Whitlow, R., 1995, *Basic Soil Mechanics*, Wiley, New York.

Maugin, G. A., 1992, *The Thermomechanics of Plasticity and Fracture*, Cambridge University Press, Cambridge, UK.

Wong, J. Y., 2010, *Terramechanics and Off-Road Vehicle Engineering*, Elsevier, Oxford, UK.

Bekker, M. G., 1969, *Introduction to Terrain-Vehicle Systems*, The University of Michigan Press, Ann Arbor.

Priddy, J. D., and Willoughby, W. E., 2006, “Clarification of Vehicle Cone Index With Reference to Mean Maximum Pressure,” J. Terramech., 43, pp. 85–96.

[CrossRef]Schmid, I. C., 1995, “Interaction of Vehicle and Terrain Results From 10 Years Research at IKK,” J. Terramech., 32, pp. 3–26.

[CrossRef]Ryu, H. S., Huh, K. S., Bae, D. S., and Choi, J. H., 2003, “Development of a Multibody Dynamics Simulation Tool for Tracked Vehicles (Part I, Efficient Contact and Nonlinear Dynamic Modeling),” JSME Int. J. Ser. C, 46(2), pp. 540–549.

[CrossRef]Garber, M., and Wong, J. Y., 1981, “Prediction of Ground Pressure Distribution Under Tracked Vehicles—Part I. An Analytical Method for Predicting Ground Pressure Distribution,” J. Terramech., 18(1), pp. 1–23.

[CrossRef]Okello, J. A., 1994, “Prediction and Experimental Validation of the Field Tractive Performance of a Rubber Track Unit,” J. Agric. Eng. Int., 59, pp. 163–171.

[CrossRef]Okello, J. A., 1998, “A Theoretical and Experimental Investigation of Rubber Track Performance Models,” J. Agric. Eng. Int., 69, pp. 15–24.

[CrossRef]Rubinstein, D., and Coppock, J. L., 2007, “A Detailed Single-Link Track Model for Multi-Body Dynamic Simulation of Crawlers,” J. Terramech., 4(4), pp. 355–364.

[CrossRef]Park, W. Y., Chang, Y. C., Lee, S. S., Hong, J. H., Park, J. G., and Lee, K. S., 2008, “Prediction of the Tractive Performance of a Flexible Tracked Vehicle,” J. Terramech., 45, pp. 13–23.

[CrossRef]Mao, S. G., and Han, R. P. S., 2008, “Nonlinear Complementarity Equations for Modeling Tire–Soil Interaction—An Incremental Bekker Approach,” J. Sound Vib., 312, pp. 380–398.

[CrossRef]Sandu, C., Worley, M. E., and Morgan, J. P., 2010, “Experimental Study on the Contact Patch Pressure and Sinkage of a Lightweight Vehicle on Sand,” J. Terramech., 47, pp. 343–359.

[CrossRef]Schwanghart, H., 1991, “Measurement of Contact Area, Contact Pressure and Compaction under Tires in Soft Soil,” J. Terramech., 28(4), pp. 309–318.

[CrossRef]Reece, A. R., 1965, “Principles of Soil-Vehicle Mechanics,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 180(1), pp. 45–66.

[CrossRef]Sandu, C., Sandu, A., Chan, B. J., and Ahmadian, M., 2004, “Treating Uncertainties in Multibody Dynamic Systems Using a Polynomial Chaos Spectral Decomposition,” Proceedings of the ASME IMECE 2004, 6th Annual Symposium on “Advanced Vehicle Technology,” Anaheim, CA, Nov. 14–19.

Irani, R. A., Bauer, R. J., and Warkentin, A., 2011, “A Dynamic Terramechanic Model for Small Lightweight Vehicles With Rigid Wheels and Grousers Operating in Sandy Soil,” J. Terramech., 48, pp. 307–318.

