, France, Dec. 3-5.
Bylski, D. I. , Kriewall, T. J. , Akkas, N. , and Melvin, J. W. , 1986, “Mechanical Behavior of Fetal Dura Mater Under Large Deformation Biaxial Tension,” J. Biomech., 19(1), pp. 19–26. [CrossRef] [PubMed]
Hoyte, L. , Damaser, M. S. , Warfield, S. K. , Chukkapalli, G. , Majumdar, A. , Choi, D. J. , Trivedi, A. , and Krysl, P. , 2008, “Quantity and Distribution of Levator Ani Stretch During Simulated Vaginal Childbirth,” Am. J. Obstet. Gynecol., 199(2), pp. 198.e1–198.e5. [CrossRef]
Jing, D. , Ashton-Miller, J. A. , and DeLancey, J. O. , 2012, “A Subject-Specific Anisotropic Visco-Hyperelastic Finite Element Model of Female Pelvic Floor Stress and Strain During the Second Stage of Labor,” J. Biomech., 45(3), pp. 455–460. [CrossRef] [PubMed]
Kim, J. , 2013, “On the Mechanism of Levator Ani Muscle Injury During Vaginal Birth,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
Kriewall, T. J. , McPherson, G. K. , and Tsai, A. C. , 1981, “Bending Properties and Ash Content of Fetal Cranial Bone,” J. Biomech., 14(2), pp. 73–79. [CrossRef] [PubMed]
Lapeer, R. , and Prager, R. , 2001, “Fetal Head Moulding: Finite Element Analysis of a Fetal Skull Subjected to Uterine Pressures During the First Stage of Labour,” J. Biomech., 34(9), pp. 1125–1133. [CrossRef] [PubMed]
Lapeer, R. , and Prager, R. W. , 1999, “Finite Element Model of a Fetal Skull Subjected to Labour Forces,” Medical Image Computing and Computer-Assisted Intervention—MICCAI'99, Springer, Berlin, pp. 1143–1155.
Li, X. , Kruger, J. A. , Chung, J.-H. , Nielsen, P. M. , and Nash, M. P. , 2007, “Investigating Difficulties During Childbirth Using Anatomically Based Pelvic Floor Models,” Medical Sciences Congress, Queenstown, New Zealand, Nov. 27–30.
Li, X. , Kruger, J. A. , Nash, M. P. , and Nielsen, P. M. , 2010, “Modeling Childbirth: Elucidating the Mechanisms of Labor,” Wiley Interdiscip. Rev.: Syst. Biol. Med., 2(4), pp. 460–470. [CrossRef] [PubMed]
Li, X. , Kruger, J. A. , Nash, M. P. , and Nielsen, P. M. , 2011, “Anisotropic Effects of the Levator Ani Muscle During Childbirth,” Biomech. Model. Mechanobiol., 10(4), pp. 485–494. [CrossRef] [PubMed]
Li, Z. , Luo, X. , and Zhang, J. , 2013, “Development/Global Validation of a 6-Month-Old Pediatric Head Finite Element Model and Application in Investigation of Drop-Induced Infant Head Injury,” Comput. Methods Programs Biomed., 112(3), pp. 309–319. [CrossRef] [PubMed]
Lien, K.-C. , Morgan, D. M. , Delancey, J. O. , and Ashton-Miller, J. A. , 2005, “Pudendal Nerve Stretch During Vaginal Birth: A 3D Computer Simulation,” Am. J. Obstet. Gynecol., 192(5), pp. 1669–1676. [CrossRef] [PubMed]
Li, X. , Kruger, J. A. , Chung, J.-H. , Nash, M. P. , and Nielsen, P. M. , 2008, “Modelling Childbirth: Comparing Athlete and Non-Athlete Pelvic Floor Mechanics,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, Springer, Berlin, pp. 750–757.
McPherson, G. K. , and Kriewall, T. J. , 1980, “Fetal Head Molding: An Investigation Utilizing a Finite Element Model of the Fetal Parietal Bone,” J. Biomech., 13(1), pp. 17–26. [CrossRef] [PubMed]
Moorcroft, D. M. , Stitzel, J. D. , Duma, G. G. , and Duma, S. M. , 2003, “Computational Model of the Pregnant Occupant: Predicting the Risk of Injury in Automobile Crashes,” Am. J. Obstet. Gynecol., 189(2), pp. 540–544. [CrossRef] [PubMed]
Parente, M. P. , da Silva, A. R. M. G. , da Silva, M. E. T. , Jorge, R. N. , Mascarenhas, T. , and Fernandes, A. A. , 2012, “Study on the Influence of the Fetal Head Flexion During Vaginal Delivery by Using a Computational Model (Estudo Computacional Sobre a Influłncia da Flexo da Cabea Fetal No Pavimento Plvico Durante um Parto Vaginal),” Acta Obstet. Ginecol. Port., 6(4), pp. 160–166.
