0
Review Article

Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison With Unidirectional Composite Modeling Techniques

[+] Author and Article Information
R. D. B. Sevenois

Department of Materials Science
and Engineering,
Faculty of Engineering and Architecture,
Ghent University,
Technologiepark Zwijnaarde 903,
Zwijnaarde B-9052, Belgium
SIM Program M3Strength,
Technologiepark Zwijnaarde 935,
Zwijnaarde B-9052, Belgium
e-mail: ruben.sevenois@ugent.be

W. Van Paepegem

Professor
Department of Materials Science
and Engineering,
Faculty of Engineering and Architecture,
Ghent University,
Technologiepark Zwijnaarde 903,
Zwijnaarde B-9052, Belgium

1Corresponding author.

Manuscript received September 19, 2014; final manuscript received January 27, 2015; published online February 18, 2015. Assoc. Editor: Bart Prorok.

Appl. Mech. Rev 67(2), 020802 (Mar 01, 2015) (12 pages) Paper No: AMR-14-1079; doi: 10.1115/1.4029691 History: Received September 19, 2014; Revised January 27, 2015; Online February 18, 2015

Composite structural parts have been successfully introduced in high performance industries. Nowadays, also lower performance, high volume production industries are looking for the application of composites in their products. Especially attractive are textile composites (woven, braided, etc.) because of their better drapability and higher resistance to out-of-plane and dynamic loads. Currently, however, extensive mechanical tests are needed to properly design a composite structure. This is a requirement the large volume industries typically do not have the resources nor the time for. Reducing the need for structural tests can only be done if reliable simulation techniques are available. Simulation techniques for fatigue loading are particularly interesting because products generally have to perform their function over a period of time. For the textile structural composites concerned in this paper, some notable modeling techniques have been developed over the past 15 years. These techniques are presented here and the state of the art is established together with insights for future development by comparing the state of the art with the modeling techniques for laminates from unidirectional (UD) laminae.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ayranci, C., and Carey, J., 2008, “2D Braided Composites: A Review for Stiffness Critical Applications,” Compos. Struct., 85(1), pp. 43–58. [CrossRef]
Ladevèze, P., 2004, “Multiscale Modelling and Computational Strategies for Composites,” Int. J. Numer. Methods Eng., 60(1), pp. 233–253. [CrossRef]
McCartney, L., 2008, “Energy Methods for Fatigue Damage Modelling of Laminates,” Compos. Sci. Technol., 68(13), pp. 2601–2615. [CrossRef]
Zhang, C., and Xu, X., 2013, “Finite Element Analysis of 3D Braided Composites Based on Three Unit-Cells Models,” Compos. Struct., 98, pp. 130–142. [CrossRef]
Degrieck, J., and Van Paepegem, W., 2001, “Fatigue Damage Modeling of Fibre-Reinforced Composite Materials: Review,” ASME Appl. Mech. Rev., 54(4), pp. 279–300. [CrossRef]
Pascoe, J., Alderliesten, R., and Benedictus, R., 2013, “Methods for the Prediction of Fatigue Delamination Growth in Composites and Adhesive Bonds: A Critical Review,” Eng. Fract. Mech., 112–113, pp. 72–96. [CrossRef]
