0
Review Article

Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods

[+] Author and Article Information
Brian L. V. Bak

Department of Mechanical and
Manufacturing Engineering,
Aalborg University,
Fibigerstraede 16,
DK-9220 Aalborg East, Denmark;
Siemens Wind Power,
Assensvej 11,
Aalborg East DK-9220, Denmark
e-mail: brianbak@m-tech.aau.dk

Carlos Sarrado

AMADE, Polytechnic School,
University of Girona,
Campus Montilivi s/n,
Girona 17071, Spain
e-mail: carlos.sarrado@udg.edu

Albert Turon

AMADE, Polytechnic School,
University of Girona,
Campus Montilivi s/n,
Girona 17071, Spain
e-mail: albert.turon@udg.edu

Josep Costa

AMADE, Polytechnic School,
University of Girona,
Campus Montilivi s/n,
Girona 17071, Spain
e-mail: josep.costa@udg.edu

In the original paper [23], the factor δ·n was not presented due to a misprint [135].

Manuscript received December 2, 2013; final manuscript received April 28, 2014; published online June 20, 2014. Assoc. Editor: Toshio Nakamura.

Appl. Mech. Rev 66(6), 060803 (Jun 20, 2014) (24 pages) Paper No: AMR-13-1097; doi: 10.1115/1.4027647 History: Received December 02, 2013; Revised April 28, 2014