Parente, M. P. , Natal Jorge, R. M. , Mascarenhas, T. , Fernandes, A. A. , and A. L. Silva-Filho , 2010, “Computational Modeling Approach to Study the Effects of Fetal Head Flexion During Vaginal Delivery,” Am. J. Obstet. Gynecol., 203(3), pp. 217.e1–217.e6. [CrossRef]
Roth, S. , Raul, J.-S. , Ludes, B. , and Willinger, R. , 2007, “Finite Element Analysis of Impact and Shaking Inflicted to a Child,” Int. J. Leg. Med., 121(3), pp. 223–228. [CrossRef]
Silveira, R. , Pham, M. T. , Redarce, T. , Betemps, M. , and Dupuis, O. , 2004, “A New Mechanical Birth Simulator: BirthSIM,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, Sept. 28–Oct. 2, Vol. 4, pp. 3948–3953.
Snooks, S. , Swash, M. , Mathers, S. , and Henry, M. , 1990, “Effect of Vaginal Delivery on the Pelvic Floor: A 5-Year Follow-Up,” Br. J. Surg., 77(12), pp. 1358–1360. [CrossRef] [PubMed]
Martins, J. , Pato, M. , Pires, E. , Jorge, R. , Parente, M. , and Mascarenhas, T. , 2006, “Finite Element Studies of the Deformation of the Pelvic Floor,” J. Biomech., 39(Suppl. 1), p. S627. [CrossRef]
Bo, K. , and Backe-Hansen, K. , 2007, “Do Elite Athletes Experience Low Back, Pelvic Girdle and Pelvic Floor Complaints During and After Pregnancy?,” Scand. J. Med. Sci. Sports, 17(5), pp. 480–487. [CrossRef] [PubMed]
Hale, R. W. , and Milne, L. , 1996, “The Elite Athlete and Exercise in Pregnancy,” Seminars in Perinatology, Elsevier, New York, Vol. 20, pp. 277–284. [PubMed] [PubMed]
Kruger, J. A. , Murphy, B. A. , and Heap, S. W. , 2005, “Alterations in Levator Ani Morphology in Elite Nulliparous Athletes: A Pilot Study,” Aust. N. Z. J. Obstet. Gynaecol., 45(1), pp. 42–47. [CrossRef] [PubMed]
Dupuis, O. , Ruimark, S. , Corinne, D. , Simone, T. , Andre, D. , and Rene-Charles, R. , 2005, “Fetal Head Position During the Second Stage of Labor: Comparison of Digital Vaginal Examination and Transabdominal Ultrasonographic Examination,” Eur. J. Obstet. Gynecol. Reprod. Biol., 123(2), pp. 193–197. [CrossRef] [PubMed]
Kreiser, D. , Schiff, E. , Lipitz, S. , Kayam, Z. , Avraham, A. , and Achiron, R. , 2001, “Determination of Fetal Occiput Position by Ultrasound During the Second Stage of Labor,” J. Matern.-Fetal Neonat. Med., 10(4), pp. 283–286. [CrossRef]
Ponkey, S. E. , Cohen, A. P. , Heffner, L. J. , and Lieberman, E. , 2003, “Persistent Fetal Occiput Posterior Position: Obstetric Outcomes,” Obstet. Gynecol., 101(5 Pt. 1), pp. 915–920. [CrossRef] [PubMed]
Jing, D. , Ashton-Miller, J. , and DeLancey, J. O. , 2008, “How Different Maternal Volitional Pushing Profiles Affect the Duration of the Second Stage of Labor: A 3-D Visco-Hyperelastic Finite Element Model,” North American Congress on Biomechanics Conference (NACOB), Ann Arbor, MI, Aug. 5–9.
Sampselle, C. M. , and Hines, S. , 1999, “Spontaneous Pushing During Birth: Relationship to Perineal Outcomes,” J. Nurse-Midwifery, 44(1), pp. 36–39. [CrossRef] [PubMed]
Thomson, A. M. , 1993, “Pushing Techniques in the Second Stage of Labour,” J. Adv. Nurs., 18(2), pp. 171–177. [CrossRef] [PubMed]
Larsson, E. , Wesslen, L. , Lindquist, O. , Baandrur, U. , Eriksson, L. , Olsen, E. , Rolf, C. , and Friman, G. , 1999, “Sudden Unexpected Cardiac Deaths Among Young Swedish Orienteers—Morphological Changes in Hearts and Other Organs,” APMIS, 107(1–6), pp. 325–336. [CrossRef] [PubMed]
Majno, G. , and Joris, I. , 1995, “Apoptosis, Oncosis, and Necrosis. An Overview of Cell Death,” Am. J. Pathol., 146(1), pp. 3–15. [PubMed]
Condel, J. L. , Jukic, D. M. , Sharbaugh, D. T. , and Raab, S. S. , 2005, “Histology Errors: Use of Real-Time Root Cause Analysis to Improve Practice,” Pathol. Case Rev., 10(2), pp. 82–87. [CrossRef]
Engstrom, C. , Loeb, G. , Reid, J. , Forrest, W. , and Avruch, L. , 1991, “Morphometry of the Human Thigh Muscles. A Comparison Between Anatomical Sections and Computer Tomographic and Magnetic Resonance Images,” J. Anat., 176, pp. 139–156. [PubMed]
Joutsivuo, T. , 1996, “Vesalius and de Humani Corporis Fabrica: Galen's Errors and the Change of Anatomy in the Sixteenth Century,” Hippokrates, PubMed, Helsinki, Finland, pp. 98–112.
