0
Review Article

Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review

[+] Author and Article Information
C. Willberg

Structural Mechanics Department,
Institute of Composite Structures and
Adaptive Systems,
German Aerospace Center (DLR),
Braunschweig 38108, Germany
e-mail: christian.willberg@dlr.de

S. Duczek

Institute for Mechanics,
Otto-von-Guericke-University of Magdeburg,
Magdeburg 39106, Germany
e-mail: sascha.duczek@ovgu.de

J. M. Vivar-Perez

Structural Mechanics Department,
Institute of Composite Structures and
Adaptive Systems,
Transfer Center MRO and Cabin Upgrade,
German Aerospace Center (DLR),
Hamburg 22335, Germany
e-mail: juan.vivarperez@dlr.de

Z. A. B. Ahmad

Faculty of Mechanical Engineering,
Universiti Teknologi Malaysia,
Skudai 81310, Malaysia
e-mail: zair@mail.fkm.utm.my

Manuscript received March 7, 2014; final manuscript received December 27, 2014; published online February 4, 2015. Assoc. Editor: Chin An Tan.

Appl. Mech. Rev 67(1), 010803 (Jan 01, 2015) (20 pages) Paper No: AMR-14-1030; doi: 10.1115/1.4029539 History: Received March 07, 2014; Revised December 27, 2014; Online February 04, 2015