Icardi, U., Locatto, S., and Longo, A., 2007, “Assessment of Recent Theories for Predicting Failure of Composite Laminates,” ASME Appl. Mech. Rev., 60(2), pp. 76–86. [CrossRef]
Post, N. L., Case, S. W., and Lesko, J. J., 2008, “Modeling the Variable Amplitude Fatigue of Composite Materials: A Review and Evaluation of the State of the Art for Spectrum Loading,” Int. J. Fatigue, 30(12), pp. 2064–2086. [CrossRef]
Soden, P., Kaddour, A., and Hinton, M., 2004, “Recommendations for Designers and Researchers Resulting From the World-Wide Failure Exercise,” Compos. Sci. Technol., 64(3–4), pp. 589–604. [CrossRef]
Quaresimin, M., Susmel, L., and Talreja, R., 2010, “Fatigue Behaviour and Life Assessment of Composite Laminates Under Multiaxial Loadings,” Int. J. Fatigue, 32(1), pp. 2–16. [CrossRef]
Liu, P., and Zheng, J., 2010, “Recent Developments on Damage Modeling and Finite Element Analysis for Composite Laminates: A Review,” Mater. Des., 31(8), pp. 3825–3834. [CrossRef]
Daggumati, S., De Baere, I., Van Paepegem, W., Degrieck, J., Xu, J., Lomov, S., and Verpoest, I., 2013, “Fatigue and Post-Fatigue Stress-Strain Analysis of a 5-Harness Satin Weave Carbon Fibre Reinforced Composite,” Compos. Sci. Technol., 74, pp. 20–27. [CrossRef]
Cox, B., Dadkhah, M., and Inman, R., 1992, “Mechanisms of Compressive Failure in 3D Composites,” Acta Metall. Mater., 40(12), pp. 3285–3298. [CrossRef]
Kawai, M., and Matsuda, Y., 2012, “Anisomorphic Constant Fatigue Life Diagrams for a Woven Fabric Carbon/Epoxy Laminate at Different Temperatures,” Composites, Part A, 43(4), pp. 647–657. [CrossRef]
Kawai, M., Matsuda, Y., and Yoshimura, R., 2012, “A General Method for Predicting Temperature-Dependent Anisomorphic Constant Fatigue Life Diagram for a Woven Fabric Carbon/Epoxy Laminate,” Composites, Part A, 43(6), pp. 915–925. [CrossRef]
Kawai, M., and Taniguchi, T., 2006, “Off-Axis Fatigue Behavior of Plain Weave Carbon/Epoxy Fabric Laminates at Room and High Temperatures and Its Mechanical Modeling,” Composites, Part A, 37(2), pp. 243–256. [CrossRef]
Kawai, M., and Murata, T., 2010, “A Three-Segment Anisomorphic Constant Life Diagram for the Fatigue of Symmetric Angle-Ply Carbon/Epoxy Laminates at Room Temperature,” Composites, Part A, 41(10), pp. 1498–1510. [CrossRef]
Vania, A., and Carvelli, V., 2010, Fitting Approach of the Fatigue Tensile Response of Textile Composite Materials, Destech Publications, Inc., Lancaster, UK.
Carvelli, V., Gramellini, G., Lomov, S. V., Bogdanovich, A. E., Mungalov, D. D., and Verpoest, I., 2010, “Fatigue Behavior of Non-Crimp 3D Orthogonal Weave and Multi-Layer Plain Weave E-Glass Reinforced Composites,” Compos. Sci. Technol., 70(14), pp. 2068–2076. [CrossRef]
Mouritz, A. P., 2005, “A Simple Fatigue Life Model for Three-Dimensional Fiber-Polymer Composites,” J. Compos. Mater., 40(5), pp. 455–469. [CrossRef]
Toumi, R. B., Renard, J., Monin, M., and Nimdum, P., 2013, “Fatigue Damage Modelling of Continuous E-Glass Fibre/Epoxy Composite,” Procedia Eng., 66, pp. 723–736. [CrossRef]
Tamuzs, V., Dzelzitis, K., and Reifsnider, K., 2008, “Prediction of the Cyclic Durability of Woven Composite Laminates,” Compos. Sci. Technol., 68(13), pp. 2717–2721. [CrossRef]
Tamuzs, V., Dzelzitis, K., and Reifsnider, K., 2004, “Fatigue of Woven Composite Laminates in Off-Axis Loading I. The Mastercurves,” Appl. Compos. Mater., 11(5), pp. 259–279. [CrossRef]