Advanced design methodologies enable lighter and more reliable composite structures or components. However, efforts to include fatigue delamination in the simulation of composites have not yet been consolidated. Besides that, there is a lack of a proper categorization of the published methods in terms of their predictive capabilities and the principles they are based on. This paper reviews the available experimental observations, the phenomenological models, and the computational simulation methods for the three phases of delamination (initiation, onset, and propagation). It compiles a synthesis of the current state-of-the-art while identifying the unsolved problems and the areas where research is missing. It is concluded that there is a lack of knowledge, or there are unsolved problems, in all categories in the field, but particularly in the category of computational methods, which in turn prevents its inclusion in the structural design process. Suggested areas where short-term and midterm research should be focused to overcome the current situation are identified.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pagano, N. J., and Schoeppner, G. A., 2000, “Delamination of Polymer Matrix Composites: Problems and Assessment,” Compr. Compos. Mater., 2, pp. 433–528. [CrossRef]
Davies, G. A. O., and Olsson, R., 2004, “Impact on Composite Structures,” Aeronaut. J., 108(1089), pp. 541–563.
SAE International, 2012, “Polymer Matrix Composites: Materials Usage, Design, and Analysis,” Composite Materials Handbook, Vol. 3, SAE International, Warrendale, PA.
Niu, C., 1999, “Airframe Structural Design: Practical Design Information and Data on Aircraft Structures,” Adaso/Adastra Engineering Center, Granada Hills, CA.
Pradhan, S. C., and Tay, T. E., 1998, “Three-Dimensional Finite Element Modelling of Delamination Growth in Notched Composite Laminates Under Compression Loading,” Eng. Fract. Mech., 60(2), pp. 157–171. [CrossRef]
Yang, B., Mall, S., and Ravi-Chandar, K., 2001, “A Cohesive Zone Model for Fatigue Crack Growth in Quasibrittle Materials,” Int. J. Solids Struct., 38(22–23), pp. 3927–3944. [CrossRef]
Nguyen, O., Repetto, E. A., Ortiz, M., and Radovitzky, R. A., 2001, “A Cohesive Model of Fatigue Crack Growth,” Int. J. Fract., 110(4), pp. 351–369. [CrossRef]
Roe, K. L., and Siegmund, T., 2003, “An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation,” Eng. Fract. Mech., 70(2), pp. 209–232. [CrossRef]
Maiti, S., and Geubelle, P. H., 2005, “A Cohesive Model for Fatigue Failure of Polymers,” Eng. Fract. Mech., 72(5), pp. 691–708. [CrossRef]
Abdul-Baqi, A., Schreurs, P. J. G., and Geers, M. G. D., 2005, “Fatigue Damage Modeling in Solder Interconnects Using a Cohesive Zone Approach,” Int. J. Solids Struct., 42(3–4), pp. 927–942. [CrossRef]
Robinson, P., Galvanetto, U., Tumino, D., Bellucci, G., and Violeau, D., 2005, “Numerical Simulation of Fatigue-Driven Delamination Using Interface Elements,” Int. J. Numer. Methods Eng., 63(13), pp. 1824–1848. [CrossRef]
Koutsourelakis, P. S., Kuntiyawichai, K., and Schuëller, G. I., 2006, “Effect of Material Uncertainties on Fatigue Life Calculations of Aircraft Fuselages: A Cohesive Element Model,” Eng. Fract. Mech., 73(9), pp. 1202–1219. [CrossRef]
Tumino, D., and Cappello, F., 2007, “Simulation of Fatigue Delamination Growth in Composites With Different Mode Mixtures,” J. Compos. Mater., 41(20), pp. 2415–2441. [CrossRef]
Turon, A., Costa, J., Camanho, P. P., and Dávila, C. G., 2007, “Simulation of Delamination in Composites Under High-Cycle Fatigue,” Composites Part A, 38(11), pp. 2270–2282. [CrossRef]
Mabson, G. E., Deobald, L. R., Dopker, B., Hoyt, D. M., Baylor, J. S., and Graesser, D. L., 2007, “Fracture Interface Elements for Static and Fatigue Analysis,” 16th International Conference on Composite Materials (ICCM 16).
Abaqus 6.13, 2013, Abaqus 6.13 User's Manual, Dassault Systèmes Simulia Corp., Providence, RI.
Khoramishad, H., Crocombe, A. D., Katnam, K. B., and Ashcroft, I. A., 2010, “Predicting Fatigue Damage in Adhesively Bonded Joints Using a Cohesive Zone Model,” Int. J. Fatigue, 32(7), pp. 1146–1158. [CrossRef]
Naghipour, P., Bartsch, M., and Voggenreiter, H., 2011, “Simulation and Experimental Validation of Mixed Mode Delamination in Multidirectional CF/PEEK Laminates Under Fatigue Loading,” Int. J. Solids Struct., 48(6), pp. 1070–1081. [CrossRef]
Pirondi, A., and Moroni, F., 2010, “A Progressive Damage Model for the Prediction of Fatigue Crack Growth in Bonded Joints,” J. Adhes., 86(5–6), pp. 501–521. [CrossRef]
Harper, P. W., and Hallett, S. R., 2010, “A Fatigue Degradation Law for Cohesive Interface Elements—Development and Application to Composite Materials,” Int. J. Fatigue, 32(11), pp. 1774–1787. [CrossRef]
