Bushnell, D. M., and Moore, K. J., 1991, “Drag Reduction in Nature,” Annu. Rev. Fluid Mech., 23, pp. 65–79.

[CrossRef]Kim, J., and Bewley, T. R., 2007, “A Linear Systems Approach to Flow Control,” Annu. Rev. Fluid Mech., 39, pp. 39–383.

[CrossRef]Schlichting, H., and Gersten, K., 2000, *Boundary-Layer Theory*, Springer, Heidelberg, NY.

Saric, W. S., Reed, H. L., and Kerschen, E. J., 2002, “Boundary-Layer Receptivity to Freestream Disturbances,” Annu. Rev. Fluid Mech., 34(1), pp. 291–319.

[CrossRef]Schmid, P. J., Henningson, D. S., 2001, Stability and Transition in Shear Flows (Applied Mathematical Sciences), Vol. 142, Springer, New York.

Jovanovic, M. R., and Bamieh, B., 2005, “Componentwise Energy Amplification in Channel Flows,” J. Fluid Mech., 534, pp. 145–183.

[CrossRef]Schmid, P. J., 2007, “Nonmodal Stability Theory,” Annu. Rev. Fluid Mech., 39, pp. 129–62.

[CrossRef]Glad, T., and Ljung, L., 2000, *Control Theory*, Taylor & Francis, London.

Huerre, P., and Monkewitz, P. A., 1990, “Local and Global Instabilities in Spatially Developing Flows,” Annu. Rev. Fluid Mech., 22, pp. 473–537.

[CrossRef]Joshi, S. S., Speyer, J. L., and Kim, J., 1997, “A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow,” J. Fluid Mech., 332, pp. 157–184.

Bewley, T. R., and Liu, S., 1998, “Optimal and Robust Control and Estimation of Linear Paths to Transition,” J. Fluid Mech., 365, pp. 305–349.

[CrossRef]Cortelezzi, L., Speyer, J. L., Lee, K. H., and Kim, J., 1998, “Robust Reduced-Order Control of Turbulent Channel Flows via Distributed Sensors and Actuators,” IEEE 37th Conference on Decision and Control, Tampa, FL, Dec. 16–18, pp. 1906–1911.

Högberg, M., Bewley, T. R., and Henningson, D. S., 2003, “Linear Feedback Control and Estimation of Transition in Plane Channel Flow,” J. Fluid Mech., 481, pp. 149–175.

[CrossRef]Chevalier, M., Hœpffner, J., Akervik, E., and Henningson, D. S., 2007, “Linear Feedback Control and Estimation Applied to Instabilities in Spatially Developing Boundary Layers,” J. Fluid Mech., 588, pp. 163–187.

[CrossRef]Monokrousos, A., Brandt, L., Schlatter, P., and Henningson, D. S., 2008, “DNS and LES of Estimation and Control of Transition in Boundary Layers Subject to Free-Stream Turbulence,” Intl J. Heat Fluid Flow, 29(3), pp. 841–855.

[CrossRef]Lee, K. H., Cortelezzi, L., Kim, J., and Speyer, J., 2001, “Application of Reduced-Order Controller to Turbulent Flow for Drag Reduction,” Phys. Fluids, 13, pp. 1321–1330.

[CrossRef]Högberg, M., Bewley, T. R., and Henningson, D. S., 2003, “Relaminarization of Re

_{τ} = 100 Turbulence Using Gain Scheduling and Linear State-Feedback Control Flow,” Phys. Fluids, 15, pp. 3572–3575.

[CrossRef]Chevalier, M., Hœpffner, J., Bewley, T. R., and Henningson, D. S., 2006, “State Estimation in Wall-Bounded Flow Systems. Part 2: Turbulent Flows,” J. Fluid Mech., 552, pp. 167–187.

[CrossRef]Ljung, L., 1999, *System Identification*, Wiley, New York.