Tamuzs, V., Dzelzitis, K., and Reifsnider, K., 2004, “Fatigue of Woven Composite Laminates in Off-Axis Loading II. Prediction of the Cyclic Durability,” Appl. Compos. Mater., 11(5), pp. 281–293. [CrossRef]
Naderi, M., and Khonsari, M. M., 2012, “A Comprehensive Fatigue Failure Criterion Based on Thermodynamic Approach,” J. Compos. Mater., 46(4), pp. 437–447. [CrossRef]
Naderi, M., Kahirdeh, A., and Khonsari, M. M., 2012, “Dissipated Thermal Energy and Damage Evolution of Glass/Epoxy Using Infrared Thermography and Acoustic Emission,” Composites, Part B, 43(3), pp. 1613–1620. [CrossRef]
Naderi, M., and Khonsari, M., 2012, “Thermodynamic Analysis of Fatigue Failure in a Composite Laminate,” Mech. Mater., 46, pp. 113–122. [CrossRef]
Naderi, M., and Khonsari, M., 2013, “On the Role of Damage Energy in the Fatigue Degradation Characterization of a Composite Laminate,” Composites, Part B, 45(1), pp. 528–537. [CrossRef]
Naderi, M., Amiri, M., and Khonsari, M. M., 2010, “On the Thermodynamic Entropy of Fatigue Fracture,” Proc. R. Soc. A, 466(2114), pp. 423–438. [CrossRef]
Movaghghar, A., and Lvov, G. I., 2011, “An Energy Model for Fatigue Life Prediction of Composite Materials Using Continuum Damage Mechanics,” Appl. Mech. Mater., 110–116, pp. 1353–1360. [CrossRef]
Movaghghar, A., and Lvov, G. I., 2012, “A Method of Estimating Wind Turbine Blade Fatigue Life and Damage Using Continuum Damage Mechanics,” Int. J. Damage Mech., 21(6), pp. 810–821. [CrossRef]
Movaghghar, A., and Lvov, G. I., 2012, “Theoretical and Experimental Study of Fatigue Strength of Plain Woven Glass/Epoxy Composite,” J. Mech. Eng., 58(3), pp. 175–182. [CrossRef]
Mao, H., and Mahadevan, S., 2002, “Fatigue Damage Modelling of Composite Materials,” Compos. Struct., 58(4), pp. 405–410. [CrossRef]
Kumar, R., and Talreja, R., 2000, “Fatigue Damage Evolution in Woven Fabric Composites,” Collection of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Vol. 1, Pts. 1–3, pp. 1841–1849. [CrossRef]
Toubal, L., Karama, M., and Lorrain, B., 2006, “Damage Evolution and Infrared Thermography in Woven Composite Laminates Under Fatigue Loading,” Int. J. Fatigue, 28(12), pp. 1867–1872. [CrossRef]
Montesano, J., Selezneva, M., Fawaz, Z., Poon, C., and Behdinan, K., 2012, “Elevated Temperature Off-Axis Fatigue Behavior of an Eight-Harness Satin Woven Carbon-Fiber/Bismaleimide Laminate,” Composites, Part A, 43(9), pp. 1454–1466. [CrossRef]
Slaughter, W., and Fleck, N., 1993, “Compressive Fatigue of Fibre Composites,” J. Mech. Phys. Solids, 41(8), pp. 1265–1284. [CrossRef]
Dadkhah, M., Cox, B., and Morris, W., 1995, “Compression-Compression Fatigue of 3D Woven Composites,” Acta Metall., 43(12), pp. 4235–4245. [CrossRef]
Chen, H., Shivakumar, K., and Abali, F., 2006, “A Comparison of Total Fatigue Life Models for Composite Laminates,” Fatigue Fract. Eng. Mater. Struct., 29(1), pp. 31–39. [CrossRef]
Shivakumar, K., Chen, H., Abali, F., Le, D., and Davis, C., 2006, “A Total Fatigue Life Model for Mode I Delaminated Composite Laminates,” Int. J. Fatigue, 28(1), pp. 33–42. [CrossRef]
Bak, B. L. V., Sarrado, C., Turon, A., and Costa, J., 2014, “Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods,” ASME Appl. Mech. Rev., 66(6), p. 060803. [CrossRef]
Post, N., Bausano, J., Case, S., and Lesko, J., 2006, “Modeling the Remaining Strength of Structural Composite Materials Subjected to Fatigue,” Int. J. Fatigue, 28(10), pp. 1100–1108. [CrossRef]