Krueger, R., 2011, “Development and Application of Benchmark Examples for Mode II Static Delamination Propagation and Fatigue Growth Predictions,” Langley Research Center, Technical Report No. NASA/CR-2011-217305.
Krueger, R., 2011, “Development of Benchmark Examples for Static Delamination Propagation and Fatigue Growth Predictions,” Langley Research Center, Technical Report No. NASA/NF-1676L-11493.
Beaurepaire, P., and Schuëller, G. I., 2011, “Modeling of the Variability of Fatigue Crack Growth Using Cohesive Zone Elements,” Eng. Fract. Mech., 78(12), pp. 2399–2413. [CrossRef] [PubMed]
Kawashita, L. F., and Hallett, S. R., 2012, “A Crack Tip Tracking Algorithm for Cohesive Interface Element Analysis of Fatigue Delamination Propagation in Composite Materials,” Int. J. Solids Struct., 49(21), pp. 2898–2913. [CrossRef]
Landry, B., and LaPlante, G., 2012, “Modeling Delamination Growth in Composites Under Fatigue Loadings of Varying Amplitudes,” Composites Part B, 43(2), pp. 533–541. [CrossRef]
Suresh, S., 1998, Fatigue of Materials, Cambridge University Press, Cambridge, UK.
ASTM D6115-97, 2011, “Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA. [CrossRef]
Qian, J., and Fatemi, A., 1996, “Mixed Mode Fatigue Crack Growth: A Literature Survey,” Eng. Fract. Mech., 55(6), pp. 969–990. [CrossRef]
Bold, P. E., Brown, M. W., and Allen, R. J., 1992, “A Review of Fatigue Crack Growth in Steels Under Mixed Mode I and II Loading,” Fatigue Fract. Eng. Mater. Struct., 15(10), pp. 965–977. [CrossRef]
Decreuse, P.-Y., Pommier, S., Gentot, L., and Pattofatto, S., 2009, “History Effect in Fatigue Crack Growth Under Mixed-Mode Loading Conditions,” Int. J. Fatigue, 31(11), pp. 1733–1741. [CrossRef]
Paris, P. C., Gomez, M. P., and Anderson, W. E., 1961, “A Rational Analytic Theory of Fatigue,” Trend Eng., 13(1), pp. 9–14.
Paris, P., and Erdogan, F., 1963, “A Critical Analysis of Crack Propagation Laws,” ASME J. Basic Eng., 85(4), pp. 528–533. [CrossRef]
Williams, M., 1959, “The Stresses Around a Fault or Crack in Dissimilar Media,” Bull. Seismol. Soc. Am., 49(2), pp. 199–204.
Hutchinson, J. W., and Suo, Z., 1992, “Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech., 29(63), pp. 63–191. [CrossRef]
Barenblatt, G. I., 1959, “Concerning Equilibrium Cracks Forming During Brittle Fracture: The Stability of Isolated Cracks,” Appl. Math. Mech., 23(3), pp. 622–636. [CrossRef]
Barenblatt, G., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Advances in Applied Mechanics, Vol. 7, Elsevier, Moscow, Russia, pp. 55–129.
Ortiz, M., and Pandolfi, A., 1999, “Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis,” Int. J. Numer. Methods Eng., 44(9), pp. 1267–1282. [CrossRef]
Turon, A., Camanho, P. P., Costa, J., and Dávila, C. G., 2006, “A Damage Model for the Simulation of Delamination in Advanced Composites Under Variable-Mode Loading,” Mech. Mater., 38(11), pp. 1072–1089. [CrossRef]
Asp, L. E., Sjögren, A., and Greenhalgh, E. S., 2001, “Delamination Growth and Thresholds in a Carbon/Epoxy Composite Under Fatigue Loading,” J. Compos. Technol. Res., 23(2), pp. 55–68. [CrossRef]
Sjögren, A., and Asp, L. E., 2002, “Effects of Temperature on Delamination Growth in a Carbon/Epoxy Composite Under Fatigue Loading,” Int. J. Fatigue, 24, pp. 179–184. [CrossRef]
O'Brien, T. K., 1984, “Mixed-Mode Strain Energy Release Rate Effects on Edge Delamination of Composites,” Effects of Defects on Composite Materials, American Society for Testing and Materials, West Conshohocken, PA, pp. 125–142.
O'Brien, T. K., 1988, “Fatigue Delamination Behavior of PEEK Thermoplastic Composite Laminates,” J. Reinf. Plast. Compos., 7, pp. 341–359. [CrossRef]
O'Brien, T. K., Murri, G. B., and Salpekar, S. A., 1989, “Interlaminar Shear Fracture Toughness and Fatigue Thresholds for Composite Materials,” Composite Materials: Fatigue and Fracture, Vol. 2, American Society for Testing and Materials, West Conshohocken, PA, pp. 222–250.
Argüelles, A., Viña, J., Canteli, A. F., and Bonhomme, J., 2010, “Fatigue Delamination, Initiation, and Growth, Under Mode I and II of Fracture in a Carbon-Fiber Epoxy Composite,” Polym. Compos., 31(4), pp. 700–706. [CrossRef]
Martin, R. H., and Murri, G. B., 1990, “Characterization of Mode I and Mode II Delamination Growth and Thresholds in AS4/PEEK Composites,” Composite Materials: Testing and Design, Vol. 9, American Society for Testing and Materials, Philadelphia, PA, pp. 251–270.
Zhang, J., Peng, L., Zhao, L., and Fei, B., 2012, “Fatigue Delamination Growth Rates and Thresholds of Composite Laminates Under Mixed Mode Loading,” Int. J. Fatigue, 40, pp. 7–15. [CrossRef]