This paper reviews the state-of-the-art in numerical wave propagation analysis. The main focus in that regard is on guided wave-based structural health monitoring (SHM) applications. A brief introduction to SHM and SHM-related problems is given, and various numerical methods are then discussed and assessed with respect to their capability of simulating guided wave propagation phenomena. A detailed evaluation of the following methods is compiled: (i) analytical methods, (ii) semi-analytical methods, (iii) the local interaction simulation approach (LISA), (iv) finite element methods (FEMs), and (v) miscellaneous methods such as mass–spring lattice models (MSLMs), boundary element methods (BEMs), and fictitious domain methods. In the framework of the FEM, both time and frequency domain approaches are covered, and the advantages of using high order shape functions are also examined.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Boller, C., Chang, F.-K., and Fijino, Y., 2009, Encyclopedia of Structural Health Monitoring, Wiley, Hoboken, NJ. [CrossRef]
Boller, C., Staszewski, W., and Tomlinson, G., 2004, Health Monitoring of Aerospace Structures, Wiley, Hoboken, NJ.
Willberg, C., 2013, “Development of a New Isogeometric Finite Element and Its Application for Lamb Wave Based Structural Health,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
Viktorov, I. A., 1967, Rayleigh and Lamb Waves, Plenum Press, New York. [CrossRef]
Lamb, H., 1917, “On Waves in an Elastic Plate,” R. Soc. London Proc. Ser. A, 93(648), pp. 114–128. [CrossRef]
Love, A. E., 1911, Some Problems of Geodynamics, Cambridge University Press, Cambridge, UK.
Ahmad, Z. A. B., 2011, “Numerical Simulations of Lamb Waves in Plates Using a Semi-Analytical Finite Element Method,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
Houmat, A., 2001, “A Sector Fourier p-Element Applied to Free Vibration Analysis of Sectorial Plates,” J. Sound Vib., 243(2), pp. 269–282. [CrossRef]
Ahmad, Z., and Gabbert, U., 2012, “Simulation of Lamb Wave Reflections at Plate Edges Using the Semi-Analytical Finite Element Method,” Ultrasonics, 52(7), pp. 815–820. [CrossRef] [PubMed]
Cho, Y., 2000, “Estimation of Ultrasonic Guided Wave Mode Conversion in a Plate With Thickness Variation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47(3), pp. 591–603. [CrossRef] [PubMed]
Giurgiutiu, V., 2008, Structural Health Monitoring With Piezoelectric Wafer Active Sensors, Academic Press (Elsevier), Waltham, MA.
Mindlin, R. D., 1960, “Waves and Vibrations in Isotropic Elastic Plates,” Structural Mechanics, J. N.Goodier and N. J.Hoff, eds., Pergamon Press, New York.
Gazis, D. C., 1958, “Exact Analysis of the Plane-Strain Vibrations of Thick-Walled Hollow Cylinders,” J. Acoust. Soc. Am., 30(8), pp. 786–794. [CrossRef]
Vivar-Perez, J. M., 2012, “Analytical and Spectral Methods for the Simulation of Elastic Waves in Thin Plates,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
Wang, L., and Yuan, F., 2007, “Group Velocity and Characteristic Wave Curves of Lamb Waves in Composites: Modeling and Experiments,” Compos. Sci. Technol., 67(7–8), pp. 1370–1384. [CrossRef]
Hu, N., Shimomukai, T., Fukunaga, H., and Su, Z., 2008, “Damage Identification of Metallic Structures Using A0 Mode of Lamb Waves,” Struct. Health Monit., 7(3), pp. 271–285. [CrossRef]
Lee, B. C., and Staszewski, W. J., 2003, “Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part I. Wave Propagation,” Smart Mater. Struct., 12(5), pp. 804–814. [CrossRef]
Lee, B. C., and Staszewski, W. J., 2003, “Modelling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions With Damages,” Smart Mater. Struct., 12(5), pp. 815–824. [CrossRef]
Lee, B. C., and Staszewski, W. J., 2007, “Lamb Wave Propagation Modelling for Damage Detection: II. Damage Monitoring Strategy,” Smart Mater. Struct., 16(2), pp. 260–274. [CrossRef]
Moll, J., Schulte, R. T., Hartmann, B., Fritzen, C.-P., and Nelles, O., 2010, “Multi-Site Damage Localization in Anisotropic Plate-Like Structures Using an Active Guided Wave Structural Health Monitoring System,” Smart Mater. Struct., 19, p. 045022. [CrossRef]
Tian, J., Gabbert, U., Berger, H., and Su, X., 2004, “Lamb Wave Interaction With Delaminations in CFRP Laminates,” Comput. Mater. Continua, 1(4), pp. 327–336. [CrossRef]
Yang, C., Ye, L., Su, Z., and Bannister, M., 2006, “Some Aspects of Numerical Simulation for Lamb Wave Propagation in Composite Laminates,” Compos. Struct., 75(1–4), pp. 267–275. [CrossRef]
Duflo, H., Morvan, B., and Izbicki, J.-L., 2007, “Interaction of Lamb Waves on Bonded Composite Plates With Defects,” Compos. Struct., 79(2), pp. 229–233. [CrossRef]
Shelke, A., Kundu, T., Amjad, U., Hahn, K., and Grill, W., 2011, “Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58(10), pp. 567–577. [CrossRef] [PubMed]
Ramadas, C., Balasubramaniam, K., Hood, A., Joshi, M., and Krishnamurthy, C., 2011, “Modelling of Attenuation of Lamb Waves Using Rayleigh Damping: Numerical and Experimental Studies,” Compos. Struct., 93(8), pp. 2020–2025. [CrossRef]
von Ende, S., Lion, A., and Lammering, R., 2011, “On the Thermodynamically Consistent Fractional Wave Equation for Viscoelastic Solids,” Acta Mechanica, 221(1–2), pp. 1–10. [CrossRef]
Weber, R., Hosseini, S. M. H., and Gabbert, U., 2012, “Numerical Simulation of the Guided Lamb Wave Propagation in Particle Reinforced Composites,” Compos. Struct., 94(10), pp. 3064–3071. [CrossRef]
Hosseini, S. M. H., Kharaghani, A., Kirsch, C., and Gabbert, U., 2013, “Numerical Simulation of Lamb Wave Propagation in Metallic Foam Sandwich Structures: A Parametric Study,” Compos. Struct., 97, pp. 387–400. [CrossRef]
Hosseini, S. M. H., and Gabbert, U., 2013, “Numerical Simulation of the Lamb Wave Propagation in Honeycomb Sandwich Panels: A Parametric Study,” Compos. Struct., 97, pp. 189–201. [CrossRef]
Crane, L. J., Gilchrist, M. D., and Miller, J. J. H., 1997, “Analysis of Rayleigh–Lamb Wave Scattering by a Crack in an Elastic Plate,” Comput. Mech., 19(6), pp. 533–537. [CrossRef]
Hennings, B., Neumann, M., and Lammering, R., 2013, “Continuous Mode Conversion of Lamb Waves in Carbon Fiber Composite Plastics—Occurrence and Modelling,” The 9th International Workshop in Structural Health Monitoring (IWSHM), Standford, CA.
Willberg, C., Koch, S., Mook, G., Gabbert, U., and Pohl, J., 2012, “Continuous Mode Conversion of Lamb Waves in CFRP Plates,” Smart Mater. Struct., 21(7), p. 075022. [CrossRef]
Konstantinidis, G., Drinkwater, B. W., and Wilcox, P. D., 2006, “The Temperature Stability of Guided Wave Structural Health Monitoring Systems,” Smart Mater. Struct., 15(4), pp. 967–976. [CrossRef]
Lee, B. C., Manson, G., and Staszewski, W., 2003, “Environmental Effects on Lamb Wave Responses From Piezoceramic Sensors,” Mater. Sci. Forum, 440–441, pp. 195–202. [CrossRef]
Sohn, H., 2007, “Effects of Environmental and Operational Variability on Structural Health Monitoring,” Philos. Trans. R. Soc. A, 365, pp. 539–560. [CrossRef]
Croxford, A. J., Moll, J., Wilcox, P. D., and Michaels, J. E., 2010, “Efficient Temperature Compensation Strategies for Guided Wave Structural Health Monitoring,” Ultrasonics, 50(4), pp. 517–528. [CrossRef] [PubMed]
Dodson, J. C., and Inman, D. J., 2013, “Thermal Sensitivity of Lamb Waves for Structural Health Monitoring Applications,” Ultrasonics, 53(3), pp. 677–685. [CrossRef] [PubMed]
Lu, Y., and Michaels, J. E., 2005, “A Methodology for Structural Health Monitoring With Diffuse Ultrasonic Waves in the Presence of Temperature Variations,” Ultrasonics, 43(9), pp. 717–731. [CrossRef] [PubMed]