Borisov, N. , Franck, D. , De Carlan, L. , and Laval, L. , 2002, “A New Graphical User Interface for Fast Construction of Computation Phantoms and MCNP Calculations: Application to Calibration of In Vivo Measurement Systems,” Health Phys., 83(2), pp. 272–279. [CrossRef] [PubMed]
DeLancey, J. O. , Kearney, R. , Chou, Q. , Speights, S. , and Binno, S. , 2003, “The Appearance of Levator Ani Muscle Abnormalities in Magnetic Resonance Images After Vaginal Delivery,” Obstet. Gynecol., 101(1), pp. 46–53. [CrossRef] [PubMed]
Dietz, H. , 2007, “Quantification of Major Morphological Abnormalities of the Levator Ani,” Ultrasound Obstet. Gynecol., 29(3), pp. 329–334. [CrossRef] [PubMed]
Jezzard, P. , Matthews, P. M. , and Smith, S. M. , 2001, Functional MRI: An Introduction to Methods, 3rd ed., Oxford University Press, Oxford, UK.
Marchandise, E. , Compere, G. , Willemet, M. , Bricteux, G. , Geuzaine, C. , and Remacle, J.-F. , 2010, “Quality Meshing Based on STL Triangulations for Biomedical Simulations,” Int. J. Numer. Methods Biomed. Eng., 26(7), pp. 876–889.
Owen, S. J. , White, D. R. , and Tautges, T. J. , 2002, “Facet-Based Surfaces for 3D Mesh Generation,” IMR, pp. 297–311.
Geuzaine, C. , and J.-Remacle, F. , 2009, “GMSH: A 3-D Finite Element Mesh Generator With Built-In Pre-And Post-Processing Facilities,” Int. J. Numer. Methods Eng., 79(11), pp. 1309–1331. [CrossRef]
Szczerba, D. , McGregor, R. , and Szkely, G. , 2007, “High Quality Surface Mesh Generation for Multi-Physics Bio-Medical Simulations,” Computational Science—ICCS 2007, Springer, New York, pp. 906–913.
Wang, C.-S. , Wang, W.-H. A. , and Lin, M.-C. , 2010, “STL Rapid Prototyping Bio-CAD Model for CT Medical Image Segmentation,” Comput. Ind., 61(3), pp. 187–197. [CrossRef]
Wang, D. , Hassan, O. , Morgan, K. , and Weatherill, N. , 2007, “Enhanced Remeshing From STL Files With Applications to Surface Grid Generation,” Commun. Numer. Methods Eng., 23(3), pp. 227–239. [CrossRef]
Ribeiro, N. , Fernandes, P. , Lopes, D. , Folgado, J. , and Fernandes, P. , 2009, “3-D Solid and Finite Element Modeling of Biomechanical Structures—A Software Pipeline,” 7th EUROMECH Solid Mechanics Conference.
Sullivan, J. M. , Wu, Z. , and Kulkarni, A. , 2000, “3D Volume Mesh Generation of Human Organs Using Surface Geometries Created From the Visible Human Data Set,” 3rd Visible Human Project Conference, NIH, Worcester, MA, pp. 5–6.
Zhang, Y. , Bajaj, C. , and Sohn, B.-S. , 2005, “3D Finite Element Meshing From Imaging Data,” Comput. Methods Appl. Mech. Eng., 194(48), pp. 5083–5106. [CrossRef] [PubMed]
Cook, R. D. , 2007, Concepts and Applications of Finite Element Analysis, Wiley, New York.
Arnold, D. N. , 1982, “An Interior Penalty Finite Element Method With Discontinuous Elements,” SIAM J. Numer. Anal., 19(4), pp. 742–760. [CrossRef]
Ho-Le, K. , 1998, “Finite Element Mesh Generation Methods: A Review and Classification,” Comput.-Aided Des., 20(1), pp. 27–38. [CrossRef]
Hu, P. , Chen, H. , Wu, W. , and Heng, P.-A. , 2010, “Multi-Tissue Tetrahedral Mesh Generation From Medical Images,” 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China, June 18–20.
Lederman, C. , Joshi, A. , Dinov, I. , Van Horn, J. D. , Vese, L. , and Toga, A. , 2013, “Tetrahedral Mesh Generation for Medical Images With Multiple Regions Using Active Surfaces,” IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Rotterdam, The Netherlands, Apr. 14–17, pp. 436–439.