Mall, S., Yun, K., and Kochnar, N. K., 1989, “Characterization of Matrix Toughness Effects on Cyclic Delamination Growth in Graphite Fiber Composites,” Composite Materials: Fatigue and Fracture, Vol. 2., P. A. Lagace, ed., ASTM International, Ann Arbor, MI, pp. 296–310.
König, M., Krüger, R., Kussmaul, K., Von Alberti, M., Gädke, M.,1997, “Characterizing Static and Fatigue Interlaminar Fracture Behavior of a First Generation Graphite/Epoxy Composite,” Composite Materials: Testing and Design, Vol. 13, S. J.Hooper, ed., American Society for Testing and Materials, West Conshohocken, PA, pp. 60–81.
Tanaka, H., and Tanaka, K., 1995, “Mixed-Mode Growth of Interlaminar Cracks in Carbon/Epoxy Laminates Under Cyclic Loading,” Proceedings of the 10th International Conference on Composite Materials, Vol. 1, Whistler, Canada, pp. 181–189.
Dahlen, C., and Springer, G. S., 1994, “Delamination Growth in Composites under Cyclic Loads,” J. Compos. Mater., 28(8), pp. 732–781. [CrossRef]
Hansen, P., and Martin, R., 1999, “DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552,” European Research Office of the U.S. Army, London, UK, Final Technical Report Contract Number N68171-98-M-5177.
Kenane, M., and Benzeggagh, M. L., 1997, “Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites Under Fatigue Loading,” Compos. Sci. Technol., 57, pp. 597–605. [CrossRef]
Matsuda, S., Hojo, M., and Ochiai, S., 1997, “Mesoscopic Fracture Mechanism of Mode II Delamination Fatigue Crack Propagation in Interlayer-Toughened CFRP,” JSME Int. J., 40, pp. 423–429. [CrossRef]
Hojo, M., Matsuda, S., and Ochiai, S., 1997, “Delamination Fatigue Crack Growth in CFRP Laminates Under Mode I and II Loadings—Effect of Mesoscopic Structure on Fracture Mechanism,” Proceedings of the International Conference on Fatigue of Composites, Goald Coast, Australia, pp. 15–26.
Hojo, M., Tanaka, K., Gustafson, C. G., and Hayashi, R., 1987, “Effect of Stress Ratio on Near-Threshold Propagation of Delamination Fatigue Cracks in Unidirectional CFRP,” Compos. Sci. Technol., 29, pp. 273–292. [CrossRef]
Hojo, M., Ochiai, S., Gustafson, C. G., and Tanaka, K., 1994, “Effect of Matrix Resin on Delamination Fatigue Crack Growth in CFRP Laminates,” Eng. Fract. Mech., 49(1), pp. 35–47. [CrossRef]
Matsubara, G., Ono, H., and Tanaka, K., 2006, “Mode II Fatigue Crack Growth From Delamination in Unidirectional Tape and Satin-Woven Fabric Laminates of High Strength GFRP,” Int. J. Fatigue, 28(10), pp. 1177–1186. [CrossRef]
Adams, D. F., Zimmermann, R. S., and Odem, E. M., 1987, “Frequency and Load Ratio Effects on Critical Strain Energy Release Rate and Thresholds of Graphite Epoxy Composites,” Toughened Composites, American Society for Testing and Materials, New York, pp. 242–242.
Trethewey, B. R., Gillespie, J. W., and Carlsson, L. A., 1988, “Mode II Cyclic Delamination Growth,” J. Compos. Mater., 22(5), pp. 459–483. [CrossRef]
Allegri, G., Jones, M. I., Wisnom, M. R., and Hallet, S. R., 2011, “A New Semi-Empirical Model for Stress Ratio Effect on Mode II Fatigue Delamination Growth,” Composites Part A, 42(7), pp. 733–740. [CrossRef]
Hojo, M., Matsushita, Y., Tanaka, M., and Adachi, T., 2012, “Interfacial Fatigue Crack Propagation in Microscopic Model Composite Using Bifiber Shear Specimens,” Composites Part A, 43(2), pp. 239–246. [CrossRef]
Argüelles, A., Viña, J., Fernández-Canteli, A., Viña, I., and Bonhomme, J., 2011, “Influence of the Matrix Constituent on Mode I and Mode II Delamination Toughness in Fiber-Reinforced Polymer Composites Under Cyclic Fatigue,” Mech. Mater., 43(1), pp. 62–67. [CrossRef]
Shindo, Y., Inamoto, A., Narita, F., and Horiguchi, K., 2006, “Mode I Fatigue Delamination Growth in GFRP Woven Laminates at Low Temperatures,” Eng. Fract. Mech., 73(14), pp. 2080–2090. [CrossRef]
Hojo, M., Matsuda, S., Fiedler, B., Kawada, T., Moriya, K., Ochiai, S., and Aoyama, H., 2002, “Mode I and II Delamination Fatigue Crack Growth Behavior of Alumina Fiber/Epoxy Laminates in Liquid Nitrogen,” Int. J. Fatigue, 24(2–4), pp. 109–118. [CrossRef]
Van Paepegem, W., and Degrieck, J., 2002, “Effects of Load Sequence and Block Loading on the Fatigue Response of Fiber Reinforced Composites,” Mech. Adv. Mater. Struct., 9(1), pp. 19–35. [CrossRef]
Beghini, M., Bertini, L., and Forte, P., 2006, “Experimental Investigation on the Influence of Crack Front to Fiber Orientation on Fatigue Delamination Growth Rate Under Mode II,” Compos. Sci. Technol., 66(2), pp. 240–247. [CrossRef]
Peng, L., Zhang, J., Zhao, L., Bao, R., Yang, H., and Fei, B., 2011, “Mode I Delamination Growth of Multidirectional Composite Laminates Under Fatigue Loading,” J. Compos. Mater., 45(10), pp. 1077–1090. [CrossRef]