Clarke, T., 2009, “Guided Wave Health Monitoring of Complex Structures,” Ph.D. thesis, Imperial College London, London, UK.
Moll, J., and Fritzen, C.-P., 2012, “Guided Waves for Autonomous Online Identification of Structural Defects Under Ambient Temperature Variations,” J. Sound Vib., 331(20), pp. 4587–4597. [CrossRef]
Schubert, L., 2011, “Zustandsüberwachung an luftfahrttechnischen Faserverbundwerkstoffen durch Impakterkennung mittels geführter Wellen,” Ph.D. thesis, Technical University Dresden, Dresden, Germany.
Andrews, J. P., Palazotto, A. N., DeSimio, M. P., and Olson, S. E., 2008, “Lamb Wave Propagation in Varying Isothermal Environments,” Struct. Health Monit., 7(3), pp. 265–270. [CrossRef]
Mallet, L., Lee, B. C., Staszewski, W. J., and Scarpa, F., 2004, “Structural Health Monitoring Using Scanning Laser Vibrometry: II. Lamb Waves for Damage Detection,” Smart Mater. Struct., 13(2), pp. 261–269. [CrossRef]
Staszewski, W. J., Lee, B. C., Mallet, L., and Scarpa, F., 2004, “Structural Health Monitoring Using Scanning Laser Vibrometry: I. Lamb Wave Sensing,” Smart Mater. Struct., 13(2), pp. 251–260. [CrossRef]
Miller, T. H., Kundu, T., Huang, J., and Grill, J. Y., 2012, “A New Guided Wave-Based Technique for Corrosion Monitoring in Reinforced Concrete,” Struct. Health Monit., 12(1), pp. 35–47. [CrossRef]
Pruell, C., Kim, J.-Y., Qu, J., and Jacobs, L. J., 2007, “Evaluation of Plasticity Driven Material Damage Using Lamb Waves,” Appl. Phys. Lett., 91(23), p. 231911. [CrossRef]
Pruell, C., Kim, J.-Y., Qu, J., and Jacobs, L. J., 2009, “Evaluation of Fatigue Damage Using Nonlinear Guided Waves,” Smart Mater. Struct., 18(3), p. 035003. [CrossRef]
Monnier, T., 2006, “Lamb Waves-Based Impact Damage Monitoring of a Stiffened Aircraft Panel Using Piezoelectric Transducers,” J. Intell. Mater. Syst. Struct., 17(5), pp. 411–421. [CrossRef]
Ramadas, C., Balasubramaniam, K., Joshi, M., and Krishnamurthy, C. V., 2009, “Interaction of the Primary Anti-Symmetric Lamb Mode (A0) With Delaminations: Numerical and Experimental Studies,” Smart Mater. Struct., 18, p. 085011. [CrossRef]
Tan, K. S., Guo, N., Wong, B. S., and Tui, C. G., 1995, “Experimental Evaluation of Delaminations in Composite Plates by the Use of Lamb Waves,” Compos. Sci. Technol., 53(1), pp. 77–84. [CrossRef]
Toyama, N., and Tkatsubo, J., 2004, “Lamb Wave Method for Quick Inspection of Impact-Induced Delaminations in Composite Laminates,” Compos. Sci. Technol., 64(9), pp. 1293–1300. [CrossRef]
Liu, Y., Ning, H., Alamusi, Watanabe, T., Koshin, Y., Cao, Y., and Fukunaga, H., 2011, “Relative Reflection Intensity of Lamb Waves From Elliptically-Shaped Damages in Metallic Plates,” Smart Mater. Struct., 20(7), p. 075050 [CrossRef].
Senesi, M., and Ruzzene, M., 2011, “A Frequency Selective Acoustic Transducer for Directional Lamb Wave Sensing,” J. Acoust. Soc. Am., 130(4), pp. 1899–1907. [CrossRef] [PubMed]
Ostachowicz, W. M., Wandowski, T., and Malinowski, P., 2008, “Elastic Wave Phased Array for Damage Localisation,” J. Theor. Appl. Mech., 46(4), pp. 917–931.
Moulin, E., Assaad, J., and Delebarre, C., 1997, “Piezoelectric Transducer Embedded in a Composite Plate: Application to Lamb Wave Generation,” J. Appl. Phys., 82(5), pp. 2049–2055. [CrossRef]
Calomfirescu, M., 2008, “Lamb Waves for Structural Health Monitoring in Viscoelastic Composite Materials,” Ph.D. thesis, University of Bremen, Bremen, Germany.
Qinga, X. P., Chana, H.-L., Bearda, S. J., Ooib, T. K., and Marottab, S. A., 2006, “Effect of Adhesive on the Performance of Piezoelectric Elements Used to Monitor Structural Health,” Int. J. Adhes. Adhes., 26(8), pp. 622–628. [CrossRef]
Rabinovitch, O., and Vinson, J. R., 2002, “Adhesive Layer Effects in Surface Mounted Piezoelectric Actuators,” J. Intell. Mater. Syst. Struct., 13(11), pp. 689–704. [CrossRef]
Sirohi, J., and Chopra, I., 2000, “Fundamental Understanding of Piezoelectric Strain Sensors,” J. Intell. Mater. Syst. Struct., 11(4), pp. 246–257. [CrossRef]
Ha, S., 2010, “Adhesive Interface Layer Effects in PZT-Induced Lamb Wave Propagation,” Smart Mater. Struct., 19(2), p. 025006. [CrossRef]
Pohl, J., Willberg, C., Gabbert, U., and Mook, G., 2012, “Theoretical Analysis and Experimental Determination of the Dynamic Behaviour of Piezoceramic Actuators for SHM,” Exp. Mech., 52(4), pp. 429–438. [CrossRef]
Lanzara, G., Yoon, Y., Kim, Y., and Chang, F.-K., 2009, “Influence of Interface Degradation on the Performance of Piezoelectric Actuators,” J. Intell. Mater. Syst. Struct., 20(14), pp. 1699–1710. [CrossRef]
Peters, K. J., ed., 2007, “Sensor Systems and Networks: Phenomena, Technology, and Application for NDE and Health Monitoring,” Proc. SPIE, 6530, p. 65300L. [CrossRef]
Peters, K. J., ed., 2007, “Sensor Systems and Networks: Phenomena, Technology, and Application for NDE and Health Monitoring,” Proc. SPIE, 6530, p. 65300J. [CrossRef]
Huang, H., Pamphile, T., and Derriso, M., 2008, “The Effect of Actuator Bending on Lamb Wave Displacement Fields Generated by a Piezoelectric Patch,” Smart Mater. Struct., 17(5), p. 055012. [CrossRef]
Giurgiutiu, V., 2005, “Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring,” J. Intell. Mater. Syst. Struct., 16(4), pp. 291–305. [CrossRef]
Wilcox, P. D., 2003, “A Rapid Signal Processing Technique to Remove the Effect of Dispersion From Guided Wave Signals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50(14), pp. 419–427. [CrossRef] [PubMed]
Michaels, J. E., and Michaels, T. E., 2007, “Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates,” Wave Motion, 44(6), pp. 482–492. [CrossRef]
Ng, C. T., and Veidt, M., 2009, “A Lamb-Wave-Based Technique for Damage Detection in Composite Laminates,” Smart Mater. Struct., 18(7), p. 074006. [CrossRef]
Raghavan, A., and Cesnik, C. E. S., 2007, “Review of Guided-Wave Structural Health Monitoring,” Shock Vib. Digest, 39(2), pp. 91–114. [CrossRef]
Sohn, H., Farrar, C. R., Hemez, F. M., Shunk, D. D., Stinemates, D. W., Nadler, B. R., and Czarnecki, J. J., 2001, “A Review of Structural Health Monitoring Literature: 1996–2001,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report.
Su, Z., and Ye, L., 2009, Identification of Damage Using Lamb Waves: From Fundamentals to Applications, Springer, Berlin, Germany.
Su, Z., Ye, L., and Lu, Y., 2006, “Guided Lamb Waves for Identification of Damage in Composite Structures: A Review,” J. Sound Vib., 295(3–5), pp. 753–780. [CrossRef]
Rayleigh, L., 1885, “Waves Propagated Along the Plane Surface of an Elastic Solid,” Proc. London Math. Soc., 20, pp. 225–234. [CrossRef]
Osborne, M. F. M., and Hart, S. D., 1945, “Transmission, Reflection, and Guiding of an Exponential Pulse by a Steel Plate in Water. I. Theory,” J. Acoust. Soc. Am., 17(1), pp. 1–18. [CrossRef]
Holden, A., 1951, “Longitudinal Modes of Elastic Waves in Isotropic Cylinders and Slabs,” Bell Syst. Tech. J., 30(4), pp. 956–969. [CrossRef]
Mindlin, R. D., 1951, “Thickness-Shear and Flexural Vibrations of Crystal Plates,” J. Appl. Phys., 22(3), pp. 316–323. [CrossRef]
Onoe, M. A., 1955, “A Study of the Branches of the Velocity-Dispersion Equations of Elastica Plates and Rods,” Report Joint Committee on Ultrasonics of the Institute of Electrical Communication Engineers and the Acoustical Society of Japan, Technical Report.
Lyon, R. H., 1955, “Response of an Elastic Plate to Localized Driving Forces,” J. Acoust. Soc. Am., 27(2), pp. 259–265. [CrossRef]
