Bladh, J. R., Pierre, C., Castanier, M. P., and Kruse, M. J., 2002, “Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling,” ASME J. Eng. Gas Turbines Power, 124(2), pp. 311–324.

[CrossRef]Brillouin, L., 1953, *Wave Propagation in Periodic Structures*, Dover, New York.

Ewins, D. J., 1973, “Vibration Characteristics of Bladed Disc Assemblies,” J. Mech. Eng. Sci., 15(3), pp. 165–186.

[CrossRef]Ewins, D. J., 1976, “Vibration Modes of Mistuned Bladed Disks,” ASME J. Eng. Power, 98(3), pp. 349–355.

[CrossRef]Dye, R. C. F., and Henry, T. A., 1969, “Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies,” ASME J. Eng. Power, 91(3), pp. 182–188.

[CrossRef]Ewins, D. J., 1969, “The Effect of Detuning Upon the Forced Vibrations of Bladed Disks,” J. Sound Vib., 9(1), pp. 65–79.

[CrossRef]Fabunmi, J., 1980, “Forced Vibration of a Single Stage Axial Compressor Rotor,” ASME J. Eng. Power, 102(2), pp. 322–329.

[CrossRef]Orris, R. M., and Petyt, M., 1974, “A Finite Element Study of Harmonic Wave Propagation in Periodic Structures,” J. Sound Vib., 33(2), pp. 223–236.

[CrossRef]Thomas, D. L., 1974, “Standing Waves in Rotationally Periodic Structures,” J. Sound Vib., 37(2), pp. 288–290.

[CrossRef]Thomas, D. L., 1979, “Dynamics of Rotationally Periodic Structures,” Int. J. Numer. Methods Eng., 14(1), pp. 81–102.

[CrossRef]Wildheim, J., 1981, “Excitation of Rotating Circumferentially Periodic Structures,” J. Sound Vib., 75(3), pp. 397–416.

[CrossRef]Wildheim, J., 1981, “Vibrations of Rotating Circumferentially Periodic Structures,” Q. J. Mech. Appl. Math., 34(2), pp. 213–229.

[CrossRef]Fricker, A. J., and Potter, S., 1981, “Transient Forced Vibration of Rotationally Periodic Structures,” Int. J. Numer. Methods Eng., 17(7), pp. 957–974.

[CrossRef]Williams, F. W., 1986, “An Algorithm for Exact Eigenvalue Calculations for Rotationally Periodic Structures,” Int. J. Numer. Methods Eng., 23(4), pp. 609–622.

[CrossRef]Williams, F. W., 1986, “Exact Eigenvalue Calculations for Structures With Rotationally Periodic Substructures,” Int. J. Numer. Methods Eng., 23(4), pp. 695–706.

[CrossRef]Cai, C. W., Cheung, Y. K., and Chan, H. C., 1990, “Uncoupling of Dynamic Equations for Periodic Structures,” J. Sound Vib., 139(2), pp. 253–263.

[CrossRef]Shen, I. Y., 1994, “Vibration of Rotationally Periodic Structures,” J. Sound Vib., 172(4), pp. 459–470.

[CrossRef]Kim, M., Moon, J., and Wickert, J. A., 2000, “Spatial Modulation of Repeated Vibration Modes in Rotationally Periodic Structures,” ASME J. Vib. Acoust., 122(1), pp. 62–68.

[CrossRef]Kaveh, A., 2013, “Introduction to Symmetry and Regularity,” *Optimal Analysis of Structures by Concepts of Symmetry and Regularity*, Springer, New York, pp. 1–14.

Shi, C., and Parker, R. G., “Vibration Mode and Natural Frequency Structure of General Cyclically Symmetric Systems,” Proc. R. Soc. A (submitted).

Olson, B., and Shaw, S., 2010, “Vibration Absorbers for a Rotating Flexible Structure With Cyclic Symmetry: Nonlinear Path Design,” Nonlinear Dyn., 60(1–2), pp. 149–182.