Post, N. L., Cain, J., McDonald, K. J., Case, S. W., and Lesko, J. J., 2008, “Residual Strength Prediction of Composite Materials: Random Spectrum Loading,” Eng. Fract. Mech., 75(9), pp. 2707–2724. [CrossRef]
Reifsnider, K. L., and Case, S. W., 2002, Damage Tolerance and Durability of Material Systems, Wiley Interscience, Hoboken, NJ.
Khan, Z., Al-Sulaiman, F. A., Farooqi, J. K., and Younas, M., 2001, “Fatigue Life Predictions in Woven Carbon Fabric/Polyester Composites Based on Modulus Degradation,” J. Reinf. Plast. Compos., 20(5), pp. 377–398. [CrossRef]
Van Paepegem, W., and Degrieck, J., 2005, “Simulating Damage and Permanent Strain in Composites Under In-Plane Fatigue Loading,” Comput. Struct., 83(23–24), pp. 1930–1942. [CrossRef]
Hochard, C., Payan, J., and Bordreuil, C., 2006, “A Progressive First Ply Failure Model for Woven Ply CFRP Laminates Under Static and Fatigue Loads,” Int. J. Fatigue, 28(10), pp. 1270–1276. [CrossRef]
Wen, C., and Yazdani, S., 2008, “Anisotropic Damage Model for Woven Fabric Composites During Tension-Tension Fatigue,” Compos. Struct., 82(1), pp. 127–131. [CrossRef]
Hansen, U., 1999, “Damage Development in Woven Fabric Composites During Tension-Tension Fatigue,” J. Compos. Mater., 33(7), pp. 614–639. [CrossRef]
Tate, J. S., and Kelkar, A. D., 2008, “Stiffness Degradation Model for Biaxial Braided Composites Under Fatigue Loading,” Composites, Part B, 39(3), pp. 548–555. [CrossRef]
Van Paepegem, W., and Degrieck, J., 2002, “A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fibre-Reinforced Composites,” Int. J. Fatigue, 24(7), pp. 747–762. [CrossRef]
Van Paepegem, W., and Degrieck, J., 2003, “Modelling Damage and Permanent Strain in Fibre-Reinforced Composites Under In-Plane Fatigue Loading,” Compos. Sci. Technol., 63(5), pp. 677–694. [CrossRef]
Van Paepegem, W., and Degrieck, J., 2004, “Simulating In-Plane Fatigue Damage in Woven Glass Fibre-Reinforced Composites Subject to Fully Reversed Cyclic Loading,” Fatigue Fract. Eng. Mater. Struct., 27(12), pp. 1197–1208. [CrossRef]
Hochard, C., and Thollon, Y., 2010, “A Generalized Damage Model for Woven Ply Laminates Under Static and Fatigue Loading Conditions,” Int. J. Fatigue, 32(1), pp. 158–165. [CrossRef]
Hochard, C., Miot, S., and Thollon, Y., 2014, “Fatigue of Laminated Composite Structures With Stress Concentrations,” Composites, Part B, 65, pp. 11–16. [CrossRef]
Bordreuil, C., and Hochard, C., 2004, “Finite Element Computation of Woven Ply Laminated Composite Structures up to Rupture,” Appl. Compos. Mater., 11(3), pp. 127–143. [CrossRef]
Thollon, Y., and Hochard, C., 2009, “A General Damage Model for Woven Fabric Composite Laminates up to First Failure,” Mech. Mater., 41(7), pp. 820–827. [CrossRef]
Benamira, M., Hochard, C., and Haiahem, A., 2011, “Behaviour to Failure of Fibre Mat Reinforced Composite Under Combined Loading Conditions,” Composites, Part B, 42(6), pp. 1412–1419. [CrossRef]
Payan, J., and Hochard, C., 2002, “Damage Modelling of Laminated Carbon/Epoxy Composites Under Static and Fatigue Loadings,” Int. J. Fatigue, 24(2), pp. 299–306. [CrossRef]
Ladeveze, P., and LeDantec, E., 1992, “Damage Modelling of the Elementary Ply for Laminated Composites,” Compos. Sci. Technol., 43(3), pp. 257–267. [CrossRef]
Whitney, J., and Nuismer, R., 1974, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8(3), pp. 253–265. [CrossRef]