[CrossRef]Fossum, A. F., and Brannon, R. M., 2004, “The Sandia Geomodel: Theory and User's Guide,” Technical Report, Sandia National Laboratories, Albuquerque, NM.

de Souza Neto, E. A., Peric, D., and Owen, D. R. J., 2008, *Computational Methods for Plasticity*, Wiley, New York.

Araya, K., and Gao, R., 1995, “A Non-Linear Three-Dimensional Finite Element Analysis of Subsoiler Cutting With Pressurized Air Injection,” J. Agric. Eng. Res., 61, pp. 115–128.

[CrossRef]Mouazen, A. M., and Nemenyi, M., 1999, “Finite Element Analysis of Subsoiler Cutting in Non-Homogeneous Sandy Loam Soil,” Soil Tillage Res., 51, pp. 1–15.

[CrossRef]Rudnicki, J. W., and Rice, J. R., 1975, “Conditions for Localization of Deformation in Pressure-Sensitive Dilatant Materials,” J. Mech. Phys. Solids, 23(6), pp. 371–394.

[CrossRef]Scott, R., 1985, “Plasticity and Constitutive Relations in Soil Mechanics,” J. Geotech. Eng., 111(5), pp. 559–605.

[CrossRef]Goldscheider, M., 1982, “True Triaxial Tests on Dense Sands,” Results of the International Workshop on Constitutive Relations for Soils, Balkema, Rotterdam, The Netherlands, June 9.

An, J., 2010, “Soil Behavior Under Blast Loading,” Ph.D. thesis, The University of Nebraska, Licoln, NE.

Seta, E., Kamegawa, T., and Nakajima, Y., 2003, “Prediction of Snow/Tire Interaction Using Explicit FEM and FVM,” Tire Sci. Technol., 31(3), pp. 173–188.

[CrossRef]Drucker, D. C., Greenberg, J., and Prager, W., 1952, “Extended Limit Design Theorems for Continuous Media,” Q. Appl. Math., 9, pp. 381–389.

Vermeer, P. A., and De Borst, R., 1984, “Non-Associated Plasticity for Soils, Concrete, and Rock,” Heron, 29(3), pp. 1–64.

DiMaggio, F. L., and Sandler, I. S., 1971, “Material Model for Granular Soils,” J. Eng. Mech. Div., 97(EM3), pp. 935–950.

Matsuoka, H., and Nakai, T., 1974, “Stress-Deformation and Strength Characteristics of Soil Under Three Different Principal Stresses,” Proc. Jpn. Soc. Civil Eng., 232, pp. 59–70.

[CrossRef]Brinkgreve, R. B. J., 2005, “Selection of Soil Models and Parameters for Geotechnical Engineering Application,” Proceedings of the Soil Constitutive Models: Evaluation, Selection, and Calibration, Geo-Frontier Conference of ASCE, Austin, Texas, Jan. 24–25, pp. 69–98.

Xia, K., 2011, “Finite Element Modeling of Tire/Terrain Interaction: Application to Predicting Soil Compaction and Tire Mobility,” J. Terramech., 48(2), pp. 113–123.

[CrossRef]Lee, J. H., 2011, “Finite Element Modeling of Interfacial Forces and Contact Stresses of Pneumatic Tire on Fresh Snow for Combined Longitudinal and Lateral Slips,” J. Terramech., 48, pp. 171–197.

[CrossRef]Fassbender, F. R., Fervers, C. W., and Harnisch, C., 1997, “Approaches to Predict the Vehicle Dynamics of Soft Soil,” Int. J. Veh. Mech. Mobility, 27, pp. 173–188.

[CrossRef]Meschke, G., Liu, C., and Mang, H. A., 1996, “Large Strain Finite-Element Analysis of Snow,” J. Eng. Mech., 122, pp. 591–602.

[CrossRef]Gudehus, G., 1973, “Elastoplastiche Stoffgleichungen Guer Trockenen Sand,” Ing.-Arch., 42(3), pp. 151–169.