[CrossRef]Gozen, S., Olson, B., Shaw, S., and Pierre, C., 2012, “Resonance Suppression in Multi-Degree-of-Freedom Rotating Flexible Structures Using Order-Tuned Absorbers,” ASME J. Vib. Acoust., 134(6), p. 061016.

[CrossRef]Petrov, E. P., 2004, “A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks,” ASME J. Turbomach., 126(1), pp. 175–183.

[CrossRef]Jacquet-Richardet, G., Ferraris, G., and Rieutord, P., 1996, “Frequencies and Modes of Rotating Flexible Bladed Disc-Shaft Assemblies: A Global Cyclic Symmetry Approach,” J. Sound Vib., 191(5), pp. 901–915.

[CrossRef]Castanier, M. P., Ottarsson, G., and Pierre, C., 1997, “A Reduced Order Modeling Technique for Mistuned Bladed Disks,” ASME J. Vib. Acoust., 119(3), pp. 439–447.

[CrossRef]Omprakash, V., and Ramamurti, V., 1988, “Natural Frequencies of Bladed Disks by a Combined Cyclic Symmetry and Rayleigh–Ritz Method,” J. Sound Vib., 125(2), pp. 357–366.

[CrossRef]Laxalde, D., Thouverez, F., and Lombard, J. P., 2007, “Dynamical Analysis of Multi-Stage Cyclic Structures,” Mech. Res. Commun., 34(4), pp. 379–384.

[CrossRef]Laxalde, D., Lombard, J. P., and Thouverez, F., 2007, “Dynamics of Multistage Bladed Disks Systems,” ASME J. Eng. Gas Turbines Power, 129(4), pp. 1058–1064.

[CrossRef]Bladh, J. R., 2001, “Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.

Chang, J. Y., and Wickert, J. A., 2002, “Measurement and Analysis of Modulated Doublet Mode Response in Mock Bladed Disks,” J. Sound Vib., 250(3), pp. 379–400.

[CrossRef]Lin, J., and Parker, R. G., 1999, “Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration,” ASME J. Vib. Acoust., 121(3), pp. 316–321.

[CrossRef]Lin, J., and Parker, R. G., 2000, “Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets,” J. Sound Vib., 233(5), pp. 921–928.

[CrossRef]Parker, R. G., 2000, “A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration,” J. Sound Vib., 236(4), pp. 561–573.

[CrossRef]Kiracofe, D. R., and Parker, R. G., 2007, “Structured Vibration Modes of General Compound Planetary Gear Systems,” ASME J. Vib. Acoust., 129(1), pp. 1–16.

[CrossRef]Wu, X., and Parker, R. G., 2008, “Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear,” ASME J. Appl. Mech., 75(3), p. 031014.

[CrossRef]Eritenel, T., and Parker, R. G., 2009, “Modal Properties of Three-Dimensional Helical Planetary Gears,” J. Sound Vib., 325(1), pp. 397–420.

[CrossRef]Guo, Y., and Parker, R. G., 2010, “Purely Rotational Model and Vibration Modes of Compound Planetary Gears,” Mech. Mach. Theory, 45(3), pp. 365–377.

[CrossRef]Parker, R. G., and Wu, X., 2010, “Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear,” J. Sound Vib., 329(11), pp. 2265–2275.

[CrossRef]Cooley, C. G., and Parker, R. G., 2012, “Vibration Properties of High-Speed Planetary Gears With Gyroscopic Effects,” ASME J. Vib. Acoust., 134(6), p. 061014.

[CrossRef]Bahk, C. J., and Parker, R. G., 2011, “Analytical Solution for the Nonlinear Dynamics of Planetary Gears,” ASME J. Comput. Nonlinear Dyn., 6(2), p. 021007.