Huang, Z.-M., 2002, “Fatigue Life Prediction of a Woven Fabric Composite Subjected to Biaxial Cyclic Loads,” Composites, Part A, 33(2), pp. 253–266. [CrossRef]
Huang, Z.-M., 2000, “A Unified Micromechanical Model for the Mechanical Properties of Two Constituent Composite Materials Part I: Elastic Behavior,” J. Thermoplast. Compos. Mater., 13(4), pp. 252–271. [CrossRef]
Huang, Z.-M., 2001, “Micromechanical Prediction of Ultimate Strength of Transversely Isotropic Fibrous Composites,” Int. J. Solids Struct., 38(22), pp. 4147–4172. [CrossRef]
Huang, Z.-M., 2005, “Efficient Approach to the Structure-Property Relationship of Woven and Braided Fabric-Reinforced Composites up to Failure,” J. Reinf. Plast. Compos., 24(12), pp. 1289–1309. [CrossRef]
Huang, Z.-M., 2004, “A Bridging Model Prediction of the Ultimate Strength of Composite Laminates Subjected to Biaxial Loads,” Compos. Sci. Technol., 64(3–4), pp. 395–448. [CrossRef]
Huang, Z.-M., and Liu, L., 2014, “Predicting Strength of Fibrous Laminates Under Triaxial Loads Only Upon Independently Measured Constituent Properties,” Int. J. Mech. Sci., 79, pp. 105–129. [CrossRef]
Gude, M., Hufenbach, W., and Koch, I., 2010, “Damage Evolution of Novel 3D Textile-Reinforced Composites Under Fatigue Loading Conditions,” Compos. Sci. Technol., 70(1), pp. 186–192. [CrossRef]
Cuntze, R., 1997, Neue Bruchkriterien und Festigkeitsnachweise für Unidirektionalen Faserkunststoffverbund Unter Mehrachsiger Beanspruchung: Modellbildung und Experimente; BMBF-Förderkennzeichen 03N8002; Abschlußbericht 1997 (Issue 506 of 5]: [Fortschritt-Berichte VDI), VDI-Verlag, Dusseldorf, Germany.
Montesano, J., Fawaz, Z., Behdinan, K., and Poon, C., 2013, “Fatigue Damage Characterization and Modeling of a Triaxially Braided Polymer Matrix Composite at Elevated Temperatures,” Compos. Struct., 101, pp. 129–137. [CrossRef]
Montesano, J., Bougherara, H., and Fawaz, Z., 2014, “Application of Infrared Thermography for the Characterization of Damage in Braided Carbon Fiber Reinforced Polymer Matrix Composites,” Composites, Part B, 60, pp. 137–143. [CrossRef]
Gagel, A., Fiedler, B., and Schulte, K., 2006, “On Modelling the Mechanical Degradation of Fatigue Loaded Glass-Fibre Non-Crimp Fabric Reinforced Epoxy Laminates,” Compos. Sci. Technol., 66(5), pp. 657–664. [CrossRef]
Xu, J., 2011, “Meso-Scale Finite Element Fatigue Modelling of Textile Composite Materials,” Ph.D. thesis, KU Leuven, Belgium.
Xu, J., Lomov, S. V., Verpoest, I., Daggumati, S., Paepegem, W. V., Degrieck, J., and Olave, M., 2014, “A Progressive Damage Model of Textile Composites on Meso-Scale Using Finite Element Method: Static Damage Analysis,” J. Compos. Mater., 48(25), pp. 3091–3109. [CrossRef]
Zako, M., Uetsuji, Y., and Kurashiki, T., 2003, “Finite Element Analysis of Damaged Woven Fabric Composite Materials,” Compos. Sci. Technol., 63(3–4), pp. 507–516. [CrossRef]
Liu, Y., and Mahadevan, S., 2007, “A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials,” Int. J. Fatigue, 29(2), pp. 347–359. [CrossRef]
Min, J., Xue, D., and Shi, Y., 2014, “Micromechanics Modeling for Fatigue Damage Analysis Designed for Fabric Reinforced Ceramic Matrix Composites,” Compos. Struct., 111, pp. 213–223. [CrossRef]
Naik, A., 1994, “Analysis of Woven and Braided Fabric Reinforced Composites,” Analytical Services & Materials, Inc., VA, Technical Report No. 194930.