[CrossRef]William, K. J., and Warnke, E. P., 1975, “Constitutive Model for Triaxial Behavior of Concrete,” ISMES Seminar on Concrete Structures to Triaxial Stresses, Bergamo, Italy, May 1974, pp. 1–30.

Wood, D. M., 1990, *Soil Behaviour and Critical State Soil Mechanics*, Cambridge University Press, Cambridge, UK.

Roscoe, K. H., and Burland, J. B., 1968, “On the Generalized Stress-Strain Behaviour of Wet Clay,” *Engineering Plasticity*, J.Heymann, and F. A.Leckie, eds., Cambridge University Press, Cambridge, UK, pp. 535–609.

Carter, J. P., Booker, J. R., and Wroth, C. P., 1979, “A Critical State Soil Model for Cyclic Loading,” Research Report No. CE 6, Monograph.

Borja, R. I., and Tamagnini, C., 1996, “Cam–Clay Plasticity, Part III: Extension of the Infinitesimal Model to Include Finite Strains,” Comput. Methods Appl. Mech. Eng., 155, pp. 73–95.

[CrossRef]Karim, M. R., and Gnanendran, C. T., 2008, “Review of Visco-Plastic Soil Models for Predicting the Performance of Embankments on Soft Soils,” Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, Oct. 1–6.

Berli, M., Kirby, J. M., Springman, S. M., and Schulin, R., 2003, “Modeling Compaction of Agricultural Subsoils by Tracked Heavy Construction Machinery Under Various Moisture Conditions in Switzerland,” Soil Tillage Res., 73, pp. 57–66.

[CrossRef]Bryson, L. S., and Salehian, A., 2011, “Performance of Constitutive Models in Predicting Behavior of Remolded Clay,” Acta Geotech., 6, pp. 143–154.

[CrossRef]Masin, D., Tamagnini, C., Viggiani, G., and Costanzo, D., 2006, “Directional Response of a Reconstituted Fine-Grained Soil Part II: Performance of Different Constitutive Models,” Int. J. Numer. Anal. Methods Geomech., 30(1), pp. 1303–1336.

[CrossRef]McDowell, G. R., and Hau, K. W., 2004, “A Generalized Modified Cam Clay Model for Clay and Sand,” Granular Matter, 1, pp. 11–16.

Drucker, D. C., Gibson, R. E., and Henkel, D. J., 1957, “Soil Mechanics and Work Hardening Theories of Plasticity,” Trans. Am. Soc. Civil Eng., 122, pp. 338–346.

Chen, W. F., and Baladi, G. Y., 1985, *Soil Plasticity: Theory and Implementation*, Elsevier, Amsterdam.

Sandler, I. S., and Rubin, D., 1979, “An Algorithm and a Modular Subroutine for the Cap Model,” Int. J. Numer. Anal. Methods Geomech., 3, pp. 173–186.

[CrossRef]Simo, J. C., Ju, J. W., Pister, K. S., and Taylor, R. L., 1988, “Assessment of Cap Model: Consistent Return Algorithms and Rate-Dependent Extension,” ASCE J. Eng. Mech., 114(2), pp. 191–218.

[CrossRef]Foster, C. D., Regueiro, R. A., Fossum, A. F., and Borja, R. I., 2005, “Implicit Numerical Integration of a Three-Invariant, Isotropic/Kinematic Hardening Cap Plasticity Model for Geomaterials,” Comput. Methods Appl. Mech. Eng., 194(50–52), pp. 5109–5138.

[CrossRef]Brannon, R. M., Fossum, A. F., and Strack, O. E., 2009, “KAYENTA: Theory and User's Guide,” Sandia Report No. SAND2009-2282.

Wan, R. G., and Guo, P. J., 2001, “Drained Cyclic Behavior of Sand With Fabric Dependence,” J. Eng. Mech., 127(11), pp. 1106–1116.