Schön, J., 2000, “A Model of Fatigue Delamination in Composites,” Compos. Sci. Technol., 60(4), pp. 553–558. [CrossRef]
Nakai, Y., and Hiwa, C., 2002, “Effects of Loading Frequency and Environment on Delamination Fatigue Crack Growth of CFRP,” Int. J. Fatigue, 24(2–4), pp. 161–170. [CrossRef]
Stutz, S., Cugnoni, J., and Botsis, J., 2011, “Studies of Mode I Delamination in Monotonic and Fatigue Loading Using FBG Wavelength Multiplexing and Numerical Analysis,” Compos. Sci. Technol., 71(4), pp. 443–449. [CrossRef]
Hwang, W., and Han, K. S., 1989, “Interlaminar Fracture Behavior and Fiber Bridging of Glass-Epoxy Composite Under Mode I Static and Cyclic Loadings,” J. Compos. Mater., 23, pp. 396–430. [CrossRef]
Bonhomme, J., Argüelles, A., Viña, J., and Viña, I., 2009, “Fractography and Failure Mechanisms in Static Mode I and Mode II Delamination Testing of Unidirectional Carbon Reinforced Composites,” Polym. Test., 28(6), pp. 612–617. [CrossRef]
Gilchrist, M., and Svensson, N., 1995, “A Fractographic Analysis of Delamination Within Multidirectional Carbon/Epoxy Laminates,” Compos. Sci. Technol., 55(2), pp. 195–207. [CrossRef]
Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S., and Endo, Y., 2006, “Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates With Self-Same Epoxy Interleaf,” Int. J. Fatigue, 28(10), pp. 1154–1165. [CrossRef]
Fernández, M., de Moura, M., da Silva, L., and A. T.Marques, 2013, “Mixed-Mode I+II Fatigue/Fracture Characterization of Composite Bonded Joints Using the Single-Leg Bending Test,” Composites Part A, 44, pp. 63–69. [CrossRef]
Fernández, M. V., de Moura, M. F., da Silva, L. F., and Marques, A. T., 2013, “Characterization of Composite Bonded Joints Under Pure Mode II Fatigue Loading,” Compos. Struct., 95, pp. 222–226. [CrossRef]
Vinciquerra, A. J., Davidson, B. D., Schaff, J. R., and Smith, S. L., 2002, “Determination of the Mode II Fatigue Delamination Toughness of Laminated Composites,” J. Reinf. Plast. Compos., 21(7), pp. 663–677. [CrossRef]
Shivakumar, K., Chen, H., Abali, F., Le, D., and Davis, C., 2006, “A Total Fatigue Life Model for Mode I Delaminated Composite Laminates,” Int. J. Fatigue, 28(1), pp. 33–42. [CrossRef]
Brunner, A., Murphy, N., and Pinter, G., 2009, “Development of a Standardized Procedure for the Characterization of Interlaminar Delamination Propagation in Advanced Composites Under Fatigue Mode I Loading Conditions,” Eng. Fract. Mech., 76(18), pp. 2678–2689. [CrossRef]
Wang, X., and Chung, D. D. L., 1997, “Sensing Delamination in a Carbon Fiber Polymer-Matrix Composite During Fatigue by Electrical Resistance Measurement,” Polym. Compos., 18(6), pp. 692–700. [CrossRef]
Stelzer, S., Brunner, A., Argüelles, A., Murphy, N., and Pinter, G., 2011, “Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure,” Compos. Sci. Technol., 72(10), pp. 1102–1107. [CrossRef]
Barboni, R., Carbonaro, R., and Gaudenzi, P., 1999, “The Effects of Delamination on the Fatigue Behavior of Composite Structures,” J. Compos. Mater., 33(3), pp. 267–303. [CrossRef]
Krueger, R., Cvitkovich, M. K., O'Brien, T. K., and Minguet, P. J., 2000, “Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading,” J. Compos. Mater., 34(15), pp. 1263–1300. [CrossRef]
Krueger, R., Paris, I. L., O'Brien, T. K., and Minguet, P. J., 2001, “Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations,” Technical Report No. NASA/TM-2001-210842.
Van Paepegem, W., and Degrieck, J., 2001, “Fatigue Degradation Modelling of Plain Woven Glass/Epoxy Composites,” Composites Part A, 32(10), pp. 1433–1441. [CrossRef]
Prinz, R., and Cao, L., 1989, “Analysis of Strain-Energy-Release Rates for Unidirectional Graphite/Epoxy Laminates With Separated Central Plies Under Fatigue Loading,” Proceedings of Seventh International Conference on Composite Materials ICCM-VII, Beijing, China.
Casas-Rodriguez, J., Ashcroft, I., and Silberschmidt, V., 2008, “Delamination in Adhesively Bonded CFRP Joints: Standard Fatigue, Impact-Fatigue and Intermittent Impact,” Compos. Sci. Technol., 68(12), pp. 2401–2409. [CrossRef]
Kardomateas, G. A., and Malik, B., 1997, “Fatigue Delamination Growth Under Cyclic Compression in Glass/Epoxy Composite Beam/Plates,” Polym. Compos., 18(2), pp. 169–178. [CrossRef]
Martin, R., 2003, “Delamination Fatigue,” Fatigue in Composites, B.Harris, ed., Woodhead Publishing Ltd and CRC, Cambridge, UK, pp. 173–188.
ASTM E647-13, 2013, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM International, West Conshohocken, PA.