Yang, G., Sun, B., and Gu, B., 2014, “Large-Scale Finite Element Analysis of a 3D Angle-Interlock Woven Composite Undergoing Low-Cyclic Three-Point Bending Fatigue,” J. Text. Inst., 105(3), pp. 275–293. [CrossRef]
Wu, L., Zhang, F., Sun, B., and Gu, B., 2014, “Finite Element Analyses on Three-Point Low-Cyclic Bending Fatigue of 3-D Braided Composite Materials at Microstructure Level,” Int. J. Mech. Sci., 84, pp. 41–53. [CrossRef]
Wu, L., Sun, B., and Gu, B., 2015, “Numerical Analyses of Bending Fatigue of Four-Step Three-Dimensional Rectangular-Braided Composite Materials From Unit Cell Approach,” J. Text. Inst., 106(1), pp. 67–79. [CrossRef]
Wu, L., and Gu, B., 2014, “Fatigue Behaviors of Four-Step Three-Dimensional Braided Composite Material: A Meso-Scale Approach Computation,” Text. Res. J., 84(18), pp. 1915–1930. [CrossRef]
Kawai, M., and Itoh, N., 2014, “A Failure-Mode Based Anisomorphic Constant Life Diagram for a Unidirectional Carbon/Epoxy Laminate Under Off-Axis Fatigue Loading at Room Temperature,” J. Compos. Mater., 48(5), pp. 571–592. [CrossRef]
Wu, F., and Yao, W., 2010, “A Fatigue Damage Model of Composite Materials,” Int. J. Fatigue, 32(1), pp. 134–138. [CrossRef]
Hashin, Z., 1981, “Fatigue Failure Criteria for Unidirectional Fiber Composites,” ASME J. Appl. Mech., 48(4), pp. 846–852. [CrossRef]
Shokrieh, M., and Lessard, L., 1997, “Multiaxial Fatigue Behaviour of Unidirectional Plies Based on Uniaxial Fatigue Experiments-I. Modelling,” Int. J. Fatigue, 19(3), pp. 201–207. [CrossRef]
Yao, W., and Himmel, N., 2000, “A New Cumulative Fatigue Damage Model for Fibre-Reinforced Plastics,” Compos. Sci. Technol., 60(1), pp. 1–6. [CrossRef]
Philippidis, T., and Passipoularidis, V., 2007, “Residual Strength After Fatigue in Composites: Theory vs. Experiment,” Int. J. Fatigue, 29(12), pp. 2104–2116. [CrossRef]
Reifsnider, K., Case, S., and Duthoit, J., 2000, “The Mechanics of Composite Strength Evolution,” Compos. Sci. Technol., 60(12), pp. 2539–2546. [CrossRef]
Papanikos, P., Tserpes, K. I., and Pantelakis, S., 2003, “Modelling of Fatigue Damage Progression and Life of CFRP Laminates,” Fatigue Fract. Eng. Mater. Struct., 26(1), pp. 37–47. [CrossRef]
Eliopoulos, E. N., and Philippidis, T. P., 2011, “A Progressive Damage Simulation Algorithm for GFRP Composites Under Cyclic Loading. Part I: Material Constitutive Model,” Compos. Sci. Technol., 71(5), pp. 742–749. [CrossRef]
Eliopoulos, E. N., and Philippidis, T. P., 2011, “A Progressive Damage Simulation Algorithm for GFRP Composites Under Cyclic Loading. Part II: FE Implementation and Model Validation,” Compos. Sci. Technol., 71(5), pp. 750–757. [CrossRef]
Lian, W., and Yao, W., 2010, “Fatigue Life Prediction of Composite Laminates by FEA Simulation Method,” Int. J. Fatigue, 32(1), pp. 123–133. [CrossRef]
Varvani-Farahani, A., and Shirazi, A., 2007, “A Fatigue Damage Model for (0/90) FRP Composites Based on Stiffness Degradation of 0 and 90 Composite Plies,” J. Reinf. Plast. Compos., 26(13), pp. 1319–1336. [CrossRef]
Shirazi, A., and Varvani-Farahani, A., 2009, “A Stiffness Degradation Based Fatigue Damage Model for FRP Composites of (0/θ) Laminate Systems,” Appl. Compos. Mater., 17(2), pp. 137–150. [CrossRef]
Daniel, I., and Ishai, O., 2006, Engineering Mechanics of Composite Materials, 2nd ed., Oxford University, New York.