[CrossRef]Whittle, A. J., and Kavvadas, M. J., 1994, “Formulation of MIT-E3 Constitutive Model for Overconsolidated Clays,” J. Geotech. Eng., 120(1), pp. 173–198.

[CrossRef]Wheeler, S. J., Naatanen, A., Karstunen, M., and Lojander, M., 2003, “An Anisotropic Elastoplastic Model for Soft Clays,” Can. Geotech. J., 40, pp. 403–418.

[CrossRef]Perzyna, P., 1966, “Fundamental Problems in Viscoplasticity,” Adv. Appl. Mech., 9, pp. 243–377.

[CrossRef]Lorefice, R., Etse, G., and Carol, I., 2008, “Viscoplastic Approach for Rate-Dependent Failure Analysis of Concrete Joints and Interfaces,” Int. J. Solids Struct., 45, pp. 2686–2705.

[CrossRef]Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., and Little, D. N., 2011, “Thermodynamic-Based Model for Coupling Temperature-Dependent Viscoelastic, Viscoplastic, and Viscodamage Constitutive Behavior of Asphalt Mixtures,” Int. J. Numer. Anal. Methods Geomech., 48(1), pp. 191–207.

Katona, M. G., 1984, “Verification of Viscoplastic Cap Model,” J. Geotech. Eng., 110(8), pp. 1106–1125.

[CrossRef]Tong, X., and Tuan, C. Y., 2007, “Viscoplastic Cap Model for Soils Under High Strain Rate Loading,” J. Geotech. Geoenviron. Eng., 133(2), pp. 206–214.

[CrossRef]Liu, H., and Ling, H. I., 2007, “Unified Elastoplastic-Viscoplastic Bounding Surface Model of Geosynthetics and its Applications to Geosynthetic Reinforced Soil-Retaining Wall Analysis,” J. Eng. Mech., 133(7), pp. 801–814.

[CrossRef]Yin, J. H., and Graham, J., 1999, “Elastic Viscoplastic Modeling of the Time Dependent Stress–Strain Behavior of Soils,” Can. Geotech. J., 36, pp. 736–745.

[CrossRef]Simo, J. C., and Hughes, T. J. R., 1998, *Computational Inelasticity*, Springer, New York.

Duvaut, G., and Lions, J. L., 1972, “Les Inequations en Mechanique et en Physique,” *Travaux et Recherches*, Vol. 21, Dunod, Paris.

Abdullah, W. S., 2011, “Viscoplastic Finite Element Analysis of Complex Geotechnical Problems,” Jordan J. Civil Eng., 5(2), pp. 302–314.

Saliba, J. E., 1990, “Elastic–Viscoplastic Finite Element Program for Modeling Tire–Soil Interaction,” J. Aircr., 27(4), pp. 350–357.

[CrossRef]Brezzi, F., 1990, “A Discourse on the Stability Conditions for Mixed Finite Element Formulations,” Comput. Methods Appl. Mech. Eng., 82(1–3), pp. 27–57.

[CrossRef]White, J. A., and Borja, R. I., 2008, “Stabilized Low-Order Finite Elements for Coupled Solid-Deformation/Fluid Diffusion and their Application to Fault Zone Transients,” Comput. Methods Appl. Mech. Eng., 197(49–50), pp. 4353–4366.

[CrossRef]Alonso, E. E., Gens, A., and Josa, A., 1990, “A Constitutive Model for Partially Saturated Soils,” Geotechnique, 46(2), pp. 405–430.

[CrossRef]Kohler, R., 2007, “Numerical Modeling of Partially Saturated Soils in the Context of a Three-Phase FE-Formulation,” Ph.D. thesis, University of Innsbruck, Innsbruck, Austria.

Dafalias, Y. F., and Popov, E., 1976, “Plastic Internal Variables Formalism of Cyclic Plasticity,” J. Appl. Mech., 98(4), pp. 645–651.