O'Brien, T. K., Chawan, A. D., Krueger, R., and Paris, I. L., 2002, “Transverse Tension Fatigue Life Characterization Through Flexure Testing of Composite Materials,” Int. J. Fatigue, 24(2–4), pp. 127–145. [CrossRef]
May, M., and Hallett, S. R., 2010, “A Combined Model for Initiation and Propagation of Damage Under Fatigue Loading for Cohesive Interface Elements,” Composites Part A, 41(12), pp. 1787–1796. [CrossRef]
Reifsnider, K., 1998, “Durability and Damage Tolerance of Fibrous Composite Systems,” Handbook of Composites, Springer US, Vol. 35, Springer, US, pp. 794–809. [CrossRef]
Gdoutos, E. E., 2005, Fracture Mechanics, Springer, The Netherlands.
Martin, R. H., 1989, “Evaluation of the Split Cantilever Beam for Mode III Delamination Testing,” Technical Report No. NASA/TM 101562.
Jones, R., Pitt, S., A. J.Bunner, and Hui, D., 2012, “Application of the Hartman-Schijve Equation to Represent Mode I and Mode II Fatigue Delamination Growth in Composites,” Compos. Struct., 94(4), pp. 1343–1351. [CrossRef]
Bennati, S., and Valvo, P., 2006, “Delamination Growth in Composite Plates Under Compressive Fatigue Loads,” Compos. Sci. Technol., 66(2), pp. 248–254. [CrossRef]
Rans, C., Alderliesten, R., and Benedictus, R., 2011, “Misinterpreting the Results: How Similitude can Improve our Understanding of Fatigue Delamination Growth,” Compos. Sci. Technol., 71(2), pp. 230–238. [CrossRef]
Ramkumar, R., and Whitcomb, J., 1985, “Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy,” Delamination and Debonding of Materials, American Society for Testing and Materials, Philadelphia, PA, pp. 315–335.
Gustafson, C., and Hojo, M., 1987, “Delamination Fatigue Crack Growth in Unidirectional Graphite/Epoxy Laminates,” J. Reinf. Plast. Compos., 6(1), pp. 36–52. [CrossRef]
Russell, A., and Street, K., 1989, “Predicting Interlaminar Fatigue Crack Growth Rates in Compressively Loaded Laminates,” Delamination and Debonding of Materials, American Society for Testing and Materials, Philadelphia, pp. 162–178.
Kardomateas, G. A., Pelegri, A. A., and Malik, B., 1995, “Growth of Internal Delaminations Under Cyclic Compression in Composite Plates,” J. Mech. Phys. Solids, 43(6), pp. 847–868. [CrossRef]
Blanco, N., Gamstedt, E. K., Asp, L. E., and Costa, J., 2004, “Mixed-Mode Delamination Growth in Carbon-Fibre Composite Laminates Under Cyclic Loading,” Int. J. Solids Struct., 41(15), pp. 4219–4235. [CrossRef]
Allegri, G., Wisnom, M., and Hallett, S., 2013, “A New Semi-Empirical Law for Variable Stress-Ratio and Mixed-Mode Fatigue Delamination Growth,” Composites Part A, 48, pp. 192–200. [CrossRef]
Andersons, J., Hojo, M., and Ochiai, S., 2004, “Empirical Model for Stress Ratio Effect on Fatigue Delamination Growth Rate in Composite Laminates,” Int. J. Fatigue, 26(6), pp. 597–604. [CrossRef]
Martin, R. H., 1991, “Characterizing Mode I Fatigue Delamination of Composite Materials,” Proceedings/Em Div/ASCE Mechanics Computing in 1990s and Beyond, Columbus, OH, May 20–22, pp. 943–948.
Murri, G. B., Schaff, J. R., and Dobyns, A. L., 2001, “Fatigue and Damage Tolerance Analysis of a Hybrid Composite Tapered Flexbeam,” American Helicopter Society, 57th Annual Forum, Washington, DC, Technical Report No. 20010059024, http://ntrs.nasa.gov.
Krueger, R., 2010, “Development of a Benchmarck Example for Delamination Fatigue Growth Prediction,” Technical Report No. NASA/CR-2010-216723.
May, M., and Hallett, S. R., 2011, “An Advanced Model for Initiation and Propagation of Damage Under Fatigue Loading—Part I: Model Formulation,” Compos. Struct., 93(9), pp. 2340–2349. [CrossRef]
Donadon, M. V., Lauda, D. P., and de Almeida, S. F. M., 2012, “A Damage Model for Prediction of Static and Fatigue-Driven Delamination in Composite Laminates,” 6th Workshop on Computational Approaches to Material Modelling and Optimisation, Joinville, Brasil.
Siegmund, T., 2004, “A Numerical Study of Transient Fatigue Crack Growth by Use of an Irreversible Cohesive Zone Model,” Int. J. Fatigue, 26(9), pp. 929–939. [CrossRef]
Moroni, F., and Pirondi, A., 2011, “A Procedure for the Simulation of Fatigue Crack Growth in Adhesively Bonded Joints Based on the Cohesive Zone Model and Different Mixed-Mode Propagation Criteria,” Eng. Fract. Mech., 78(8), pp. 1808–1816. [CrossRef]
Maiti, S., and Geubelle, P. H., 2006, “Cohesive Modeling of Fatigue Crack Retardation in Polymers: Crack Closure Effect,” Eng. Fract. Mech., 73(1), pp. 22–41. [CrossRef]
Peerlings, R. H. J., Brekelmans, W. A. M., de Borst, R., and Geers, M. G. D., 2000, “Gradient-Enhanced Damage Modelling of High-Cycle Fatigue,” Int. J. Numer. Methods Eng., 49(12), pp. 1547–1569. [CrossRef]
Serebrinsky, S., and Ortiz, M., 2005, “A Hysteretic Cohesive-Law Model of Fatigue-Crack Nucleation,” Scr. Mater., 53(10), pp. 1193–1196. [CrossRef]