[CrossRef]Cooley, C. G., and Parker, R. G., 2013, “Mechanical Stability of High-Speed Planetary Gears,” Int. J. Mech. Sci., 69, pp. 59–71.

[CrossRef]Lin, J., and Parker, R. G., 2002, “Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation,” J. Sound Vib., 249(1), pp. 129–145.

[CrossRef]Parker, R. G., and Wu, X., 2012, “Parametric Instability of Planetary Gears Having Elastic Continuum Ring Gears,” ASME J. Vib. Acoust., 134(4), p. 041001.

[CrossRef]Wu, X., and Parker, R. G., 2006, “Vibration of Rings on a General Elastic Foundation,” J. Sound Vib., 295(1), pp. 194–213.

[CrossRef]Ivanov, V. P., 1971, “Some Problems of the Vibrations of Blading Rings and Other Elastic Bodies With Cyclic Symmetry,” Prochn. Din. Aviats. Dvigatelei, 6, pp. 113–132.

Yu, R. C., and Mote, C. D., Jr., 1987, “Vibration and Parametric Excitation in Asymmetric Circular Plates Under Moving Loads,” J. Sound Vib., 119(3), pp. 409–427.

[CrossRef]Parker, R. G., and Mote, C. D., Jr., 1991, “Tuning of the Natural Frequency Spectrum of a Circular Plate by In-Plate Stress,” J. Sound Vib., 145(1), pp. 95–110.

[CrossRef]Tseng, J. G., and Wickert, J. A., 1994, “On the Vibration of Bolted Plate and Flange Assemblies,” ASME J. Vib. Acoust., 116(4), pp. 468–473.

[CrossRef]Shahab, A. A. S., and Thomas, J., 1987, “Coupling Effects of Disc Flexibility on the Dynamic Behaviour of Multi Disc-Shaft Systems,” J. Sound Vib., 114(3), pp. 435–452.

[CrossRef]Kim, H., and Shen, I.-Y., 2009, “Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects,” ASME J. Vib. Acoust., 131(2), p. 021007.

[CrossRef]Kim, H., Colonnese, N. T. K., and Shen, I. Y., 2009, “Mode Evolution of Cyclic Symmetric Rotors Assembled to Flexible Bearings and Housing,” ASME J. Vib. Acoust., 131(5), p. 051008.

[CrossRef]Shaw, S. W., and Pierre, C., 2006, “The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures,” ASME J. Comput. Nonlinear Dyn., 1(1), pp. 13–24.

[CrossRef]Shi, C., and Parker, R. G., 2012, “Modal Properties and Stability of Centrifugal Pendulum Vibration Absorber Systems With Equally Spaced, Identical Absorbers,” J. Sound Vib., 331(21), pp. 4807–4824.

[CrossRef]Shi, C., Parker, R. G., and Shaw, S. W., 2013, “Tuning of Centrifugal Pendulum Vibration Absorbers for Translational and Rotational Vibration Reduction,” Mech. Mach. Theory, 66, pp. 56–65.

[CrossRef]Shi, C., and Parker, R. G., 2013, “Modal Structure of Centrifugal Pendulum Vibration Absorber Systems With Multiple Cyclically Symmetric Groups of Absorbers,” J. Sound Vib., 332(18), pp. 4339–4353.

[CrossRef]Shi, C., and Parker, R. G., 2014, “Vibration Modes and Natural Frequency Veering in Three-Dimensional, Cyclically Symmetric Centrifugal Pendulum Vibration Absorber Systems,” ASME J. Vib. Acoust., 136(1), p. 011014.

[CrossRef]Cornwell, P. J., and Bendiksen, O. O., 1987, “Localization of Vibrations in Large Space Reflectors,” AIAA J., 25(2), pp. 219–226.

[CrossRef]Chivukula, V. B., and Rhoads, J. F., 2010, “Microelectromechanical Bandpass Filters Based on Cyclic Coupling Architectures,” J. Sound Vib., 329(20), pp. 4313–4332.