Mohamed, A. , and Davatzikos, C. , 2004, “Finite Element Mesh Generation and Remeshing From Segmented Medical Images,” IEEE International Symposium on Biomedical Imaging: Nano to Macro (ISBI), Arlington, VA, Apr. 15–18, pp. 420–423.
Tsukerman, I. A. , 1992, “Overlapping Finite Elements for Problems With Movement,” IEEE Trans. Magn., 28(5), pp. 2247–2249. [CrossRef]
Rubod, C. , Brieu, M. , Cosson, M. , Rivaux, G. , Clay, J.-C. , de Landsheere, L. , and Gabriel, B. , 2012, “Biomechanical Properties of Human Pelvic Organs,” Urology, 79(4), pp. 968.e17–968.e22. [CrossRef]
Courtney, T. , Sacks, M. S. , Stankus, J. , Guan, J. , and Wagner, W. R. , 2006, “Design and Analysis of Tissue Engineering Scaffolds That Mimic Soft Tissue Mechanical Anisotropy,” Biomaterials, 27(19), pp. 3631–3638. [PubMed]
Guo, X. , 2001, “Mechanical Properties of Cortical Bone and Cancellous Bone Tissue,” Bone Mechanics Handbook, Vol. 2, CRC Press, Boca Raton, FL, pp. 10.11–10.23.
Picinbono, G. , Delingette, H. , and Ayache, N. , “Nonlinear and Anisotropic Elastic Soft Tissue Models for Medical Simulation,” IEEE International Conference on Robotics and Automation (ICRA 2001), Seoul, Korea, May 21–26, Vol. 2, pp. 1370–1375.
Roan, E. , and Vemaganti, K. , 2007, “The Nonlinear Material Properties of Liver Tissue Determined From No-Slip Uniaxial Compression Experiments,” ASME J. Biomech. Eng., 129(3), pp. 450–456. [CrossRef]
Gonzalez, L. Y. S. , Botero, M. G. , and Betancur, M. , 2005, “Hyperelastic Material Modeling,” Departamento de Ingenieria Mecanica, Universidad EAFIT, Medellín, Colombia.
Holzapfel, G. A. , 2000, Nonlinear Solid Mechanics, Vol. 24, Wiley, Chichester, UK.
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity Phys. Sci. Solids, 61(1–3), pp. 1–48. [CrossRef]
Martins, P. , Natal Jorge, R. , and Ferreira, A. , 2006, “A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues,” Strain, 42(3), pp. 135–147. [CrossRef]
Weiss, J. A. , Maker, B. N. , and Govindjee, S. , 1996, “Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity,” Comput. Methods Appl. Mech. Eng., 135(1), pp. 107–128. [CrossRef]
Martins, E. , Jorge, R. N. , Ferreira, A. , Figueiredo, M. , Fernandes, R. , Figueiredo, M. , and Silva, R. , 2005, “Modelling the Mechanical Behavior of Soft Tissues Using Hyperelastic Constitutive Models,” International Conference on Computational Bioengineering (ICCB2005), Lisbon, Portugal, Sept. 14–16.
Martins, P. , Lopes Silva-Filho , A. , Rodrigues Maciel da Fonseca , A. M., Santos , A., Santos , L., Mascarenhas , Natal Jorge, T. , R. M., and Ferreira , A. J. , 2012, “Biomechanical Properties of Vaginal Tissue in Women With Pelvic Organ Prolapse,” Gynecol. Obstet. Invest., 75(2), pp. 85–92. [CrossRef] [PubMed]
Martins, P. A. , Silva Filho, A. L. , Fonseca, A. M. R. M. , Santos, A. , Santos, L. , Mascarenhas, T. , Jorge, R. M. N. , and Ferreira, A. J. , 2011, “Uniaxial Mechanical Behavior of the Human Female Bladder,” Int. Urogynecology J., 22(8), pp. 991–995. [CrossRef]
Pena, E. , Calvo, B. , Martinez, M. , Martins, P. , Mascarenhas, T. , Jorge, R. N. , Ferreira, A. , and Doblare, M. , 2010, “Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue,” Biomech. Model. Mechanobiol., 9(1), pp. 35–44. [CrossRef] [PubMed]
Calvo, B. , Pena, E. , Martins, P. , Mascarenhas, T. , Doblare, M. , Natal Jorge, R. , and Ferreira, A. , 2009, “On Modelling Damage Process in Vaginal Tissue,” J. Biomech., 42(5), pp. 642–651. [CrossRef] [PubMed]
Cosson, M. , Lambaudie, E. , Boukerrou, M. , Lobry, P. , Crepin, G. , and Ego, A. , 2004, “A Biomechanical Study of the Strength of Vaginal Tissues: Results on 16 Post-Menopausal Patients Presenting With Genital Prolapse,” Eur. J. Obstet. Gynecol. Reprod. Biol., 112(2), pp. 201–205. [CrossRef] [PubMed]
Egorov, V. , van Raalte, H. , and Lucente, V. , 2012, “Quantifying Vaginal Tissue Elasticity Under Normal and Prolapse Conditions by Tactile Imaging,” Int. Urogynecology J., 23(4), pp. 459–466. [CrossRef]