Mindlin, R. D., and Medick, M. A., 1959, “Extensional Vibrations of Elastic Plates,” ASME J. Appl. Mech., 26, pp. 561–569. [CrossRef]
Achenbach, J. D., 1973, “Wave Propagation in Elastic Solids,” North-Holland Series in Applied Mathematics and Mechanics, Vol. 16, H. A.Lauwerier and W. T.Koiter, eds., Springer-Verlag London.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Clarendon Press, Oxford, UK.
Achenbach, J., 1999, “Wave Motion in an Isotropic Elastic Layer Generated by a Time-Harmonic Point Load of Arbitrary Direction,” J. Acoust. Soc. Am., 106(1), pp. 83–90. [CrossRef]
Achenbach, J., 2000, “Quantitative Nondestructive Evaluation,” Int. J. Solids Struct., 37(1), pp. 13–27. [CrossRef]
Achenbach, J., and Xu, Y., 1999, “Use of Elastodynamic Reciprocity to Analyze Point-Load Generated Axisymmetric Waves in a Plate,” Wave Motion, 30(1), pp. 57–67. [CrossRef]
Achenbach, J. D., 1998, “Lamb Waves as Thickness Vibrations Superimposed on a Membrane Carrier Wave,” J. Acoust. Soc. Am., 103(5), pp. 2283–2286. [CrossRef]
Achenbach, J. D., 2003, “Reciprocity in Elastodynamics,” Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, UK. [CrossRef]
Gomilko, A. M., Gorodetskaya, N. S., and Meleshko, V. V., 1991, “Longitudinal Lamb Waves in a Semi-Infinite Elastic Layer,” Int. Appl. Mech., 27(6), pp. 577–581. [CrossRef]
Shia, Y., Wooha, S.-C., and Orwatb, M., 2003, “Laser-Ultrasonic Generation of Lamb Waves in the Reaction Force Range,” Ultrasonics, 41(8), pp. 623–633. [CrossRef] [PubMed]
Raghavan, A., and Cesnik, C. E. S., 2004, “Modeling of Piezoelectric-Based Lamb Wave Generation and Sensing for Structural Health Monitoring,” Proc. SPIE, 5391, pp. 419–430. [CrossRef]
Raghavan, A., and Cesnik, C. E. S., 2005, “Finite-Dimensional Piezoelectric Transducer Modeling for Guided Wave Based Structural Health Monitoring,” Smart Mater. Struct., 14(6), pp. 1448–1461. [CrossRef]
von Ende, S., Schäfer, I., and Lammering, R., 2007, “Lamb Wave Excitation With Piezoelectric Wafers: An Analytical Approach,” Acta Mech., 193(3–4), pp. 141–150. [CrossRef]
von Ende, S., and Lammering, R., 2007, “Investigations on Piezoelectrically Induced Lamb Wave Generation and Propagation,” Smart Mater. Struct., 16(5), pp. 1802–1809. [CrossRef]
von Ende, S., and Lammering, R., 2009, “Modeling and Simulation of Lamb Wave Generation With Piezoelectric Plates,” Mech. Adv. Mater. Struct., 16(3), pp. 188–197. [CrossRef]
Wilcox, P., 2004, “Modeling the Excitation of Lamb and SH Waves by Point and Line Sources,” AIP Conf. Proc., 700, pp. 206–213. [CrossRef]
Jin, J., Quek, S. T., and Wang, Q., 2003, “Analytical Solution of Excitation of Lamb Waves in Plates by Inter-Digital Transducers,” Proc. R. Soc. A, 459(2033), pp. 1117–1134. [CrossRef]
Yang, S., and Yuan, F. G., 2005, “Transient Wave Propagation of Isotropic Plates Using a Higher-Order Plate Theory,” Int. J. Solids Struct., 42(14), pp. 4115–4153. [CrossRef]
Wang, C.-Y., and Achenbach, J. D., 1996, “Lamb's Problem for Solid of General Anisotropy,” Wave Motion, 24(3), pp. 227–242. [CrossRef]
Nayfeh, A. H., 1991, “The General Problem of Elastic Wave Propagation in Multilayered Anisotropic Media,” J. Acoust. Soc. Am., 89(4), pp. 1521–1531. [CrossRef]
Nayfeh, A. H., 1995, “Wave Propagation in Layered Anisotropic Media With Applications to Composites,” North-Holland Series in Applied Mathematics and Mechanics, Vol. 39, J. D.Achenbach, B.Budniansky, H. A.Lauwerier, P. G.Saffman, L. V.Wijngaarden, and J. R.Willis, eds., Elsevier, Amsterdam, The Netherlands.
Lowe, M., 1995, “Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 42(4), pp. 525–542. [CrossRef]
Wang, L., and Rokhlin, S. I., 2001, “Stable Reformulation of Transfer Matrix Method for Wave Propagation in Layered Anisotropic Media,” Ultrasonics, 39(6), pp. 413–424. [CrossRef] [PubMed]
Karmazin, A., Kirillova, E., Seemann, W., and Syromyatnikov, P., 2010, “Modelling of 3D Steady-State Oscillations of Anisotropic Multilayered Structures Applying the Green's Functions,” Adv. Theor. Appl. Mech., 3(9–12), pp. 425–450.
Karmazin, A., Kirillova, E., Seemann, W., and Syromyatnikov, P., 2011, “Investigation of Lamb Elastic Waves in Anisotropic Multilayered Composites Applying the Green's Matrix,” Ultrasonics, 51(1), pp. 17–28. [CrossRef] [PubMed]
Glushkov, E. V., Glushkova, N. V., Seemann, W., and Kvasha, O. V., 2006, “Elastic Wave Excitation in a Layer by Piezoceramic Patch Actuators,” Acoust. Phys., 52(4), pp. 398–407. [CrossRef]
Glushkov, Y., Glushkova, N., and Krivonos, A., 2010, “The Excitation and Propagation of Elastic Waves in Multilayered Anisotropic Composites,” J. Appl. Math. Mech., 74(3), pp. 297–305. [CrossRef]
Velichko, A., and Wilcox, P. D., 2007, “Modeling the Excitation of Guided Waves in Generally Anisotropic Multilayered Media,” J. Acoust. Soc. Am., 121(2), pp. 60–69. [CrossRef]
Chapuis, B., Terrien, N., and Royer, D., 2010, “Excitation and Focusing of Lamb Waves in a Multilayered Anisotropic Plate,” J. Acoust. Soc. Am., 127(1), pp. 198–203. [CrossRef] [PubMed]
Demma, A., Cawley, P., Lowe, M., and Pavlakovic, B., 2005, “The Effect of Bends on the Propagation of Guided Waves in Pipes,” ASME J. Pressure Vessel Technol., 127(3), pp. 328–335. [CrossRef]
Gridin, D., and Craster, R. V., 2004, “Lamb Quasi-Modes in Curved Plates,” Proc. R. Soc. A, 460(2046), pp. 1831–1847. [CrossRef]
Ratassepp, M., and Klauson, A., 2006, “Curvature Effects on Wave Propagation in an Infinite Pipe,” Ultragarsas, 2(59), pp. 19–25.
Towfighi, S., Kundu, T., and Ehsani, M., 2002, “Elastic Wave Propagation in Circumferential Direction in Anisotropic Cylindrical Curved Plates,” ASME J. Appl. Mech., 69, pp. 283–291. [CrossRef]
Harris, J. G., 2002, “Rayleigh Wave Propagation in Curved Waveguides,” Wave Motion, 36(4), pp. 425–441. [CrossRef]
Lowe, M., Cawley, P., and Pavlakovic, B., 2004, “A General Purpose Computer Model for Calculating Elastic Waveguide Properties, With Application to Non-Destructive Testing,” R.Goldstein and G.Maugin, eds., Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, Kluwer Academic Publishers, Norwell, MA, pp. 241–256. [CrossRef]
Barshinger, J. N., and Rose, J. L., 2004, “Guided Wave Propagation in an Elastic Hollow Cylinder Coated With a Viscoelastic Material,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51(11), pp. 1547–1556. [CrossRef] [PubMed]
Vivar Perez, J. M., Duczek, S., and Gabbert, U., 2014, “Analytical and Higher Order Finite Element Hybrid Approaches for an Efficient Simulation of Ultrasonic Guided Waves. I: 2D-Analysis,” Smart Struct. Syst., 13(4), pp. 587–614. [CrossRef]
Thomson, W. T., 1950, “Transmission of Elastic Waves Through a Stratified Solid Medium,” J. Appl. Phys., 21(2), pp. 89–93. [CrossRef]
Dunkin, J. W., 1965, “Computation of Modal Solutions in Layered, Elastic Media at High Frequencies,” Bull. Seismol. Soc. Am., 55(2), pp. 335–358.
Knopoff, L., 1964, “A Matrix Method for Elastic Wave Problems,” Bull. Seismol. Soc. Am., 54(1), pp. 431–438.
Bai, H., Zhu, J., Shah, A., and Popplewell, N., 2004, “Three-Dimensional Steady State Green Function for a Layered Isotropic Plate,” J. Sound Vib., 269(1–2), pp. 251–271. [CrossRef]
Kundu, T., and Mal, A., 1985, “Elastic Waves in a Multilayered Solid due to a Dislocation Source,” Wave Motion, 7(5), pp. 459–471. [CrossRef]
Chen, Z., and Dravinski, M., 2007, “Numerical Evaluation of Harmonic Green's Functions for Triclinic Half-Space With Embedded Sources—Part I: A 2D Model,” Int. J. Numer. Methods Eng., 69(2), pp. 347–366. [CrossRef]