[CrossRef]Tran, D. M., 2001, “Component Mode Synthesis Methods Using Interface Modes: Application to Structures With Cyclic Symmetry,” Comput. Struct., 79(2), pp. 209–222.

[CrossRef]Tran, D. M., 2009, “Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry,” Comput. Struct., 87(17), pp. 1141–1153.

[CrossRef]Dickens, J. M., and Pool, K. V., 1992, “Modal Truncation Vectors and Periodic Time Domain Analysis Applied to a Cyclic Symmetry Structure,” Comput. Struct., 45(4), pp. 685–696.

[CrossRef]Wu, G., and Yang, H., 1994, “The Use of Cyclic Symmetry in Two-Dimensional Elastic Stress Analysis by BEM,” Int. J. Solids Struct., 31(2), pp. 279–290.

[CrossRef]He, Y., Yang, H., Xu, M., and Deeks, A. J., 2013, “A Scaled Boundary Finite Element Method for Cyclically Symmetric Two-Dimensional Elastic Analysis,” Comput. Struct., 120, pp. 1–8.

[CrossRef]Stewart, I., and Parker, M., 2008, “Periodic Dynamics of Coupled Cell Networks II: Cyclic Symmetry,” Dyn. Syst., 23(1), pp. 17–41.

[CrossRef]Golubitsky, M., and Schaeffer, D., 1985, “Singularities and Groups in Bifurcation Theory. Volume I” (Applied Mathematical Sciences Volume 51), Springer, New York.

McWeeny, R., 1963, “Topic 1: Mathematical Techniques,” Symmetry: An Introduction to Group Theory and its Applications (The International Encyclopedia of Physical Chemistry and Chemical Physics), Vol. 3, H.Jones, ed., Macmillan, New York.

Fässler, A., and Stiefel, E., 1992, *Group Theoretical Methods and Their Applications*, Birkhäuser, Boston.

Sagan, B. E., 2001, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd ed., Vol. 203 (Graduate Texts in Mathematics), Springer, New York.

Banakh, L. Y., and Kempner, M., 2010, *Vibrations of Mechanical Systems With Regular Structure*, Springer, New York.

Evensen, D. A., 1976, “Vibration Analysis of Multi-Symmetric Structures,” AIAA J., 14(4), pp. 446–453.

[CrossRef]Anderson, P. W., 1958, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev., 109(5), pp. 1492–1505.

[CrossRef]Hodges, C. H., 1982, “Confinement of Vibration by Structural Irregularity,” J. Sound Vib., 82(3), pp. 411–424.

[CrossRef]Hodges, C. H., and Woodhouse, J., 1983, “Vibration Isolation From Irregularity in a Nearly Periodic Structure: Theory and Measurements,” J. Acoust. Soc. Am., 74(3), pp. 894–905.

[CrossRef]Pierre, C., and Dowell, E. H., 1987, “Localization of Vibrations by Structural Irregularity,” J. Sound Vib., 114(3), pp. 549–564.

[CrossRef]Happawana, G. S., Bajaj, A. K., and Nwokah, O. D. I., 1993, “A Singular Perturbation Analysis of Eigenvalue Veering and Modal Sensitivity in Perturbed Linear Periodic Systems,” J. Sound Vib., 160(2), pp. 225–242.

[CrossRef]Wei, S. T., and Pierre, C., 1988, “Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry I: Free Vibrations,” J. Vib., Acoust., Stress, Reliab. Des., 110(4), pp. 429–438.

[CrossRef]Wei, S. T., and Pierre, C., 1988, “Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry II: Forced Vibrations,” J. Vib., Acoust., Stress, Reliab. Des., 110(4), pp. 439–449.

[CrossRef]Valero, N. A., and Bendiksen, O. O., 1986, “Vibration Characteristics of Mistuned Shrouded Blade Assemblies,” ASME J. Eng. Gas Turbines Power, 108(2), pp. 293–299.