Epstein, L. B. , Graham, C. A. , and Heit, M. H. , 2007, “Systemic and Vaginal Biomechanical Properties of Women With Normal Vaginal Support and Pelvic Organ Prolapse,” Am. J. Obstet. Gynecol., 197(2), pp. 165.e1–165.e6. [CrossRef]
Epstein, L. B. , Graham, C. A. , and Heit, M. H. , 2008, “Correlation Between Vaginal Stiffness Index and Pelvic Floor Disorder Quality-of-Life Scales,” Int. Urogynecology J., 19(7), pp. 1013–1018. [CrossRef]
Fu, X. , Siltberg, H. , Johnson, P. , and Ulmsten, U. , 1995, “Viscoelastic Properties and Muscular Function of the Human Anterior Vaginal Wall,” Int. Urogynecology J., 6(4), pp. 229–234. [CrossRef]
Goh, J. , 2002, “Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women,” Int. Urogynecology J., 13(2), pp. 76–79. [CrossRef]
Jean-Charles, C. , Rubod, C. , Brieu, M. , Boukerrou, M. , Fasel, J. , and Cosson, M. , 2010, “Biomechanical Properties of Prolapsed or Non-Prolapsed Vaginal Tissue: Impact on Genital Prolapse Surgery,” Int. Urogynecology J., 21(12), pp. 1535–1538. [CrossRef]
Kannan, K. , McConnell, A. , McLeod, M. , and Rane, A. , 2011, “Microscopic Alterations of Vaginal Tissue in Women With Pelvic Organ Prolapse,” J. Obstet. Gynaecol., 31(3), pp. 250–253. [CrossRef] [PubMed]
Karam, J. A. , Vazquez, D. V. , Lin, V. K. , and Zimmern, P. E. , 2007, “Elastin Expression and Elastic Fibre Width in the Anterior Vaginal Wall of Postmenopausal Women With and Without Prolapse,” BJU Int., 100(2), pp. 346–350. [CrossRef] [PubMed]
Kerkhof, M. , Hendriks, L. , and Brlmann, H. , 2009, “Changes in Connective Tissue in Patients With Pelvic Organ Prolapse—A Review of the Current Literature,” Int. Urogynecology J., 20(4), pp. 461–474. [CrossRef]
Lei, L. , Song, Y. , and Chen, R. , 2007, “Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women,” Int. Urogynecology J., 18(6), pp. 603–607. [CrossRef]
Martins, P. , Pena, E. , Calvo, B. , Doblare, M. , Mascarenhas, T. , Natal Jorge, R. , and Ferreira, A. , 2010, “Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation,” Comput. Methods Biomech. Biomed. Eng., 13(3), pp. 327–337. [CrossRef]
Mazza, E. , Nava, A. , Bauer, M. , Winter, R. , Bajka, M. , and Holzapfel, G. A. , 2006, “Mechanical Properties of the Human Uterine Cervix: An In Vivo Study,” Med. Image Anal., 10(2), pp. 125–136. [CrossRef] [PubMed]
Mosier, E. , Jerome, R. , Xie, X. , Chuong, C. , and Yan, J. , 2011, “In Vivo Btc-2000™ Measurement of Anterior Vaginal Wall Biomechanical Properties in Prolapse Patients Undergoing Surgical Repair,” J. Biotechnol. Biomater., 1(117), pp. 2–6.
Myers, K. M. , Paskaleva, A. , House, M. , and Socrate, S. , 2008, “Mechanical and Biochemical Properties of Human Cervical Tissue,” Acta Biomater., 4(1), pp. 104–116. [CrossRef] [PubMed]
Pena, E. , Martins, P. , Mascarenhas, T. , Natal Jorge, R. , Ferreira, A. , Doblar, M. , and Calvo, B. , 2011, “Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue,” J. Mech. Behav. Biomed. Mater., 4(3), pp. 275–283. [CrossRef] [PubMed]
Poncet, S. , Meyer, S. , Richard, C. , Aubert, J.-D. , and Juillerat-Jeanneret, L. , 2005, “The Expression and Function of the Endothelin System in Contractile Properties of Vaginal Myofibroblasts of Women With Uterovaginal Prolapse,” Am. J. Obstet. Gynecol., 192(2), pp. 426–432. [CrossRef] [PubMed]
Rahn, D. D. , Acevedo, J. F. , and Word, R. A. , 2008, “Effect of Vaginal Distention on Elastic Fiber Synthesis and Matrix Degradation in the Vaginal Wall: Potential Role in the Pathogenesis of Pelvic Organ Prolapse,” Am. J. Physiol.: Regul., Integr. Comp. Physiol., 295(4), pp. R1351–R1358. [CrossRef]
Rahn, D. D. , Ruff, M. D. , Brown, S. A. , Tibbals, H. F. , and Word, R. , 2008, “Biomechanical Properties of the Vaginal Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse,” Am. J. Obstet. Gynecol., 198(5), pp. 590.e1–590.e6. [CrossRef]
Rubod, C. , Boukerrou, M. , Brieu, M. , C. Jean-Charles , Dubois, P. , and Cosson, M. , 2008, “Biomechanical Properties of Vaginal Tissue: Preliminary Results,” Int. Urogynecology J., 19(6), pp. 811–816. [CrossRef]