Rybicki, E. F., and Kanninen, M. F., 1977, “A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral,” Eng. Fract. Mech., 9(4), pp. 931–938. [CrossRef]
Krueger, R., 2004, “Virtual Crack Closure Technique: History, Approach, and Applications,” Appl. Mech. Rev., 57(2), pp. 109–143. [CrossRef]
Matos, P. P. L., McMeeking, R. M., Charalambides, P. G., and Drory, M. D., 1989, “A Method for Calculating Stress Intensities in Bimaterial Fracture,” Int. J. Fract., 40(4), pp. 235–254. [CrossRef]
Berggreen, C., 2004, “Damage Tolerance of Debonded Sandwich Structures,” Ph.D. thesis, Technical University of Denmark, Department of Mechanical Engineering, Maritime Engineering, Lyngby.
Dugdale, D. C., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8, pp. 100–104. [CrossRef]
Needleman, A., 1987, “A Continuum Model for Void Nucleation by Inclusion Debonding,” ASME J. Appl. Mech., 54(3), pp. 525–531. [CrossRef]
Elices, M., Guinea, G. V., Gómez, J., and Planas, J., 2002, “The Cohesive Zone Model: Advantages, Limitations and Challenges,” Eng. Fract. Mech., 69(2), pp. 137–163. [CrossRef]
Park, K., and Paulino, G. H., 2011, “Cohesive Zone Models: a Critical Review of Traction-Separation Relationships Across Fracture Surfaces,” Appl. Mech. Rev., 64(6), p. 060802. [CrossRef]
Goutianos, S., and Sørensen, B. F., 2012, “Path Dependence of Truss-Like Mixed Mode Cohesive Laws,” Eng. Fract. Mech., 91, pp. 117–132. [CrossRef]
de Andrés, A., Pérez, J. L., and Ortiz, M., 1999, “Elastoplastic Finite Element Analysis of Three-Dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading,” Int. J. Solids Struct., 36(15), pp. 2231–2258. [CrossRef]
Van Paepegem, W., Degrieck, J., and De Baets, P., 2001, “Finite Element Approach for Modelling Fatigue Damage in Fibre-Reinforced Composite Materials,” Composites Part B, 32(7), pp. 575–588. [CrossRef]
Rice, J. R., 1980, “The Mechanics of Earthquake Rupture,” Physics of the Earth's Interior, Proc. Int. Sch. Phys. Enrico Fermi, A. M. Dziewonski and E. Boschi, eds., North-Holland, Amsterdam, pp. 555–649.
Turon, A., Costa, J., Camanho, P., and Maimí, P., 2008, “Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials,” Mechanical Response of Composites (Vol. 10 of Computational Methods in Applied Sciences), Springer, Netherlands, pp. 77–97.
Turon, A., Camanho, P. P., Costa, J., and Renart, J., 2010, “Accurate Simulation of Delamination Growth Under Mixed-Mode Loading Using Cohesive Elements: Definition of Interlaminar Strengths and Elastic Stiffness,” Compos. Struct., 92(8), pp. 1857–1864. [CrossRef]
Sarrado, C., Turon, A., Renart, J., and Urresti, I., 2012, “Assessment of Energy Dissipation During Mixed-Mode Delamination Growth Using Cohesive Zone Models,” Composites Part A, 43(11), pp. 2128–2136. [CrossRef]
López-Armas, C. A., Galvanetto, U., and Robinson, P., 2007, “A Simple Model for the Evaluation of Fatigue Degradation Laws for Interface Elements,” 16th International Conference on Composite Materials, Kyoto, Japan.
López Armas, C. A., 2008, “Evaluation of Constitutive Laws for the Computer Simulation of Fatigue-Driven Delamination in Composite Materials,” Ph.D. thesis, Imperial College London, Department of Aeronautics, London.
Turon, A., Davila, C., Camanho, P., and Costa, J., 2007, “An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models,” Eng. Fract. Mech., 74(10), pp. 1665–1682. [CrossRef]
Towashiraporn, P., Subbarayan, G., and Desai, C. S., 2005, “A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces,” Int. J. Solids Struct., 42(15), pp. 4468–4483. [CrossRef]
Beaurepaire, P., 2013, Personal Correspondence With the Author About the Work in Ref. [23].
Needleman, A., 1990, “An Analysis of Tensile Decohesion Along an Interface,” J. Mech. Phys. Solids, 38(3), pp. 289–324. [CrossRef]
Gower, M., Sims, G., Lee, R., Frost, S., Stone, M., and Wall, M., 2005, “Assessment and Criticality of Defects and Damage in Material Systems,” National Physical Laboratory, Measurement Good Practice Guide Technical Report No. 78.
Krueger, R., Paris, I. L., O'Brien, T. K., and Minguet, P. J., 2002, “Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations,” J. Compos. Technol. Res., 24(2), pp. 56–79. [CrossRef]
O'Brien, T. K., 2007, “Towards a Delamination Fatigue Methodology for Composite Materials,” 16th International Conference on Composite Materials., Kyoto, Japan.
Camanho, P., Turon, A., and Costa, J., 2008, “Delamination Propagation Under Cyclic Loading,” Delamination Behaviour of Composites, Woodhead Publishing in Materials, Cambridge, UK., pp. 485–513.
Wöhler, A., 1870, “Über die Festigkeits-versuche mit Eisen und Stahl,” Ernst & Korn, Berlin.