Kassapoglou, C., 2010, Design and Analysis of Composite Structures, Wiley, Chichester, UK. [CrossRef]
Quaresimin, M., and Carraro, P., 2013, “On the Investigation of the Biaxial Fatigue Behaviour of Unidirectional Composites,” Composites, Part B, 54, pp. 200–208. [CrossRef]
Quaresimin, M., and Carraro, P., 2014, “Damage Initiation and Evolution in Glass/Epoxy Tubes Subjected to Combined Tension-Torsion Fatigue Loading,” Int. J. Fatigue, 63, pp. 25–35. [CrossRef]
Quaresimin, M., Carraro, P., Mikkelsen, L., Lucato, N., Vivian, L., Brondsted, P., Sorensen, B., Varna, J., and Talreja, R., 2014, “Damage Evolution Under Cyclic Multiaxial Stress State: A Comparative Analysis Between Glass/Epoxy Laminates and Tubes,” Composites, Part B, 61, pp. 282–290. [CrossRef]
Carraro, P., and Quaresimin, M., 2014, “Modelling Fibre-Matrix Debonding Under Biaxial Loading,” Composites, Part A, 61, pp. 33–42. [CrossRef]
Ernst, G., Vogler, M., Hühne, C., and Rolfes, R., 2010, “Multiscale Progressive Failure Analysis of Textile Composites,” Compos. Sci. Technol., 70(1), pp. 61–72. [CrossRef]
Zhou, Y., Lu, Z., and Yang, Z., 2013, “Progressive Damage Analysis and Strength Prediction of 2D Plain Weave Composites,” Composites, Part B, 47, pp. 220–229. [CrossRef]
Lu, Z., Zhou, Y., Yang, Z., and Liu, Q., 2013, “Multi-Scale Finite Element Analysis of 2.5D Woven Fabric Composites Under On-Axis and Off-Axis Tension,” Comput. Mater. Sci., 79, pp. 485–494. [CrossRef]
Šmilauer, V., Hoover, C. G., Bažant, Z. P., Caner, F. C., Waas, A. M., and Shahwan, K. W., 2011, “Multiscale Simulation of Fracture of Braided Composites Via Repetitive Unit Cells,” Eng. Fract. Mech., 78(6), pp. 901–918. [CrossRef]
Rolfes, R., Vogler, M., Czichon, S., and Ernst, G., 2011, “Exploiting the Structural Reserve of Textile Composite Structures by Progressive Failure Analysis Using a New Orthotropic Failure Criterion,” Comput. Struct., 89(11–12), pp. 1214–1223. [CrossRef]
Shokrieh, M. M., and Lessard, L. B., 2000, “Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling,” J. Compos. Mater., 34(13), pp. 1056–1080. [CrossRef]
Shokrieh, M. M., and Lessard, L. B., 2000, “Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification,” J. Compos. Mater., 34(13), pp. 1081–1116. [CrossRef]
Kennedy, C. R., Brádaigh, C. M. O., and Leen, S. B., 2013, “A Multiaxial Fatigue Damage Model for Fibre Reinforced Polymer Composites,” Compos. Struct., 106, pp. 201–210. [CrossRef]
Passipoularidis, V., Philippidis, T., and Brondsted, P., 2011, “Fatigue Life Prediction in Composites Using Progressive Damage Modelling Under Block and Spectrum Loading,” Int. J. Fatigue, 33(2), pp. 132–144. [CrossRef]
Qian, C., Westphal, T., Kassapoglou, C., and Nijssen, R., 2013, “Development of a Multi-Fibre Unit Cell for Use in Modelling of Fatigue of Unidirectional Composites,” Compos. Struct., 99, pp. 288–295. [CrossRef]
Qian, C., Westphal, T., and Nijssen, R., 2013, “Micro-Mechanical Fatigue Modelling of Unidirectional Glass Fibre Reinforced Polymer Composites,” Comput. Mater. Sci., 69, pp. 62–72. [CrossRef]
Violeau, D., Ladevèze, P., and Lubineau, G., 2009, “Micromodel-Based Simulations for Laminated Composites,” Compos. Sci. Technol., 69(9), pp. 1364–1371. [CrossRef]
Singh, C. V., and Talreja, R., 2009, “A Synergistic Damage Mechanics Approach for Composite Laminates With Matrix Cracks in Multiple Orientations,” Mech. Mater., 41(8), pp. 954–968. [CrossRef]