Chen, Z., and Dravinski, M., 2007, “Numerical Evaluation of Harmonic Green's Functions for Triclinic Half-Space With Embedded Sources—Part II: A 3D Model,” Int. J. Numer. Methods Eng., 69(2), pp. 367–389. [CrossRef]
Liu, G., and Xi, Z., 2002, Elastic Waves in Anisotropic Laminates, CRC Press, Boca Raton, FL.
Sauter, T., 2000, “Integration of Highly Oscillatory Functions,” Comput. Phys. Commun., 125(1–3), pp. 119–126. [CrossRef]
Xu, P.-C., and Mal, A. K., 1985, “An Adaptive Integration Scheme for Irregularly Oscillatory Functions,” Wave Motion, 7(3), pp. 235–243. [CrossRef]
Banerjee, S., Prosser, W., and Mal, A., 2005, “Calculation of the Response of a Composite Plate to Localized Dynamic Surface Loads Using a New Wave Number Integral Method,” ASME J. Appl. Mech., 72(1), pp. 18–24. [CrossRef]
Green, E. R., 1991, “Transient Impact Response of a Fiber Composite Laminate,” Acta Mech., 86(1–4), pp. 153–185. [CrossRef]
Gopalakrishnan, S., Chakraborty, A., and Mahapatra, D. R., 2008, Spectral Finite Element Method, Springer, New York.
Zhu, J., and Shah, A., 1997, “A Hybrid Method for Transient Wave Scattering by Flaws in Composite Plates,” Int. J. Solids Struct., 34(14), pp. 1719–1734. [CrossRef]
Gavric, L., 1995, “Computation of Propagative Waves in Free Rail Using a Finite Element Technique,” J. Sound Vib., 185(3), pp. 531–543. [CrossRef]
Hayashi, T., Kawashima, K., Sun, Z., and Rose, J. L., 2003, “Analysis of Flexural Mode Focusing by a Semianalytical Finite Element Method,” J. Acoust. Soc. Am., 113(3), pp. 1241–1248. [CrossRef] [PubMed]
Loveday, P., 2007, “Analysis of Piezoelectric Ultrasonic Transducers Attached to Waveguides Using Waveguide Finite Elements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54(10), pp. 2045–2051. [CrossRef] [PubMed]
Marzani, A., Viola, E., Bartoli, I., di Scalea, F., and Rizzo, P., 2008, “A Semi-Analytical Finite Element Formulation for Modeling Stress Wave Propagation in Axisymmetric Damped Waveguides,” J. Sound Vib., 318(3), pp. 488–505. [CrossRef]
Treysséde, F., 2008, “Elastic Waves in Helical Waveguides,” Wave Motion, 45(4), pp. 457–470. [CrossRef]
Bartoli, I., Marzani, A., di Scalea, F., and Viola, E., 2006, “Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section,” J. Sound Vib., 295(3–5), pp. 685–707. [CrossRef]
Damljanovic, V., and Weaver, R., 2004, “Forced Response of a Cylindrical Waveguide With Simulation of the Wavenumber Extraction Problem,” J. Acoust. Soc. Am., 115(4), pp. 1582–1591. [CrossRef]
Hayashi, T., Song, W., and Rose, J., 2003, “Guided Wave Dispersion Curves for a Bar With an Arbitrary Cross-Section, a Rod and Rail Example,” Ultrasonics, 41(3), pp. 175–183. [CrossRef] [PubMed]
Loveday, P., and Long, C., 2007, “Time Domain Simulation of Piezoelectric Excitation of Guided Waves in Rails Using Waveguide Finite Elements,” Proc. SPIE, 6529, p. 65290V. [CrossRef]
Ryue, J., Thompson, D., White, P., and Thompson, D., 2009, “Decay Rates of Propagating Waves in Railway Tracks at High Frequencies,” J. Sound Vib., 320(4–5), pp. 955–976. [CrossRef]
Loveday, P. W., 2009, “Semi-Analytical Finite Element Analysis of Elastic Waveguides Subjected to Axial Loads,” Ultrasonics, 49(3), pp. 298–300. [CrossRef] [PubMed]
Chitnis, M., Desai, Y., Shah, A., and Kant, T., 2003, “Comparisons of Displacement-Based Theories for Waves and Vibrations in Laminated and Sandwich Composite Plates,” J. Sound Vib., 263(3), pp. 617–642. [CrossRef]
Moulin, E., Assaad, J., and Delebarre, C., 2000, “Modeling of Lamb Waves Generated by Integrated Transducers in Composite Plates Using a Coupled Finite Elementnormal Modes Expansion Method,” J. Acoust. Soc. Am., 107(1), pp. 87–94. [CrossRef] [PubMed]
Ahmad, Z., Vivar-Perez, J., and Gabbert, U., 2013, “Semi-Analytical Finite Element Method for Modeling of Lamb Wave Propagation,” CEAS Aeronaut. J., 4(1), pp. 21–33. [CrossRef]
Hayashi, T., and Endoh, S., 2000, “Calculation and Visualization of Lamb Wave Motion,” Ultrasonics, 38(1–8), pp. 770–773. [CrossRef] [PubMed]
Karunasena, W., Liew, K., and Kitipornchai, S., 1995, “Hybrid Analysis of Lamb Wave Reflection by a Crack at the Fixed Edge of a Composite Plate,” Comput. Methods Appl. Mech. Eng., 125(1–4), pp. 221–233. [CrossRef]
Karunasena, W., Liew, K. M., and Kitipornchai, S., 1995, “Reflection of Plate Waves at the Fixed Edge of a Composite Plate,” J. Acoust. Soc. Am., 98(1), pp. 644–651. [CrossRef]
Liu, G. R., 2002, “A Combined Finite Element/Strip Element Method for Analyzing Elastic Wave Scattering by Cracks and Inclusions in Laminates,” Comput. Mech., 28(1), pp. 76–81. [CrossRef]
Terrien, N., Osmont, D., Royer, D., Lepoutre, F., and Déom, A., 2007, “A Combined Finite Element and Modal Decomposition Method to Study the Interaction of Lamb Modes With Micro-Defects,” Ultrasonics, 46(1), pp. 74–88. [CrossRef] [PubMed]
Datta, S., Shah, A., Bratton, R., and Chakraborty, T., 1988, “Wave Propagation in Laminated Composite Plates,” J. Acoust. Soc. Am., 83(6), pp. 2020–2026. [CrossRef]
Waas, G., 1972, “Earth Vibration Effects and Abatement for Military Facilities (s-71-14)—Analysis Report for Footing Vibrations Through Layered Media,” U.S. Army Engineer Waterways Experiment Station, Technical Report.
Ichchou, M., Mencik, J.-M., and Zhou, W., 2009, “Wave Finite Elements for Low and Mid-Frequency Description of Coupled Structures With Damage,” Comput. Methods Appl. Mech. Eng., 198(15), pp. 1311–1326. [CrossRef]
Koreck, J., 2006, “Computational Characterization of Adhesive Bond Properties Using Guided Waves in Bonded Plates,” Master's thesis, Georgia Institute of Technology, Atlanta, GA.
Manconi, E., 2008, “Modelling Wave Propagation in Two-Dimensional Structures Using a Wave/finite Element Technique,” Ph.D. thesis, University of Parma, Parma, Italy.
Manconi, E., and Mace, B., 2009, “Wave Characterization of Cylindrical and Curved Panels Using a Finite Element Method,” J. Acoust. Soc. Am., 125(1), pp. 154–163. [CrossRef] [PubMed]
Marchi, L., Marzani, A., and Miniaci, M., 2013, “A Dispersion Compensation Procedure to Extend Pulse-Echo Defects Location to Irregular Waveguides,” NDT & E Int., 54, pp. 115–122. [CrossRef]
Moulin, E., Grondel, S., Baouahi, M., and Assaad, J., 2006, “Pseudo-3D Modeling of a Surface-Bonded Lamb Wave Source,” J. Acoust. Soc. Am., 119(5), pp. 2575–2578. [CrossRef]
Delsanto, P. P., Whitcombe, T., Chaskelis, H., and Mignogna, R., 1992, “Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. I: The One-Dimensional Case,” Wave Motion, 16(1), pp. 65–80. [CrossRef]
Delsanto, P. P., Schechter, R. S., Chaskelis, H., Mignogna, R. B., and Kline, R. B., 1994, “Connection Machine Simulations of Ultrasonic Wave Propagation in Materials. II: The Two-Dimensional Case,” Wave Motion, 20(4), pp. 295–314. [CrossRef]
Delsanto, P. P., Schechter, R. S., and Migogna, R. B., 1997, “Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. III: The Three-Dimensional Case,” Wave Motion, 26(4), pp. 329–339. [CrossRef]
Masserey, B., and Fromme, P., 2013, “Fatigue Crack Growth Monitoring Using High-Frequency Guided Waves,” Struct. Health Monit., 12(5–6), pp. 484–493. [CrossRef]
Lee, B. C., Palacz, M., Krawczuk, M., Ostachowicz, W. M., and Staszewski, W. J., 2004, “Wave Propagation in a Sensor/Actuator Diffusion Bond Model,” J. Sound Vib., 276(3), pp. 671–687. [CrossRef]
Kluska, P., Staszewski, W., Leamy, M. J., and Uhl, T., 2012, “Lamb Wave Propagation Modeling Using Cellular Automata,” 6th European Workshop on Structural Health Monitoring, Dresden, Germany, July 3–6.