[CrossRef]Castanier, M., and Pierre, C., 2006, “Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions,” AIAA J. Propul. Power, 22(2), pp. 384–396.

[CrossRef]Lim, S. H., Pierre, C., and Castanier, M. P., 2006, “Predicting Blade Stress Levels Directly From Reduced-Order Vibration Models of Mistuned Bladed Disks,” ASME J. Turbomach., 128(1), pp. 206–210.

[CrossRef]Vakais, A. F., and Cetinkaya, C., 1993, “Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry,” SIAM J. Appl. Math., 53(1), pp. 265–282.

[CrossRef]Vakakis, A. F., 1992, “Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry,” Acta Mech., 95(1–4), pp. 197–226.

[CrossRef]Georgiades, F., Peeters, M., Kerschen, G., Golinval, J. C., and Ruzzene, M., 2009, “Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry,” AIAA J., 47(4), pp. 1014–1025.

[CrossRef]King, M. E., and Vakakis, A. F., 1995, “A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization,” Nonlinear Dyn., 7(1), pp. 85–104.

[CrossRef]Samaranayake, S., Bajaj, A. K., and Nwokah, O. D. I., 1995, “Amplitude Modulated Dynamics and Bifurcations in the Resonant Response of a Structure With Cyclic Symmetry,” Acta Mech., 109(1–4), pp. 101–125.

[CrossRef]Samaranayake, S., and Bajaj, A. K., 1997, “Subharmonic Oscillations in Harmonically Excited Mechanical Systems With Cyclic Symmetry,” J. Sound Vib., 206(1), pp. 39–60.

[CrossRef]Samaranayake, S., Samaranayake, G., and Bajaj, A. K., 2000, “Resonant Vibrations in Harmonically Excited Weakly Coupled Mechanical Systems With Cyclic Symmetry,” Chaos, Solitons Fractals, 11(10), pp. 1519–1534.

[CrossRef]Vakakis, A. F., Nayfeh, T., and King, M., 1993, “A Multiple-Scales Analysis of Nonlinear Localized Modes in a Cyclic Periodic System,” ASME J. Appl. Mech., 60(2), pp. 388–397.

[CrossRef]Briggs, W. L., and Henson, V. E., 1995, *The DFT: Owner's Manual for the Discrete Fourier Transform*, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Proakis, J. G., and Manolakis, D. K., 2006, *Digital Signal Processing*, 4th ed., Prentice Hall, Upper Saddle River, NJ.

Dickinson, B. W., and Steiglitz, K., 1982, “Eigenvectors and Functions of the Discrete Fourier Transform,” IEEE Trans. Acoust. Speech Signal Process, 30(1), pp. 25–31.

[CrossRef]Olson, B. J., 2006, “Order-Tuned Vibration Absorbers for Systems With Cyclic Symmetry With Applications to Turbomachinery,” Ph.D. dissertation, Michigan State University, East Lansing, MI.

Olson, B. J., Shaw, S. W., and Pierre, C., 2005, “Order-Tuned Vibration Absorbers for Cyclic Rotating Flexible Structures,” ASME Paper No. DETC2005-84641.

[CrossRef]Oson, B. J., and Shaw, S. W., 2008, “Vibration Absorbers for Cyclic Rotating Flexible Structures: Linear and Nonlinear Tuning,” ASME Paper No. SMASIS08-632.

[CrossRef]Gozen, S., Olson, B., Shaw, S., and Pierre, C., 2009, “Resonance Suppression in Multi-DOF Rotating Flexible Structures Using Order-Tuned Absorbers,” ASME Paper No. DETC2009-86287.

[CrossRef]Davis, P. J., 1979, *Circulant Matrices*, 2nd ed., Wiley, New York.

Óttarsson, G. S., 1994, “Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.

Leon, S. J., 2009, *Linear Algebra With Applications*, 8th ed., Pearson, Upper Saddle River, NJ.