[CrossRef]Dafalias, Y. F., and Herrmann, L. R., 1982, “Bounding Surface Formulation of Soil and Cyclic Loads,” *Soil Mechanics-Transient and Cyclic Loads*, G. N.Pande, and O. C.Zienkiewicz, eds., Wiley, London.

McVay, M., and Taesiri, Y., 1985, “Cyclic Behavior of Pavement Base Materials,” ASCE J. Geotech. Eng. Div., 111(1), pp. 399–416.

[CrossRef]Hashiguchi, K., and Ueno, M., 1977, “Elastic-Plastic Constitutive Laws of Granular Materials,” Proceedings of the 9th International Conference on Soil mechanics and Foundation Engineering, Tokyo, Japan, July 10–15.

Aboim, C. A., and Roth, W. H., 1982, “Bounding Surface Plasticity Applied to Cyclic Loading of Sand,” Proceedings of the International Symposium on Numerical Models, September, Zurich, Switzerland, pp. 65–72.

Bardet, J. P., 1985, “Application of Bounding Surface Plasticity to Cyclic Sand Behavior,” Proceedings of the 2nd International Conference on Soil Dynamics and Earthquake Engineering, pp. 3–16.

Wong, H., Morvan, M., and Branque, D., 2009, “A 13-Parameter Model for Unsaturated Soil Based on Bounding Surface Plasticity,” J. Rock Mech. Geotech. Eng., 2(2), pp. 135–142.

Belytschlo, T., Liu, W. K., and Moran, B., 2000, *Nonlinear Finite Elements for Continua and Structures*, Wiley, New York.

Li, S., and Liu, W. K., 2002, “Meshfree and Particle Methods and their Applications,” Appl. Mech. Rev., 55(1), pp. 1–34.

[CrossRef]Tutumluer, E., Huang, H., Hashash, Y., and Ghaboussi, J., 2006, “Aggregate Shape Effects on Ballast Tamping and Railroad Track Lateral Stability,” AREMA Annual Conference, Loisville, KY, Sept. 17–20.

Reeves, T., Biggers, S., Joseph, P., Summers, J. D., and Ma, J., 2010, “Exploration of Discrete Element Method to Dynamically Model Sandy Terrain,” Proceedings of the SAE 2010 World Congress & Exhibition, Detroit, MI, Apr. 12–15, pp. 67–74.

Knuth, M. A., Johnson, J. B., Hopkins, M. A., Sullivan, R. J., and Moore, J. M., 2012, “Discrete Element Modeling of a Mars Exploration Rover Wheel in Granular Material,” J. Terramech., 49, pp. 27–36.

[CrossRef]Oida, A., and Momozu, M., 2002, “Simulation of Soil Behavior and Reaction by Machine Part by Means of DEM,” Agric. Eng. Int.: CIGR J. Sci. Res. Dev., 4, pp. 1–7.

Khulief, Y. A., and Shabana, A. A., 1987, “A Continuous Force Model for the Impact Analysis of Flexible Multi-Body Systems,” Mech. Mach. Theory, 22(3), pp. 213–224.

[CrossRef]Asaf, Z., Rubinstein, D., and Shmulevich, I., 2006, “Evaluation of Link-Track Performances Using DEM,” J. Terramech., 43(2), pp. 141–161.

[CrossRef]Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kanamori, H., Aoki, S., Yokoyama, T., Shimizu, H., Miyasaka, J., and Ohdoi, K., 2010, “Discrete Element Method Analysis of Single Wheel Performance for a Small Lunar Rover on Sloped Terrain,” J. Terramech., 47, pp. 307–321.

[CrossRef]Li, W., Huang, Y., Cui, Y., Dong, S., and Wang, J., 2010, “Trafficability Analysis of Lunar Mare Terrain by Means of the Discrete Element Method for Wheeled Rover Locomotion,” J. Terramech., 47, pp. 161–172.