Rubod, C. , Boukerrou, M. , Brieu, M. , Dubois, P. , and Cosson, M. , 2007, “Biomechanical Properties of Vaginal Tissue. Part 1: New Experimental Protocol,” J. Urol., 178(1), pp. 320–325. [CrossRef] [PubMed]
Beatty, M. F. , 1987, “Topics in Finite Elasticity: Hyperelasticity of Rubber, Elastomers, and Biological Tissues With Examples,” ASME Appl. Mech. Rev., 40(12), pp. 1699–1734. [CrossRef]
Guerin, H. L. , and Elliott, D. M. , 2007, “Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model,” J. Orthop. Res., 25(4), pp. 508–516. [CrossRef] [PubMed]
Hirokawa, S. , and Tsuruno, R. , 2000, “Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament,” J. Biomech., 33(9), pp. 1069–1077. [CrossRef] [PubMed]
Chabanas, M. , Payan, Y. , Marecaux, C. , Swider, P. , and Boutault, F. , 2004, “Comparison of Linear and Non-Linear Soft Tissue Models With Post-Operative CT Scan in Maxillofacial Surgery,” Medical Simulation, Springer, Berlin, pp. 19–27.
Kim, J. , and Srinivasan, M. A. , 2005, Characterization of Viscoelastic Soft Tissue Properties From In Vivo Animal Experiments and Inverse FE Parameter Estimation, Springer, Berlin, pp. 599–606.
Lally, C. , Dolan, F. , and Prendergast, P. , 2005, “Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis,” J. Biomech., 38(8), pp. 1574–1581. [CrossRef] [PubMed]
Lally, C. , Reid, A. , and Prendergast, P. , 2004, “Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension,” Ann. Biomed. Eng., 32(10), pp. 1355–1364. [CrossRef] [PubMed]
Prendergast, P. , Lally, C. , Daly, S. , Reid, A. , Lee, T. , Quinn, D. , and Dolan, F. , 2003, “Analysis of Prolapse in Cardiovascular Stents: A Constitutive Equation for Vascular Tissue and Finite Element Modelling,” ASME J. Biomech. Eng., 125(5), pp. 692–699. [CrossRef]
Holzapfel, G. A. , and Ogden, R. W. , 2003, Biomechanics of Soft Tissue in Cardiovascular Systems, Vol. 441, Springer, Berlin.
O'Hagan, J. J. , and Samani, A. , 2009, “Measurement of the Hyperelastic Properties of 44 Pathological Ex Vivo Breast Tissue Samples,” Phys. Med. Biol., 54(8), pp. 2557–2569. [CrossRef] [PubMed]
Miller, K. , 2005, “Method of Testing Very Soft Biological Tissues in Compression,” J. Biomech., 38(1), pp. 153–158. [CrossRef] [PubMed]
Gao, Z. , Lister, K. , and Desai, J. P. , 2010, “Constitutive Modeling of Liver Tissue: Experiment and Theory,” Ann. Biomed. Eng., 38(2), pp. 505–516. [CrossRef] [PubMed]
Velardi, F. , Fraternali, F. , and Angelillo, M. , 2006, “Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue,” Biomech. Model. Mechanobiol., 5(1), pp. 53–61. [CrossRef] [PubMed]
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2004, “Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability,” ASME J. Biomech. Eng., 126(2), pp. 264–275. [CrossRef]
May-Newman, K. , and Yin, F. , 1998, “A Constitutive Law for Mitral Valve Tissue,” ASME J. Biomech. Eng., 120(1), pp. 38–47. [CrossRef]
Raghavan, M. , and Vorp, D. A. , 2000, “Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Biomech., 33(4), pp. 475–482. [CrossRef] [PubMed]
Seshaiyer, P. , and Humphrey, J. D. , 2003, “A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues,” ASME J. Biomech. Eng., 125(3), pp. 363–371. [CrossRef]
Van Loocke, M. , Lyons, C. , and Simms, C. , 2006, “A Validated Model of Passive Muscle in Compression,” J. Biomech., 39(16), pp. 2999–3009. [CrossRef] [PubMed]
Wang, D. H. , Makaroun, M. , Webster, M. W. , and Vorp, D. A. , 2001, “Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm,” ASME J. Biomech. Eng., 123(6), pp. 536–539. [CrossRef]
Kaster, T. , Sack, I. , and Samani, A. , 2011, “Measurement of the Hyperelastic Properties of Ex Vivo Brain Tissue Slices,” J. Biomech., 44(6), pp. 1158–1163. [CrossRef] [PubMed]
Tan, T. , and Vita, R. D. , 2015, “A Structural Constitutive Model for Smooth Muscle Contraction in Biological Tissues,” Int. J. Non-Linear Mech., 75, pp. 46–53. [CrossRef]
Fraenkel, J. R. , Wallen, N. E. , and Hyun, H. H. , 1993, How to Design and Evaluate Research in Education, Vol. 7, McGraw-Hill, New York.