Meirovitch, L., 1997, *Principles and Techniques of Vibrations*, Prentice Hall, Upper Saddle River, NJ.

Wagner, L. F., and Griffin, J. H., 1996, “Forced Harmonic Response of Grouped Blade Systems: Part I–Discrete Theory,” ASME J. Eng. Gas Turbines Power, 118(1), pp. 130–136.

[CrossRef]Brown, J. W., and Churchill, R. V., 1996, *Complex Variables and Applications*, 6th ed., McGraw-Hill, New York.

Abramowitz, M., and Stegun, I. A., 1965, *Handbook of Mathematical Functions*, Dover, New York.

Allen, J. B., and Rabiner, L. R., 1977, “A Unified Approach to Short-Time Fourier Analysis and Synthesis,” Proc. IEEE, 65(11), pp. 1558–1564.

[CrossRef]Burrus, C. S., and Parks, T. W., 1985, *DFT/FFT and Convolution Algorithms*, Wiley, New York.

Champeney, D. C., 1987, *A Handbook of Fourier Theorems*, Cambridge University, Cambridge, UK.

Cooley, J., and Tukey, J., 1965, “An Algorithm for the Machine Computation of the Complex Fourier Series,” Math. Comput., 19, pp. 297–301.

[CrossRef]Duhamel, P., and Vetterli, M., 1990, “Fast Fourier Transforms: A Tutorial Review and State of the Art,” Signal Process, 19, pp. 259–299.

[CrossRef]Heideman, M. T., Johnson, D. H., and Burrus, C. S., 1984, “Gauss and the History of the FFT,” IEEE Signal Process Mag., 1, pp. 14–21.

[CrossRef]Johnson, S. G., and Frigo, M., 2007, “A Modified Split-Radix FFT With Fewer Arithmetic Operations,” IEEE Trans. Signal Process, 55(1), pp. 111–119.

[CrossRef]Kolba, D., and Parks, T., 1977, “A Prime Factor FFT Algorithm Using High-Speed Convolution,” IEEE Trans. Acoust. Speech Signal Process, 29(4), pp. 281–294.

[CrossRef]Chang, J. Y., and Wickert, J. A., 2001, “Response of Modulated Doublet Modes to Traveling Wave Excitation,” J. Sound Vib., 242(1), pp. 69–83.

[CrossRef]Proakis, J. G., and Manolakis, D. G., 1988, *Introduction to Digital Signal Processing*, Macmillan, New York.

Williams, C. S., 1986, *Designing Digital Filters*, Prentice-Hall, Englewood Cliffs, NJ.

Óttarsson, G. S., and Pierre, C., 1996, “A Transfer Matrix Approach to Vibration Localization in Mistuned Blade Assemblies,” J. Sound Vib., 197(5), pp. 589–618.

[CrossRef]Bladh, R., Castanier, M. P., and Pierre, C., 2001, “Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part I: Theoretical Models,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 89–99.

[CrossRef]Bladh, R., Castanier, M. P., and Pierre, C., 2001, “Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part II: Application,” ASME J. Eng. Gas Turbines Power, 123(1), pp. 100–108.

[CrossRef]Bladh, R., Castanier, M. P., and Pierre, C., 1999, “Reduced Order Modeling and Vibration Analysis of Mistuned Bladed Disk Assemblies With Shrouds,” ASME J. Eng. Gas Turbines Power, 121(3), pp. 515–522.

[CrossRef]Nayfeh, A. H., and Balachandran, B., 1989, “Modal Interactions in Dynamical and Structural Systems,” ASME Appl. Mech. Rev., 42(11S), pp. S175–S201.

[CrossRef]Nayfeh, T., and Vakakis, A. F., 1994, “Subharmonic Travelling Waves in a Geometrically Nonlinear Circular Plate,” Int. J. Non-Linear Mech., 29(2), pp. 233–246.

[CrossRef]