[CrossRef]Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S., 2008, “Lagrangian MeshFree Particle Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model,” Int. J. Numer. Anal. Methods Geomech., 32, pp. 1537–1570.

[CrossRef]Chen, J. S., Pan, C., and Wu, C. T., 1997, “Large Deformation Analysis of Rubber Based on a Reproducing Kernel Particle Method,” Comput. Mech., 19, pp. 211–227.

[CrossRef]Nakashima, H., and Oida, A., 2004, “Algorithm and Implementation of Soil–Tire Contact Analysis Code Based on Dynamic FE–DE Method,” J. Terramech., 41, pp. 127–137.

[CrossRef]El-Gindy, M., Lescoe, R., Oijer, F., Johansson, I., and Trivedl, M., 2011, “Soil Modeling Using FEA and SPH Techniques for a Tire-Soil Interaction,” Proceedings of the ASME 2011 IDET/CIE, Washington, DC, Aug. 28–31.

Lescoe, R., El-Gindy, M., Koudela, K., 2010, “Tire–Soil Modeling Using Finite Element Analysis and Smooth Particle Hydrodynamics Techniques,” Proceedings of the 12th International Conference on Advanced Vehicle and Tire Technologies, Montreal, Canada, Aug. 15–18, pp. 3–18.

Shoop, S. A., 2001, “Finite Element Modeling of Tire–Terrain Interaction,” U.S. Army Corps of Engineers, Engineering Research and Development Center, Technical Report No. ERDC/CRREL TR-01-16.

Chi, L., and Tessier, S., 1995, “Finite Element Analysis of Soil Compaction Reduction With High Flotation Tires,” Proceedings of the 5th North American Conference of the ISTVS, Saskatoon, Saskatchewan, Canada, pp. 167–176.

Ding, L., Deng, Z., Gao, K., Nagatani, K., and Yoshida, K., 2011, “Planetary Rovers' Wheel–Soil Interaction Mechanics: New Challenges and Applications for Wheeled Mobile Robots,” Intell. Serv. Rob., 4(1), pp. 17–38.

[CrossRef]Azimi, A., Hirschkorn, M., Ghotbi, B. J., Kovecses, J., Angeles, J., Radziszewski, P., Tiechmann, M., Courchnesne, M., and Gonthier, Y., 2010, “Simulation-Based Rover Performance Evaluation and Effects of Terrain Modeling,” In Proceedings of CASI Astronautics Conference ASTRO 2010, May 4–6.

Liu, C. H., and Wong, J. Y., 1996, “Numerical Simulations of Tire–Soil Interaction Based on Critical State Soil Mechanics,” J. Terramech., 33(5), pp. 209–221.

[CrossRef]Liu, C. H., Wong, J. Y., and Mang, H. A., 2000, “Large Strain Finite Element Analysis of Sand: Model, Algorithm and Application to Numerical Simulation of Tire–Sand Interaction,” Comput. Struct., 74(3), pp. 253–265.

[CrossRef]Fervers, C. W., 2004, “Improved FEM Simulation Model for Tire–Soil Interaction,” J. Terramech., 41(2), pp. 87–100.

[CrossRef]Haehnel, R. B., and Shoop, S. A., 2004, “A Macroscale Model for Low Density Snow Subjected to Rapid Loading,” Cold Reg. Sci. Technol., 40(3), pp. 193–211.

[CrossRef]Chiroux, R. C., Foster, W. A., Johnson, C. E., Shoop, S. A., and Raper, R. L., 2005, “Three-Dimensional Finite Element Analysis of Soil Interaction With a Rigid Wheel,” Appl. Math. Comput., 162(2), pp. 707–722.

[CrossRef]Shoop, S. A., Kestler, K., and Haehnel, R., 2006, “Finite Element Modeling of Tires on Snow,” Tire Sci. Technol., 34(1), pp. 2–37.