Elliott, S., and Nelson, P., 1993, “Active Noise Control,” IEEE Signal Process. Mag., 10(4), pp. 12–35.

[CrossRef]Milling, R. W., 1981, “Tollmien–Schlichting Wave Cancellation,” Phys. Fluids, 24, pp. 979–981.

[CrossRef]Jacobson, S. A., and Reynolds, W. C., 1998, “Active Control of Streamwise Vortices and Streaks in Boundary Layers,” J. Fluid Mech., 360, pp. 179–211.

[CrossRef]Sturzebecher, D., and Nitsche, W., 2003, “Active Cancellation of Tollmien–Schlichting Instabilities on a Wing Using Multi-Channel Sensor Actuator Systems,” Intl J. Heat Fluid Flow, 24, pp. 572–583.

[CrossRef]Rathnasingham, R., and Breuer, K. S., 2003, “Active Control of Turbulent Boundary Layers,” J. Fluid Mech., 495, pp. 209–233.

[CrossRef]Lundell, F., 2007, “Reactive Control of Transition Induced by Free-Stream Turbulence: An Experimental Demonstration,” J. Fluid Mech., 585, pp. 41–71.

[CrossRef]McKeon, B. J., Sharma, A. S., and Jacobi, I., 2013, “Experimental Manipulation of Wall Turbulence: A Systems Approach” Phys. Fluids, 25(3), p. 031301.

[CrossRef]Goldin, N., King, R., Pätzold, A., Nitsche, W., Haller, D., and Woias, P., 2013, “Laminar Flow Control With Distributed Surface Actuation: Damping Tollmien–Schlichting Waves With Active Surface Displacement,” Exp. Fluids, 54(3), pp. 1–11.

[CrossRef]Sipp, D., Marquet, O., Meliga, P., and Barbagallo, A., 2010, “Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach,” Appl. Mech. Rev., 63(3), p. 030801.

[CrossRef]Bagheri, S., and Henningson, D. S., 2011, “Transition Delay Using Control Theory,” Philos. Trans. R. Soc., 369, pp. 1365–1381.

[CrossRef]Bagheri, S., Hœpffner, J., Schmid, P. J., and Henningson, D. S., 2009, “Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows,” Appl. Mech. Rev., 62, p. 020803.

[CrossRef]Sipp, D., and Schmid, P. J., 2013, “Closed-Loop Control of Fluid Flow: A Review of Linear Approaches and Tools for the Stabilization of Transitional Flows,” AerospaceLab J., 6.

el-Hak, M. G., 1996, “Modern Developments in Flow Control,” Appl. Mech. Rev., 49, pp. 365–379.

[CrossRef]Bewley, T. R., 2001, “Flow Control: New Challenges for a New Renaissance,” Prog. Aerospace. Sci., 37, pp. 21–58.

[CrossRef]Collis, S. S., Joslin, R. D., Seifert, A., and Theofilis, V., 2004, “Issues in Active Flow Control: Theory, Control, Simulation, and Experiment,” Prog. Aerosp. Sci., 40(4), pp. 237–289.

[CrossRef]Bagheri, S., Brandt, L., and Henningson, D. S., 2009, “Input–Output Analysis, Model Reduction and Control of the Flat-Plate Boundary Layer,” J. Fluid Mech., 620(1), pp. 263–298.

[CrossRef]Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S., 2007, “A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows,” KTH Mechanics, Stockholm, Sweden, Technical Report No. TRITA-MEK 2007:07.

Grundmann, S., and Tropea, C., 2008, “Active Cancellation of Artificially Introduced Tollmien–Schlichting Waves Using Plasma Actuators,” Exp. Fluids, 44(5), pp. 795–806.

[CrossRef]Kuramoto, Y., and Tsuzuki, T., 1976, “Persistent Propagation of Concentration Waves in Dissipative Media Far From Thermal Equilibrium,” Prog. Theor. Phys., 55(2), pp. 356–369.