Varna, J., and Talreja, R., 2012, “Integration of Macro-and Microdamage Mechanics for the Performance Evaluation of Composite Materials,” Mech. Compos. Mater., 48(2), pp. 145–160. [CrossRef]
Singh, C. V., and Talreja, R., 2013, “A Synergistic Damage Mechanics Approach to Mechanical Response of Composite Laminates With Ply Cracks,” J. Compos. Mater., 47(20–21), pp. 2475–2501. [CrossRef]
Singh, C. V., and Talreja, R., 2010, “Evolution of Ply Cracks in Multidirectional Composite Laminates,” Int. J. Solids Struct., 47(10), pp. 1338–1349. [CrossRef]
Puck, A., and Schürmann, H., 1998, “Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models,” Compos. Sci. Technol., 58(7), pp. 1045–1067. [CrossRef]
Hallal, A., Younes, R., and Fardoun, F., 2013, “Review and Comparative Study of Analytical Modeling for the Elastic Properties of Textile Composites,” Composites, Part B, 50, pp. 22–31. [CrossRef]
Kregers, A. F., and Melbardis, Y., 1978, “Determination of the Deformability of Three-Dimensionally Reinforced Composites by the Stiffness Averaging Method,” Polym. Mech., 14(1), pp. 1–5. [CrossRef]
Whitney, T. J., and Chou, T.-W., 1989, “Modeling of 3-D Angle-Interlock Textile Structural Composites,” J. Compos. Mater., 23(9), pp. 890–911. [CrossRef]
Ladevèze, P., and Dureisseix, D., 1999, “Une Nouvelle Stratégie de Calcul Micro/Macro en Mécanique des Structures,” C. R. Acad. Sci., 327(12), pp. 1237–1244. [CrossRef]
Xia, Z., Chen, Y., and Ellyin, F., 2000, “A Meso/Micro-Mechanical Model for Damage Progression in Glass-Fiber/Epoxy Cross-Ply Laminates by Finite-Element Analysis,” Compos. Sci. Technol., 60(8), pp. 1171–1179. [CrossRef]
Ladeveze, P., 2005, “A Bridge Between the Micro-and Mesomechanics of Laminates: Fantasy or Reality?,” Mechanics of the 21st Century, pp. 187–201. [CrossRef]
Talreja, R., 2008, “Damage and Fatigue in Composites—A Personal Account,” Compos. Sci. Technol., 68(13), pp. 2585–2591. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Microscopic investigation of the polished edges of a carbon-polyphenylene sulfide (PPS) satin weave. (a) Weft yarn damage; (b) broken axial fibers and meta-delamination; and (c) crack conjunction. (Reprinted with permission from Daggumati et al. [12]. Copyright 2013 by Elsevier).

Grahic Jump Location
Fig. 2

Microscopic investigation of the polished edges of a carbon-PPS satin weave. (a) Interply delamination and (b) broken axial fibers and meta-delamination. (Reprinted with permission from Daggumati et al. [12]. Copyright 2013 by Elsevier).

Grahic Jump Location
Fig. 3

Schematics of failure events in angle interlock specimens under monotonic compression. (Reprinted with permission from Cox et al. [13]. Copyright 1992 by Elsevier).

Grahic Jump Location
Fig. 4

The formation of kink bands where a filler has been driven against a stuffer by a constraining warp weaver. (Reprinted with permission from Cox et al. [13]. Copyright 1992 by Elsevier).

Grahic Jump Location
Fig. 5

Example of a constant life diagram. (Reprinted with permission from Kawai et al. [15]. Copyright 2012 by Elsevier).

Grahic Jump Location
Fig. 6

Non-local failure criterion based on a FCV. (Reprinted with permission from Hochard et al. [55]. Copyright 2014 by Elsevier).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In