[CrossRef]Hambleton, J. P., and Drescher, A., 2008, “Modeling Wheel-Induced Rutting in Soils: Indentation,” J. Terramech., 45(6), pp. 201–211.

[CrossRef]Hambleton, J. P., and Drescher, A., 2009, “Modeling Wheel-Induced Rutting in Soils: Rolling,” J. Terramech., 46(2), pp. 35–47.

[CrossRef]Grujicic, M., Bell, W. C., Arakere, G., and Haque, I., 2009, “Finite Element Analysis of the Effect of Ep-Armouring on the Off-Road Braking and Sharp-Turn Performance of a High-Mobility Multi-Purpose Wheeled Vehicle,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 223(11), pp. 1419–1434.

[CrossRef]Mohsenimanesh, A., Ward, S. M., Owende, P. O. M., and Javadi, A., 2009, “Modelling of Pneumatic Tractor Tyre Interaction With Multi-Layered Soil,” Biosyst. Eng., 104(2), pp. 191–198.

[CrossRef]Hambleton, J. P., and Drescher, A., 2009, “On Modeling a Rolling Wheel in the Presence of Plastic Deformation as a Three- or Two-Dimensional Process,” Int. J. Mech. Sci., 51(11), pp. 846–855.

[CrossRef]Grujicic, M., Marvi, H., Arakere, G., and Haque, I., 2010, “A Finite Element Analysis of Pneumatic–Tire/Sand Interactions During Off-Road Vehicle Travel,” Multidiscip. Model. Mater. Struct., 6(2), pp. 284–308.

Pruiksma, J. P., Kruse, G. A. M., Teunissen, J. A. M., and van Winnendael, M. F. P., 2011, “Tractive Performance Modelling of the Exomars Rover Wheel Design on Loosely Packed Soil Using the Coupled EulerianLagrangian Finite Element Technique,” Proceedings of the 11th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, The Netherlands, Apr. 12–14.

Li, H., and Schindler, C., 2012, “Three-Dimensional Finite Element and Analytical Modelling of Tyre–Soil Interaction,” Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn., 227(1), pp. 42–60.

[CrossRef]Nankali, N., Namjoo, M., and Maleki, M. R., 2012, “Stress Analysis of Tractor Tire Interaction With Soft Soil using 2D Finite Element Method,” Int. J. Adv. Des. Manuf. Technol., 5(3), pp. 107–111.

Li, H., and Schindler, C., 2012, “Application of Analytical and Finite Element Method in Tyre–Soil Modelling,” Int. J. Heavy Veh. Syst., 19(4), pp. 333–354.

[CrossRef]Xia, K., and Yang, Y., 2012, “Three-Dimensional Finite Element Modeling of Tire/Ground Interaction,” Int. J. Numer. Anal. Methods Geomech., 36(4), pp. 498–516.

[CrossRef]Carter, J. P., Booker, J. R., and Wroth, P., 1982, “A Critical State Soil Model for Cyclic Loading,” *Soil Mechanics—Transient and Cyclic Loads*, G. N.Pande, O. C.Zienkewicz, eds., Wiley, London, pp. 219–252.

Shabana, A. A., 2012, *Computational Continuum Mechanics*, 2nd ed., Cambridge University Press, Cambridge, UK.

Shabana, A. A., 2005, *Dynamics of Multibody Systems*, 3rd ed., Cambridge University Press, Cambridge, UK.

Shabana, A. A., 1998, “Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics,” Nonlinear Dyn., 16(3), pp. 293–306.

[CrossRef]Nachbagauer, K., 2012, “Development of Shear and Cross Section Deformable Beam Finite Elements Applied to Large Deformation and Dynamic Problems,” Ph.D. thesis, Johannes Kepler University, Lenz, Austria.

Shabana, A. A., Hamed, A. M., Mohamed, A. A., Jayakumar, P., and Letherwood, M. D., 2012, “Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry,” ASME J. Comput. Nonlinear Dyn., 7(1), p. 011008.

[CrossRef]