[CrossRef]Sivashinsky, G. I., 1977, “Nonlinear Analysis of Hydrodynamic Instability in Laminar Flames—I. Derivation of Basic Equations,” Acta Astronaut., 4, pp. 1177–1206.

[CrossRef]Manneville, P., 1995, *Dissipative Structures and Weak Turbulence*, Springer, Berlin, Germany.

Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., and Vattay, G., 2012, “Turbulence?”

*Chaos: Classical and Quantum*, Niels Bohr Institute, Copenhagen, Denmark, Chap. 4.

http://ChaosBook.org/version14ChaosBook.org/version14Charru, F., 2011, *Hydrodynamic Instabilities*, 1st ed., Cambridge University, Cambridge, UK.

Skogestad, S., and Postlethwaite, I., 2005, *Multivariable Feedback Control, Analysis to Design*, 2nd ed, Wiley, Chichester, UK.

Aström, K. J., and Wittenmark, B., 1995, *Adaptive Control*, 2nd ed. Addison-Wesley, Reading, MA.

Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., 1989. “State-Space Solutions to Standard

*H*_{2} and

*H*_{∞} Control Problems,” IEEE Trans. Autom. Control, 34, pp. 831–847.

[CrossRef]Zhou, K., Doyle, J. C., and Glover, K., 2002, *Robust and Optimal Control*. Prentice Hall, Englewood Cliffs, NJ.

el-Hak, M. G., 2007, *Flow Control: Passive, Active, and Reactive Flow Management*, Cambridge University, Cambridge, UK.

Julliet, F., Schmid, P. J., and Huerre, P., 2013, “Control of Amplifier Flows Using Subspace Identification Techniques,” J. Fluid Mech., 725, pp. 522–565.

[CrossRef]Belson, B. A., Semeraro, O., Rowley, C. W., and Henningson, D. S., 2013, “Feedback Control of Instabilities in the Two-Dimensional Blasius Boundary Layer: The Role of Sensors and Actuators,” Phys. Fluids, 25, p. 054106.

[CrossRef]Lewis, F. L., and Syrmos, L. V., 1995, *Optimal Control*, Wiley, New York.

Bewley, T. R., Moin, P., and Temam, R., 2001, “DNS-Based Predictive Control of Turbulence: An Optimal Benchmark for Feedback Algorithms,” J. Fluid Mech., 447(1), pp. 179–225.

[CrossRef]Gunzburger, M., 2003, *Perspectives in Flow Control and Optimization*. SIAM, Philadelphia, PA.

Boyd, S., and Vandenberghe, L., 2004, *Convex Optimization*, Cambridge University, Cambridge, UK.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 2007, *Numerical Recipes 3rd Edition: The Art of Scientific Computing*, 3rd ed., Cambridge University, Cambridge, UK.

Corbett, P., and Bottaro, A., 2001, “Optimal Control of Nonmodal Disturbances in Boundary Layers,” Theor. Comput. Fluid Dyn., 15(2), pp. 65–81.

[CrossRef]Arnold, W. I., and Laub, A., 1984, “Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations,” Proc. IEEE, 72(12), pp. 1746–1754.

[CrossRef]Benner, P., Li, J., and Penzl, T., 2008, “Numerical Solution of Large-Scale Lyapunov Equations, Riccati Equations, and Linear-Quadratic Optimal Control Problems,” Numer. Linear Algebra Appl., 15, pp. 755–777.

[CrossRef]Banks, H. T., and Ito, K., 1991, “A numerical Algorithm for Optimal Feedback Gains in High Dimensional Linear Quadratic Regulator Problems,” SIAM J. Control Optim., 29(3), pp. 499–515.

[CrossRef]Benner, P., 2004, “Solving Large-Scale Control Problems,” Control Syst. IEEE, 24(1), pp. 44–59.