Kijanka, P., Radecki, R., Paćko, P., Staszewski, W., and Uhl, T., 2012, “GPU-Based Local Interaction Simulation Approach for Simplified Temperature Effect Modelling in Lamb Wave Propagation Used for Damage Detection,” Smart Mater. Struct., 22(3), p. 035014. [CrossRef]
Paćko, P., Bielak, T., Spencer, A. B., Staszewski, W., Uhl, T., and Worden, K., 2012, “Lamb Wave Propagation Modelling and Simulation Using Parallel Processing Architecture and Graphical Cards,” Smart Mater. Struct., 21(7), p. 075001.
Reddy, J. N., 1993, An Introduction to the Finite Element Method, McGraw-Hill, New York.
Zienkiewicz, O. C., and Taylor, R., 2000, The Finite Element Method. Basis, Vol. 1, Butterworth-Heinemann, Oxford, UK. [CrossRef]
Bathe, K.-J., 2002, Finite-Elemente-Methoden, Springer, Berlin, Germany.
Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall International (UK) Limited, London, UK. [CrossRef]
Zienkiewicz, O. C., and Taylor, R., 2000, The Finite Element Method. Solid Mechanics, Vol. 2, Butterworth-Heinemann, Oxford, UK [CrossRef].
Zienkiewicz, O. C., and Taylor, R., 2000, The Finite Element Method. Fluid Dynamics, Vol. 3, Butterworth-Heinemann, Oxford, UK.
Szabó, B., and Babuška, I., 1991, Finite Element Analysis, Wiley, Hoboken, NJ.
Düster, A., 2002, “High Order Finite Elements for Three Dimensional, Thin-Walled Nonlinear Continua,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
Düster, A., Bröker, H., and Rank, E., 2001, “The p-Version of the Finite Element Method for Three-Dimensional Curved Thin Walled Structures,” Int. J. Numer. Methods Eng., 52(7), pp. 673–703. [CrossRef]
Dauksher, W., and Emery, A. F., 1997, “Accuracy in Modeling the Acoustic Wave Equation With Chebyshev Spectral Finite Elements,” Finite Elem. Anal. Des., 26(2), pp. 115–128. [CrossRef]
Dauksher, W., and Emery, A. F., 1999, “An Evaluation of the Cost Effectiveness of Chebyshev Spectral and p-Finite Element Solutions to the Scalar Wave Equation,” Int. J. Numer. Methods Eng., 45(8), pp. 1099–1113. [CrossRef]
Dauksher, W., and Emery, A. F., 2000, “The Solution of Elastostatic and Elastodynamic Problems With Chebyshev Spectral Finite Elements,” Comput. Methods Appl. Mech. Eng., 188(1), pp. 217–233. [CrossRef]
Komatitsch, D., and Tromp, J., 2002, “Spectral-Element Simulations of Global Seismic Wave Propagation—I. Validation,” Int. J. Geophys., 149(2), pp. 390–412. [CrossRef]
Kuroishi, T., Nishimura, H., Matsumoto, N., Shiibashi, A., Sakata, F., and Aoki, K., 2005, “Guided Wave Pipe Inspection and Monitoring System,” Mitsubishi Heavy Industries, Ltd. Technical Review, Vol. 42, No. 3.
Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y., 2005, “Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement,” Comput. Methods Appl. Mech. Eng., 194(39), pp. 4135–4195. [CrossRef]
Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y., 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Hoboken, NJ.
Farin, G., 1999, NURBS From Projective Geometry to Practical Use, AK Peters, Natick, MA.
Hamilton, W. R., 2000, “On a General Method in Dynamic,” Philosophical Transactions of the Royal Society, Vol. 1834, David R.Wilkins, ed., The Royal Society Publishing, London, UK, pp. 94–144.
Ostachowicz, W., Kudela, P., Krawczuk, M., and Zak, A., 2012, Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method, Wiley, Hoboken, NJ. [CrossRef]
Willberg, C., Duczek, S., Vivar-Perez, J. M., Schmicker, D., and Gabbert, U., 2012, “Comparison of Different Higher Order Finite Element Schemes for the Simulation of Lamb Waves,” Comput. Methods Appl. Mech. Eng., 241–244, pp. 246–261. [CrossRef]
Flanagan, D. P., and Belytschko, T., 1981, “A Uniform Strain Hexahedron and Quadrilateral With Orthogonal Hourglass Control,” Int. J. Numer. Methods Eng., 17(5), pp. 679–706. [CrossRef]
Bartoli, I., di Scalea, F. L., Fateh, M., and Viola, E., 2005, “Modeling Guided Wave Propagation With Application to the Long-Range Defect Detection in Railroad Tracks,” NDT & E Int., 38(5), pp. 325–334. [CrossRef]
Gresil, M., Giurgiutiu, V., Shen, Y., and Poddar, B., 2012, “Guidelines for Using the Finite Element Method for Modeling Guided Lamb Wave Propagation in SHM Process,” 6th European Workshop on Structural Health Monitoring, Dresden, Germany, July 3–6.
Greve, D. W., Zheng, P., and Oppenheim, I. J., 2008, “The Transition From Lamb Waves to Longitudinal Waves in Plates,” Smart Mater. Struct., 17(3), p. 035029. [CrossRef]
Bijudas, C. R., Mitra, M., and Mujumdar, P. M., 2013, “Time Reversed Lamb Wave for Damage Detection in a Stiffened Aluminum Plate,” Smart Mater. Struct., 22(10), p. 105026. [CrossRef]
Vanli, O. A., and Jung, S., 2013, “Statistical Updating of Finite Element Model With Lamb Wave Sensing Data for Damage Detection Problems,” Mech. Syst. Signal Process., 42(1–2), pp. 137–151. [CrossRef]
Luchinsky, D. G., Hafiychuk, V., Smelyanskiy, V. N., Kessler, S., Walker, J., Miller, J., and Watson, M., 2013, “Modeling Wave Propagation and Scattering From Impact Damage for Structural Health Monitoring of Composite Sandwich Plates,” Struct. Health Monit., 12(3), pp. 296–308. [CrossRef]
Sause, M. G. R., Hamstad, M. A., and Horn, S., 2013, “Finite Element Modeling of Lamb Wave Propagation in Anisotropic Hybrid Materials,” Composites Part B, 53, pp. 249–257. [CrossRef]
Kannajosyula, H., Lissenden, C. J., and Rose, J. L., 2013, “Analysis of Annular Phased Array Transducers for Ultrasonic Guided Wave Mode Control,” Smart Mater. Struct., 22(8), p. 085019. [CrossRef]
Rogge, M. D., and Leckey, C. A. C., 2013, “Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis,” Ultrasonics, 53(7), pp. 1217–1226. [CrossRef] [PubMed]
Oh, T., Popovics, J. S., Ham, S., and Shin, S. W., 2012, “Practical Finite Element Based Simulations of Nondestructive Evaluation Methods for Concrete,” Comput. Struct., 98–99, pp. 55–65. [CrossRef]
Hosseini, S. M. H., Duczek, S., and Gabbert, U., 2013, “Non-Reflecting Boundary Condition for Lamb Wave Propagation Problems in Honeycomb and CFRP Plates Using Dashpot Elements,” Composites Part B, 54, pp. 1–10. [CrossRef]
Liu, G. R., and Jerry, S. S. Q., 2003, “A Non-Reflecting Boundary for Analyzing Wave Propagation Using the Finite Element Method,” Finite Elem. Anal. Des., 39(5–6), pp. 403–417. [CrossRef]
Duru, K., and Kreiss, G., 2014, “Numerical Interaction of Boundary Waves With Perfectly Matched Layers in Two Space Dimensional Elastic Wavegiudes,” Wave Motion, 51(3), pp. 445–465. [CrossRef]
Komatitsch, D., Michéa, D., and Erlebacher, G., 2009, “Porting a High-Order Finite-Element Earthquake Modeling Application to NVIDIA Graphics Cards Using CUDA,” J. Parallel Distrib. Comput., 69(5), pp. 451–460. [CrossRef]
Komatitsch, D., and Tromp, J., 1999, “Introduction to the Spectral Element Method for Three-Dimensional Seismic Wave Propagation,” Geophys. J. Int., 139(3), pp. 806–822. [CrossRef]
Komatitsch, D., Tsuboi, S., Ji, C., and Tromp, J., 2003, “A 14.6 Billion Degrees of Freedom, 5 Teraflops, 2.5 Terabyte Earthquake Simulation on the Earth Simulator,” 2003 ACM/IEEE Conference on Supercomputing. [CrossRef]
Komatitsch, D., and Vilotte, J. P., 1998, “The Spectral-Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures,” Bull. Seismol. Soc. Am., 88(2), pp. 368–392. [CrossRef]
Lonkar, K., and Chang, F.-K., 2014, “Modeling of Piezo-Induced Ultrasonic Wave Propagation in Composite Structures Using Layered Solid Spectral Element,” Struct. Health Monit., 13(1), pp. 50–67. [CrossRef]
Moll, J., Schulte, R. T., Hartmann, B., Fritzen, C.-P., and Nelles, O., 2010, “Multi-Site Damage Localization in Anisotropic Plate-Like Structures Using an Active Guided Wave Structural Health Monitoring System,” Smart Mater. Struct., 19(4), p. 045022. [CrossRef]