Yin, H. , Sun, L. , Wang, G. , and Vannier, M. W. , 2004, “Modeling of Elastic Modulus Evolution of Cirrhotic Human Liver,” IEEE Trans. Biomed. Eng., 51(10), pp. 1854–1857. [CrossRef] [PubMed]
Boreham, M. K. , Wai, C. Y. , Miller, R. T. , Schaffer, J. I. , and Word, R. , 2002, “Morphometric Properties of the Posterior Vaginal Wall in Women With Pelvic Organ Prolapse,” Am. J. Obstet. Gynecol., 187(6), pp. 1501–1509. [CrossRef] [PubMed]
Bortolini, M. A. , Shynlova, O. , Drutz, H. P. , Castro, R. A. , Girao, M. J. , Lye, S. , and Alarab, M. , 2012, “Expression of Genes Encoding Smooth Muscle Contractile Proteins in Vaginal Tissue of Women With and Without Pelvic Organ Prolapse,” Neurourol. Urodyn., 31(1), pp. 109–114. [CrossRef] [PubMed]
Almeida, E. S. , and Spilker, R. L. , 1998, “Finite Element Formulations for Hyperelastic Transversely Isotropic Biphasic Soft Tissues,” Comput. Methods Appl. Mechan. Eng., 151(3), pp. 513–538. [CrossRef]
Bischoff, J. , Arruda, E. , and Grosh, K. , 2002, “A Microstructurally Based Orthotropic Hyperelastic Constitutive Law,” ASME J. Appl. Mech., 69(5), pp. 570–579. [CrossRef]
El Sayed, T. , Mota, A. , Fraternali, F. , and Ortiz, M. , 2008, “A Variational Constitutive Model for Soft Biological Tissues,” J. Biomech., 41(7), pp. 1458–1466. [CrossRef] [PubMed]
Freutel, M. , Schmidt, H. , Drselen, L. , Ignatius, A. , and Galbusera, F. , 2014, “Finite Element Modeling of Soft Tissues: Material Models, Tissue Interaction and Challenges,” Clin. Biomech., 29(4), pp. 363–372. [CrossRef]
Fung, Y. , 1967, “Elasticity of Soft Tissues in Simple Elongation,” Am. J. Physiol., 213(6), pp. 1532–1544. [PubMed]
Guo, Z. , Peng, X. , and Moran, B. , 2006, “A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Annulus Fibrosus,” J. Mech. Phys. Solids, 54(9), pp. 1952–1971. [CrossRef]
Kulkarni, S. , Gao, X. , Horner, S. , Mortlock, R. , and Zheng, J. , 2014, “A Transversely Isotropic Visco-Hyperelastic Constitutive Model for Soft Tissues,” Math. Mech. Solids, epub, p. 1081286514536921.
Mendis, K. , Stalnaker, R. , and Advani, S. , 1995, “A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue,” ASME J. Biomech. Eng., 117(3), pp. 279–285. [CrossRef]
Miller, K. , and Chinzei, K. , 1997, “Constitutive Modelling of Brain Tissue: Experiment and Theory,” J. Biomech., 30(11), pp. 1115–1121. [CrossRef] [PubMed]
Natali, A. , Carniel, E. , Pavan, P. , Dario, P. , and Izzo, I. , 2006, “Hyperelastic Models for the Analysis of Soft Tissue Mechanics: Definition of Constitutive Parameters,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2006), Pisa, Italy, Feb. 20–22, pp. 188–191.