[CrossRef]Bamieh, B., Paganini, F., and Dahleh, M., 2002, “Distributed Control of Spatially Invariant Systems,” IEEE Trans. Autom. Control, 47(7), pp. 1091–1107.

[CrossRef]Högberg, M., and Bewley, T. R., 2000, “Spatially Localized Convolution Kernels for Feedback Control of Transitional Flows,” IEEE 39th Conference on Decision and Control, pp. 3278–3283.

[CrossRef]Akhtar, I., Borggaard, J., Stoyanov, M., and Zietsman, L., 2010, “On Commutation of Reduction and Control: Linear Feedback Control of a Von Kármán Street,” 5th Flow Control Conference, American Institute of Aeronautics and Astronautics, pp. 1–14.

Martensson, K., 2012, “Gradient Methods for Large-Scale and Distributed Linear Quadratic Control,” Ph.D. thesis, Department of Automatic Control, Lund University, Sweden.

Pralits, J. O., and Luchini, P., 2010, “Riccati-Less Optimal Control of Bluff-Body Wakes,” Seventh IUTAM Symposium on Laminar-Turbulent Transition, P.Schlatter and D. S.Henningson, eds., Springer, Dordrecht, Vol. 18, pp. 325–330.

Semeraro, O., Pralits, J. O., Rowley, C. W., and Henningson, D. S., 2013, “Riccati-Less Approach for Optimal Control and Estimation: An Application to Two-Dimensional Boundary Layers,” J. Fluid Mech., 731, pp. 394–417.

[CrossRef]Garcia, C. E., Prett, D. M., and Morari, M., 1989, “Model Predictive Control: Theory and Practice—A Survey,” Automatica, 25(3), pp. 335–348.

[CrossRef]Qin, S. J., and Badgwell, T. A., 2003, “A Survey of Industrial Model Predictive Control Technology,” Control Eng. Pract., 11(7), pp. 733–764.

[CrossRef]Noack, B. R., Morzynski, M., and Tadmor, G., 2011, *Reduced-Order Modelling for Flow Control*, Vol. 528, Springer, Milan, Italy.

Bryd, R. H., Hribar, M. E., and Nocedal, J., 1999, “An Interior Point Algorithm for Large-Scale Nonlinear Programming,” SIAM J. Optim., 9, pp. 877–900.

[CrossRef]Corke, T. C., Enloe, C. L., and Wilkinson, S. P., 2010, “Dielectric Barrier Discharge Plasma Actuators for Flow Control,” Annu. Rev. Fluid Mech., 42(1), pp. 505–529.

[CrossRef]Suzen, Y., Huang, P., Jacob, J., and Ashpis, D., 2005, “Numerical Simulations of Plasma Based Flow Control Applications,” AIAA Paper No. 2005-4633.

Kriegseis, J., 2011, “Performance Characterization and Quantification of Dielectric Barrier Discharge Plasma Actuators,” Ph.D. thesis, TU Darmstadt, Germany.

Coleman, T. F., and Li, Y., 1996, “A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables,” SIAM J. Optim., 6(4), pp. 1040–1058.

[CrossRef]Anderson, B., and Moore, J., 1990, *Optimal Control: Linear Quadratic Methods*, Prentice Hall, New York.

Penrose, R., 1955, “A Generalized Inverse for Matrices,” Math. Proc. Cambridge Philos. Soc., 51, pp. 406–413.

[CrossRef]Luenberger, D. G., 1979, *Introduction to Dynamic System*, Wiley, New York.

Hervé, A., Sipp, D., Schmid, P. J., and Samuelides, M., 2012, “A Physics-Based Approach to Flow Control Using System Identification,” J. Fluid Mech., 702, pp. 26–58.

[CrossRef]Haykin, S., 1986, *Adaptive Filter Theory*, Prentice-Hall, Englewood Cliffs, NJ.