Figures

Grahic Jump Location
Fig. 1

Cyclic variation of the energy release rate with the minimum and maximum energy release rates used for determining the load ratio, R

Grahic Jump Location
Fig. 2

Typical fatigue crack growth curve

Grahic Jump Location
Fig. 8

Schematic representation of the influence of matrix toughness in delamination onset (a) and propagation (b) curves

Grahic Jump Location
Fig. 7

Schematic representation of the influence of the load ratio in delamination onset (a) and propagation (b) curves. Subscripts 1 and 2 refer to two different loading conditions with different load ratios

Grahic Jump Location
Fig. 6

Schematic representation based on the results reported in Ref. [40] of the influence of the mixed-mode ratio in delamination onset (a) and propagation (b) curves taking into account the nonmonotonic variation of the Paris law coefficients and the independence of the fatigue threshold Gth with the mixed-mode ratio

Grahic Jump Location
Fig. 5

Schematic representation of the variation of the Paris law coefficient m as a function of the mixed-mode ratio (qualitative representation from the data presented in Refs. [39,40,49] for carbon/epoxy laminates)

Grahic Jump Location
Fig. 4

Schematic representation of the influence of the mixed-mode ratio in delamination onset (a) and propagation (b) curves

Grahic Jump Location
Fig. 3

Typical fatigue crack onset curve

Grahic Jump Location
Fig. 9

Comparison between the fatigue crack propagation curves given by a model capturing the entire propagation curve and a Paris' law enclosed by the threshold energy release rate and the fracture toughness

Grahic Jump Location
Fig. 10

Exponential and bilinear equivalent one dimensional cohesive laws

Grahic Jump Location
Fig. 11

Propagation damage model approaches exemplified by a moment loaded DCB specimen. Left: loading–unloading hysteresis damage model. Right: Envelope load damage model.

Grahic Jump Location
Fig. 12

Sketch of the cohesive zone and damage distribution, (a) damage distribution in the DPZ before fatigue damage, (b) after fatigue damage, and (c) after static equilibrium is obtained

Grahic Jump Location
Fig. 13

Equivalent one dimensional bilinear law with a stiffness degrading damage parameter

Grahic Jump Location
Fig. 14

Equivalent one dimensional bilinear law with a traction degrading damage parameter

Grahic Jump Location
Fig. 15

Equivalent one dimensional bilinear law with an onset traction degrading damage parameter

Grahic Jump Location
Fig. 16

Cylinder model for testing performance of envelope load damage models [132]. M is the applied moment, r is the cylinder radius, θ is the angle of rotation, and Δl is the distance between spring elements.

Grahic Jump Location
Fig. 17

Bilinear cohesive law for loading–unloading hysteresis models with a predefined quasi-static cohesive law. The subscripts on the symbols indicate the cycle number.

Grahic Jump Location
Fig. 18

Cohesive law for initiation and propagation simulation. The active domain for the initiation model and propagation model are shown.

Grahic Jump Location
Fig. 19

Loading–unloading hysteresis model for initiation of delamination [115]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In