Pena, E. , Calvo, B. , Martinez, M. , and Doblare, M. , 2007, “An Anisotropic Visco-Hyperelastic Model for Ligaments at Finite Strains. Formulation and Computational Aspects,” Int. J. Solids Struct., 44(3), pp. 760–778. [CrossRef]
Sun, W. , and Sacks, M. S. , 2005, “Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues,” Biomech. Model. Mechanobiol., 4(2–3), pp. 190–199. [CrossRef] [PubMed]
Taylor, Z. A. , Comas, O. , Cheng, M. , Passenger, J. , Hawkes, D. J. , Atkinson, D. , and Ourselin, S. , 2009, “On Modelling of Anisotropic Viscoelasticity for Soft Tissue Simulation: Numerical Solution and GPU Execution,” Med. Image Anal., 13(2), pp. 234–244. [CrossRef] [PubMed]
Horgan, C. O. , 2015, “The Remarkable Gent Constitutive Model for Hyperelastic Materials,” Int. J. Non-Linear Mech., 68, pp. 9–16. [CrossRef]
Damon, B. M. , Buck, A. K. , and Ding, Z. , 2011, “Diffusion-Tensor MRI-Based Skeletal Muscle Fiber Tracking,” Imaging Med., 3(6), pp. 675–687. [CrossRef] [PubMed]
Fujimoto, K. , Kido, A. , Okada, T. , Uchikoshi, M. , and Togashi, K. , 2013, “Diffusion Tensor Imaging (DTI) of the Normal Human Uterus In Vivo at 3 Tesla: Comparison of DTI Parameters in the Different Uterine Layers,” J. Magn. Reson. Imaging, 38(6), pp. 1494–1500. [CrossRef] [PubMed]
Goh, V. , Tam, E. , Taylor, N. J. , Stirling, J. J. , Simcock, I. C. , Jones, R. G. , and Padhani, A. R. , 2012, “Diffusion Tensor Imaging of the Anal Canal at 3 Tesla: Feasibility and Reproducibility of Anisotropy Measures,” J. Magn. Reson. Imaging, 35(4), pp. 820–826. [CrossRef] [PubMed]
Lim, R. P. , Lee, V. S. , Bennett, G. L. , Chen, Q. , McGorty, K. , Taouli, B. , and Hecht, E. M. , 2006, “Imaging the Female Pelvis at 3.0 T,” Top. Magn. Reson. Imaging, 17(6), pp. 427–443. [CrossRef] [PubMed]
Rousset, P. , Delmas, V. , Buy, J. , Rahmouni, A. , Vadrot, D. , and Deux, J. , 2012, “In Vivo Visualization of the Levator Ani Muscle Subdivisions Using MR Fiber Tractography With Diffusion Tensor Imaging,” J. Anat., 221(3), pp. 221–228. [CrossRef] [PubMed]
Zijta, F. , Froeling, M. , Van Der Paardt, M. , Lakeman, M. , Bipat, S. , van Swijndregt, A. M. , Strijkers, G. , Nederveen, A. , and Stoker, J. , 2011, “Feasibility of Diffusion Tensor Imaging (DTI) With Fibre Tractography of the Normal Female Pelvic Floor,” Eur. Radiol., 21(6), pp. 1243–1249. [CrossRef] [PubMed]
Zijta, F. , Lakeman, M. , Froeling, M. , van der Paardt, M. , Borstlap, C. , Bipat, S. , van Swijndregt, A. M. , Strijkers, G. , Roovers, J. , and Nederveen, A. , 2012, “Evaluation of the Female Pelvic Floor in Pelvic Organ Prolapse Using 3.0-Tesla Diffusion Tensor Imaging and Fibre Tractography,” Eur. Radiol., 22(12), pp. 2806–2813. [CrossRef] [PubMed]
Zijta, F. M. , Froeling, M. , Nederveen, A. J. , and Stoker, J. , 2013, “Diffusion Tensor Imaging and Fiber Tractography for the Visualization of the Female Pelvic Floor,” Clin. Anat., 26(1), pp. 110–114. [CrossRef] [PubMed]
Berardi, M. , Martinez-Romero, O. , Elias-Zuniga, A. , Rodriguez, M. , Ceretti, E. , Fiorentino, A. , Donzella, G. , and Avanzini, A. , 2014, “Levator Ani Deformation During the Second Stage of Labour,” Proc. Inst. Mech. Eng., Part H: 228(5), pp. 501–508. [CrossRef]
DeLancey, J. O. , 1993, “Anatomy and Biomechanics of Genital Prolapse,” Clin. Obstet. Gynecol., 36(4), pp. 897–909. [CrossRef] [PubMed]
Richardson, D. , Bent, A. , and Ostergard, D. , 1983, “The Effect of Uterovaginal Prolapse on Urethrovesical Pressure Dynamics,” Am. J. Obstet. Gynecol., 146(8), pp. 901–905. [PubMed]
Panayi, D. C. , Digesu, G. A. , Tekkis, P. , Fernando, R. , and Khullar, V. , 2010, “Ultrasound Measurement of Vaginal Wall Thickness: A Novel and Reliable Technique,” Int. Urogynecology J., 21(10), pp. 1265–1270. [CrossRef]
Hahn, H. T. , and Tsai, S. W. , 1980, Introduction to Composite Materials, Vol. 1. CRC Press, Boca Raton, FL.
Hull, D. , and Clyne, T. , 1996, An Introduction to Composite Materials, Cambridge University Press, Cambridge, UK.
Reddy, J. N. , 2008, Introduction to Continuum Mechanics: With Applications, Cambridge University Press, New York.


Grahic Jump Location
Fig. 4

Typical 3D MRI image segmentation interface to create biological organ geometries

Grahic Jump Location
Fig. 3

A typical pelvic system numerical model with bladder, vagina, urethra, and uterus

Grahic Jump Location
Fig. 2

Typical pelvic floor muscle geometry of levator ani (the most important muscle in the female pelvic floor)

Grahic Jump Location
Fig. 1

Female pelvic system normal anatomy and various prolapse conditions



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In