Choi, H., Moin, P., and Kim, J., 1994, “Active Turbulence Control for Drag Reduction in Wall-Bounded Flows,” J. Fluid Mech., 262, pp. 75–110.

[CrossRef]Doyle, J. C., 1978, “Guaranteed Margins for LQG Regulators,” IEEE Trans. Autom. Control, AC-23(4), pp. 756–757.

[CrossRef]Erdmann, R., Pätzold, A., Engert, M., Peltzer, I., and Nitsche, W., 2012, “On Active Control of Laminar-Turbulent Transition on Two-Dimensional Wings,” Philos. Trans. R. Soc., 369, pp. 1382–1395.

[CrossRef]Anderson, B., and Liu, Y., 1989, “Controller Reduction: Concepts and Approaches,” IEEE Trans. Autom. Control, 34, pp. 802–812.

[CrossRef]Akervik, E., Hœpffner, J., Ehrenstein, U., and Henningson, D. S., 2007, “Optimal Growth, Model Reduction and Control in a Separated Boundary-Layer Flow Using Global Eigenmodes,” J. Fluid Mech., 579, pp. 305–314.

[CrossRef]Moore, B., 1981, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Trans. Autom. Control, 26(1), pp. 17–32.

[CrossRef]Rowley, C. W., 2005, “Model Reduction for Fluids, Using Balanced Proper Orthogonal Decomposition,” Int. J. Bifurcation Chaos, 15(03), pp. 997–1013.

[CrossRef]Ilak, M., and Rowley, C. W., 2008, “Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition,” Phys. Fluids, 20, p. 034103.

[CrossRef]Barbagallo, A., Sipp, D., and Schmid, P. J., 2009, “Closed-Loop Control of an Open Cavity Flow Using Reduced Order Models,” J. Fluid Mech., 641, pp. 1–50.

[CrossRef]Semeraro, O., Bagheri, S., Brandt, L., and Henningson, D. S., 2011, “Feedback Control of Three-Dimensional Optimal Disturbances Using Reduced-Order Models,” J. Fluid Mech., 677, pp. 63–102.

[CrossRef]Noack, B. R., Afanasief, K., Morzynski, M., Tadmor, G., and Thiele, F., 2003, “A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake,” J. Fluid Mech., 497, pp. 335–363.

[CrossRef]Siegel, S. G., Siegel, J., Fagley, C., Luchtenburg, D. M., Cohen, K., and McLaughlin, T., 2008, “Low Dimensional Modelling of a Transient Cylinder Wake Using Double Proper Orthogonal Decomposition,” J. Fluid Mech., 610, pp. 1–42.

[CrossRef]Ilak, M., Bagheri, S., Brandt, L., Rowley, C. W., and Henningson, D. S., 2010, “Model Reduction of the Nonlinear Complex Ginzburg—Landau Equation,” SIAM J. Appl. Dyn. Sys., 9(4), pp. 1284–1302.

[CrossRef]Huang, S., and Kim, J., 2008, “Control and System Identification of Separated Flow,” Phys. Fluids, 20, p. 101509.

[CrossRef]Ma, Z., Ahuja, S., and Rowley, C. W., 2011, “Reduced-Order Models for Control of Fluids Using the Eigensystem Realization Algorithm,” Theor. Comput. Fluid Dyn., 25(1–4), pp. 233–247.

[CrossRef]Semeraro, O., Bagheri, S., Brandt, L., and Henningson, D. S., 2013, “Transition Delay in a Boundary Layer Flow Using Active Control,” J. Fluid Mech., 731(9), pp. 288–311.

[CrossRef]Dadfar, R., Fabbiane, N., Bagheri, S., and Henningson, D. S., 2014, “Centralised Versus Decentralised Active Control of Boundary Layer Instabilities,” Flow, Turbul. Combust. to be published.

Quarteroni, A., 2009, *Numerical Models for Differential Problems*, Springer, Milan, Italy.