Ostachowicz, W., and Kudela, P., 2010, “Wave Propagation Numerical Models in Damage Detection Based on the Time Domain Spectral Element Method,” IOP Conf. Ser. Mater. Sci. Eng., 10(1), p. 012068. [CrossRef]
Patera, A. T., 1984, “A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion,” J. Comput. Phys., 54(3), pp. 468–488. [CrossRef]
Peng, H., Meng, G., and Li, F., 2009, “Modeling of Wave Propagation in Plate Structures Using Three-Dimensional Spectral Element Method for Damage Detection,” J. Sound Vib., 320(4–5), pp. 942–954. [CrossRef]
Rucka, M., 2010, “Experimental and Numerical Study on Damage Detection in an L-Joint Using Guided Wave Propagation,” J. Sound Vib., 329(10), pp. 1760–1779. [CrossRef]
Seriani, G., and Oliveira, S. P., 2008, “Dispersion Analysis of Spectral Element Methods for Elastic Wave Propagation,” Wave Motion, 45(6), pp. 729–744. [CrossRef]
Sridhar, R., Chakraborty, A., and Gopalakrishnan, S., 2006, “Wave Propagation Analysis in Anisotropic and Inhomogeneous Uncracked and Cracked Structures Using Pseudospectral Finite Element Method,” Int. J. Solids Struct., 43(16), pp. 4997–5031. [CrossRef]
Demkowicz, L., 2006, Computing With hp-Adaptive Finite Elements: Volume 1: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall, Atlanta, GA. [CrossRef]
Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., and Zdunek, A., 2008, Computing With hp-Adaptive Finite Elements: Volume 2 Frontiers: Three Dimensional Elliptic and Maxwell Problems With Applications, Chapman and Hall, Atlanta, GA.
Solin, P., Segeth, K., and Dolezel, I., 2004, Higher-Order Finite Element Methods, Chapman and Hall, Atlanta, GA.
Szabó, B., and Babuška, I., 2011, Introduction to Finite Element Analysis: Formulation, Verification and Validation, Wiley, Hoboken, NJ. [CrossRef]
Dornisch, W., Klinkel, S., and Simeon, B., 2013, “Isogeometric Reissner–Mindlin Shell Analysis With Exactly Calculated Director Vectors,” Comput. Methods Appl. Mech. Eng., 253, pp. 491–504. [CrossRef]
Hughes, T. J. R., Reali, A., and Sangalli, G., 2008, “Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of p-Method Finite Elements With k-Method NURBS,” Comput. Methods Appl. Mech. Eng., 197(49), pp. 4104–4124. [CrossRef]
Żak, A., 2009, “A Novel Formulation of a Spectral Plate Element for Wave Propagation in Isotropic Structures,” Finite Elem. Anal. Des., 45(10), pp. 650–658. [CrossRef]
Żak, A., Krawczuk, M., and Ostachowicz, W., 2012, “Spectral Finite Element Method for Propagation of Guided Elastic Waves in Wind Turbine Blades for SHM Purposes,” 6th European Workshop on Structural Health Monitoring.
Kudela, P., Żak, A., Krawczuk, M., and Ostachowicz, W., 2007, “Modelling of Wave Propagation in Composite Plates Using the Time Domain Spectral Element Method,” J. Sound Vib., 302(4), pp. 728–745. [CrossRef]
Kudela, P., and Ostachowicz, W., 2008, “Wave Propagation Modelling in Composite Plates,” J. Phys. Conf. Ser., 9, pp. 89–104. [CrossRef]
Kudela, P., Ostachowicz, W., and Żak, A., 2008, “Damage Detection in Composite Plates With Embedded PZT Transducers,” Mech. Syst. Signal Process., 22(6), pp. 1327–1335. [CrossRef]
Fritzen, C.-P., Schulte, R. T., and Jung, H., 2011, “A Modelling Approach for Virtual Development of Wave Based SHM Systems,” J. Phys. Conf. Ser., 305, p. 012071. [CrossRef]
Schulte, R. T., and Fritzen, C.-P., 2011, “Simulation of Wave Propagation in Damped Composite Structures With Piezoelectric Coupling,” J. Theor. Appl. Mech., 49(3), pp. 879–903.
Schulte, R. T., Fritzen, C.-P., and Moll, J., 2010, “Spectral Element Modelling of Wave Propagation in Isotropic and Ansisotropic Shell-Structures Including Different Types of Damage,” IOP Conf. Ser., 10, p. 012065. [CrossRef]
Żak, A., Ostachowicz, W., and Krawczuk, M., 2011, “Damage Detection Strategies for Aircraft Shell-Like Structures Based on Propagation Guided Eleastic Waves,” J. Phys. Conf. Ser., 305(1), p. 012055. [CrossRef]
Żak, A., Radzieński, M., Krawczuk, M., and Ostachowicz, W., 2012, “Damage Detection Strategies Based on Propagation of Guided Elastic Waves,” Smart Mater. Struct., 21(3), p. 035024. [CrossRef]
Kudela, P., and Ostachowicz, W., 2009, “3D Time-Domain Spectral Elements for Stress Waves Modelling,” J. Phys.: Conf. Ser., 181, pp. 1–8. [CrossRef]
Duczek, S., 2014, “Higher Order Finite Elements and the Fictitious Domain Concept for Wave Propagation Analysis,” Ph.D. thesis, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.
Schillinger, D., Dede, L., Scott, M. A., Evans, J. A., Borden, M. J., Rank, E., and Hughes, T. J. R., 2012, “An Isogeometric Design-Through-Analysis Methodology Based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-Spline CAD Surfaces,” Comput. Methods Appl. Mech. Eng., 249–252, pp. 116–150. [CrossRef]
Schmicker, D., Duczek, S., Liefold, S., and Gabbert, U., 2014, “Wave Propagation Analysis Using High-Order Finite Element Methods: Spurious Oscillations Excited by Internal Element Eigenfrequencies,” Tech. Mech., 34(2), pp. 51–71.
Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., and Zdunek, A., 2008, Computing With hp-Adaptive Finite Elements: Volume 2 Frontiers: Three Dimensional Elliptic and Maxwell Problems With Applications, Chapman and Hall, Atlanta, GA.
Willberg, C., and Gabbert, U., 2012, “Development of a Three-Dimensional Piezoelectric Isogeometric Finite Element for Smart Structure Applications,” Acta Mech., 223(8), pp. 1837–1850. [CrossRef]
Duczek, S., and Gabbert, U., 2013, “Anisotropic Hierarchic Finite Elements for the Simulation of Piezoelectric Smart Structures,” Eng. Comput., 30(5), pp. 682–706. [CrossRef]
Yim, H., and Sohn, Y., 2000, “Numerical Simulation and Visualization of Elastic Waves Using Mass–Spring Lattice Model,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47(3), pp. 549–558. [CrossRef] [PubMed]
Seriani, G., 2004, “Double-Grid Chebyshev Spectral Elements for Acoustic Wave Modeling,” Wave Motion, 39, pp. 351–360. [CrossRef]
Seriani, G., and Su, C., 2012, “Wave Propagation Modeling in Highly Heterogeneous Media by a Poly-Grid Chebyshev Spectral Element Method,” J. Comput. Acoust., 20(2), p. 1240004. [CrossRef]
Duczek, S., Joulaian, M., Düster, A., and Gabbert, U., 2014, “Numerical Analysis of Lamb Waves Using the Finite and Spectral Cell Method,” Int. J. Numer. Methods Eng., 99(1), pp. 26–53. [CrossRef]
Seriani, G., and Priolo, E., 1994, “Spectral Element Method for Acoustic Wave Simulation in Heterogeneous Media,” Finite Elem. Anal. Des., 16(3–4), pp. 337–348. [CrossRef]
Ainsworth, M., 2004, “Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number,” SIAM J. Numer. Anal., 42(2), pp. 553–575. [CrossRef]
Ainsworth, M., and Wajid, H. A., 2009, “Dispersive and Dissipative Behavior of the Spectral Element Method,” SIAM J. Numer. Anal., 47(5), pp. 3910–3937. [CrossRef]
Ainsworth, M., and Wajid, H. A., 2010, “Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and Nonstandard Reduced Integration,” SIAM J. Numer. Anal., 48(1), pp. 346–371. [CrossRef]
Thompson, L. L., and Pinsky, P. M., 1994, “Complex Wavenumber Fourier Analysis of the p-Version Finite Element Method,” Comput. Mech., 13(4), pp. 255–275. [CrossRef]
Li, F., Peng, H., Sun, X., Wang, J., and Meng, G., 2012, “Wave Propagation Analysis in Composite Laminates Containing a Delamination Using a Three-Dimensional Spectral Element Method,” Math. Probl. Eng., 2012, pp. 1–19. [CrossRef]
Peng, H., Ye, L., Meng, G., Mustapha, S., and Li, F., 2010, “Concise Analysis of Wave Propagation Using the Spectral Element Method and Identification of Delamination in CF/EP Composite Beams,” Smart Mater. Struct., 19(8), p. 085018. [CrossRef]
Peng, H., Ye, L., Meng, G., Sun, K., and Li, F., 2011, “Characteristics of Elastic Wave Propagation in Thick Beams—When Guided Waves Prevail?” J. Theor. Appl. Mech., 49(3), pp. 807–823. [CrossRef]
Komatitsch, D., and Tromp, J., 2002, “Spectral-Element Simulations of Global Seismic Wave Propagation. II—Three-Dimensional Models, Oceans, Rotation and Self-Gravitation,” Int. J. Geophys., 150(1), pp. 303–318. [CrossRef]
Komatitsch, D., Vilotte, J.-P., Vai, R., Castillo-Covarrubias, J. M., and Sanchez-Sesma, F. J., 1999, “The Spectral Element Method for Elastic Wave Equations—Application to 2-D and 3-D Seismic Problems,” Int. J. Numer. Methods Eng., 45(9), pp. 1139–1164. [CrossRef]
Ha, S., 2009, “Modeling Lamb Wave Propagation Induced by Adhesively Bonded PZTs on Thin Plates,” Ph.D. thesis, Stanford University, Stanford, CA.
Ha, S., and Chang, F.-K., 2010, “Optimizing a Spectral Element for Modeling PZT-Induced Lamb Wave Propagation in Thin Plates,” Smart Mater. Struct., 19(1), p. 015015. [CrossRef]
Jensen, M. S., 1996, “High Convergence Order Finite Elements With Lumped Mass Matrix,” Int. J. Numer. Methods Eng., 39(11), pp. 1879–1888. [CrossRef]
Christon, M. A., 1999, “The Influence of the Mass Matrix on the Dispersive Nature of the Semi-Discrete, Second-Order Wave Equation,” Comput. Methods Appl. Mech. Eng., 173(1–2), pp. 147–166. [CrossRef]
Ihlenburg, F., and Babuška, I., 1995, “Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves,” Int. J. Numer. Methods Eng., 38(22), pp. 3745–3774. [CrossRef]
Ihlenburg, F., and Babuška, I., 1997, “Reliability of Finite Element Methods for the Numerical Computation of Waves,” Adv. Eng. Software, 28(7), pp. 417–424. [CrossRef]
Seriani, G., 1998, “3-D Large-Scale Wave Propagation Modeling by Spectral Element Method on Cray T3E Multiprocessor,” Comput. Methods Appl. Mech. Eng., 164(1), pp. 235–247. [CrossRef]
Seriani, G., and Oliveira, S. P., 2008, “DFT Modal Analysis of Spectral Element Methods for Acoustic Wave Propagation,” J. Comput. Acoust., 16(4), pp. 531–561. [CrossRef]
Banerjee, J. R., 1997, “Dynamic Stiffness Formulation for Structural Elements: A General Approach,” Comput. Struct., 63(1), pp. 101–103. [CrossRef]
Leung, A. Y.-T., 1978, “An Accurate Method of Dynamic Condensation in Structural Analysis,” Int. J. Numer. Methods Eng., 12(11), pp. 1705–1715. [CrossRef]
Leung, A. Y.-T., 1979, “An Accurate Method of Dynamic Substructuring With Simplified Computation,” Int. J. Numer. Methods Eng., 14(8), pp. 1241–1256. [CrossRef]
Leung, A. Y. T., and Zeng, S. P., 1994, “Analytical Formulation of Dynamic Stiffness,” J. Sound Vib., 177(4), pp. 555–564. [CrossRef]
Richards, T. H., and Leung, Y. T., 1977, “An Accurate Method in Structural Vibration Analysis,” J. Sound Vib., 55(3), pp. 363–376. [CrossRef]
Chakraborty, A., Gopalakrishnan, S., and Reddy, J. N., 2003, “A New Finite Element for the Analysis of Functionally Graded Materials,” Int. J. Mech. Sci., 45(3), pp. 519–539. [CrossRef]
Chakraborty, A., Mahapatra, D. R., and Gopalakrishnan, S., 2002, “Finite Analysis of Free Vibration and Wave Propagation in Asymmetric Composite Beams With Structural Discontinuities,” Compos. Struct., 55(1), pp. 23–26. [CrossRef]
Gopalakrishnan, S., 2000, “A Deep Rod Finite Element for Structural Dynamics and Wave Propagation Problems,” Int. J. Numer. Methods Eng., 48(5), pp. 731–744. [CrossRef]
Mitra, M., Gopalakrishnan, S., and Bhat, M. S., 2004, “A New Super Convergent Thin Walled Composite Beam Element for Analysis of Box Beam Structures,” Int. J. Solids Struct., 41(5), pp. 1491–1518. [CrossRef]
Gopalakrishnan, S., and Mitra, M., 2010, Wavelet Methods for Dynamical Problems, CRC Press, Boca Raton, FL. [CrossRef]
Bazilevs, Y., 2006, “Isogeometric Analysis of Turbulence and Fluid-Structure Interaction,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.
Bazilevs, Y., Beirão da Veiga, L., Cottrell, J. A., Hughes, T. J. R., and Sangalli, G., 2006, “Isogeometric Analysis: Approximation, Stability and Error Estimates for h-Refined Meshes,” Math. Models Methods Appl. Sci., 16(7), pp. 1031–1090. [CrossRef]
Cottrell, J. A., Reali, A., Bazilevs, Y., and Hughes, T. J. R., 2006, “Isogeometric Analysis of Structural Vibrations,” Comput. Methods Appl. Mech. Eng., 195(41–43), pp. 5257–5296. [CrossRef]
Qian, X., 2010, “Full Analytical Sensitivities in NURBS Based Isogeometric Shape Optimization,” Comput. Methods Appl. Mech. Eng., 199(29–32), pp. 2059–2071. [CrossRef]
Becker, C., 2007, “Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse,” Ph.D. thesis, Ruhr-University of Bochum, Bochum, Germany.
Su, J., and Wang, Y., 2013, “Equivalent Dynamic Infinite Element for Soil–Structure Interaction,” Finite Elem. Anal. Design, 63, pp. 1–7. [CrossRef]
Düster, A., Parvizian, J., Yang, Z., and Rank, E., 2008, “The Finite Cell Method for Three-Dimensional Problems of Solid Mechanics,” Comput. Methods Appl. Mech. Eng., 197(45), pp. 3768–3782. [CrossRef]
Parvizian, J., Düster, A., and Rank, E., 2007, “Finite Cell Method: h- and p-Extension for Embedded Domain Problems in Solid Mechanics,” Comput. Mech., 41(1), pp. 121–133. [CrossRef]
Schillinger, D., Ruess, M., Zander, N., Bazilevs, Y., Düster, A., and Rank, E., 2012, “Small and Large Deformation Analysis With the p- and B-Spline Version of the Finite Cell Method,” Comput. Mech., 50(4), pp. 445–478. [CrossRef]
Duczek, S., Liefold, S., and Gabbert, U., 2014, “The Finite and Spectral Cell Methods for Smart Structure Applications: Transient Analysis,” Acta Mech. [CrossRef]
Joulaian, M., Duczek, S., Gabbert, U., and Düster, A., 2014, “Finite and Spectral Cell Method for Wave Propagation in Heterogeneous Materials,” Comput. Mech., 54(3), pp. 661–675. [CrossRef]
Zander, N., Kollmannsberger, S., Ruess, M., Yosibash, Z., and Rank, E., 2012, “The Finite Cell Method for Linear Thermoelasticity,” Comput. Math. Appl., 64(11), pp. 3527–3541. [CrossRef]
Leckey, C. A., Rogge, M. D., Miller, C. A., and Hinders, M. K., 2012, “Multiple-Mode Lamb Wave Scattering Simulations Using 3D Elastodynamic Finite Integration Technique,” Ultrasonics, 52(2), pp. 193–207. [CrossRef] [PubMed]
Ham, S., and Bathe, K.-J., 2012, “A Finite Element Method Enriched for Wave Propagation Problems,” Comput. Struct., 94–95, pp. 1–12. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Lamb wave mode shapes

Grahic Jump Location
Fig. 2

Dispersion curves for the first two symmetric and antisymmetric Lamb modes in an aluminum plate (E = 7 · 1010 N/m2, ν = 0.33)

Grahic Jump Location
Fig. 3

Waveguide model for SAFE method

Grahic Jump Location
Fig. 4

A periodic section n in the infinite plates with periodic boundaries r and l. Width of the periodic section is denoted by ΔL.

Grahic Jump Location
Fig. 8

Examples of thickness dependent Lamb wave problems. (a) Plot of the bottom surface of a 3D plate with a conical hole calculated using isogeometric FEs [3]. (b) Time history of the displacement field at the measurement point B in thickness direction (u2)—SEM. A0- and A1-modes are excited [185].

Grahic Jump Location
Fig. 7

Convergence curve for the A0-mode taken from Willberg et al. [185]

Grahic Jump Location
Fig. 6

Convergence curve for the S0-mode taken from Willberg et al. [185]

Grahic Jump Location
Fig. 5

Different FEs to model thin-walled structures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In