Review Articles

Size Effect Law and Critical Distance Theories to Predict the Nominal Strength of Quasibrittle Structures

[+] Author and Article Information
Pere Maimí

Associate Professor
e-mail: pere.maimi@udg.edu

Emilio V. González

Assistant Professor
e-mail: emilio.gonzalez@udg.edu

Narcís Gascons

Associate Professor
e-mail: narcis.gascons@udg.edu

Lluís Ripoll

Associate Professor
e-mail: lluis.ripoll@udg.edu
AMADE, Polytechnic School,
Universitat de Girona,
Campus Montilivi s/n,
Girona 17071, Spain

Manuscript received August 6, 2012; final manuscript received March 12, 2013; published online May 23, 2013. Editor: Harry Dankowicz.

Appl. Mech. Rev 65(2), 020803 (May 23, 2013) (16 pages) Paper No: AMR-12-1037; doi: 10.1115/1.4024163 History: Received August 06, 2012; Revised March 12, 2013

The design of structures with a nonuniform stress field is of great industrial interest. The ability of the size effect law and critical distance theories to predict the nominal strength of notched and open hole specimens is analyzed in the present paper. The results obtained with these methods are compared with the solution of the problem computed, taking into account the material cohesive law. A conclusion of this paper is that the role of the critical fracture energy in determining the structural strength is negligible, except in large cracked structures. For unnotched structures of any size and for small cracked structures, the key parameter is the initial part of the softening cohesive law. This allows us to define design charts that relate the structural strength to a specimen size normalized with respect to a material characteristic length.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Bažant, Z. P., and Chen, E. P., 1997, “Scaling of Structural Failure,” ASME Appl. Mech. Rev., 50(10), pp. 593–627. [CrossRef]
Lubliner, J., 1990, Plasticity Theory, Collier-Macmillan, New York.
Timoshenko, S. P., 1953, History of Strength of Materials, Courier Dover, New York.
Griffith, A. A., 1921, “The Phenomena of Rupture and Flow in Solids,” Philos. Trans. R. Soc. London, Ser. A, 221, pp. 163–198. [CrossRef]
Weibull, W., 1951, “A Statistical Distribution Function of Wide Applicability,” ASME J. Appl. Mech., 18(3), pp. 293–297.
Bažant, Z. P., 2000, “Size Effect,” Int. J. Solids Struct., 37(1–2), pp. 69–80. [CrossRef]
Neuber, H., 1958, Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material, 2nd ed., Springer-Verlag, Berlin.
Peterson, R. E., 1959, Notch-Sensitivity, Metal Fatigue, McGraw-Hill, New York, pp. 293–306.
Taylor, D., 2007, The Theory of Critical Distances. A New Perspective in Fracture Mechanics, Elsevier, New York.
Bažant, Z. P., and Planas, J., 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC, Boca Raton, FL.
Whitney, J. M., and Nuismer, R. J., 1974, “Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations,” J. Compos. Mater., 8, pp. 253–265. [CrossRef]
Waddoups, M. E., Eisenmann, J. R., and Kaminski, B. E., 1971, “Macroscopic Fracture Mechanics of Advanced Composite Materials,” J. Compos. Mater., 5, pp. 446–454. [CrossRef]
Simo, J. C., and Hughes, T. J. R., 1988, Computational Inelasticity, Vol. 7, Springer, New York.
Bažant, Z. P., and Belytschko, T. B., 1985, “Wave Propagation in a Strain-Softening Bar: Exact Solution,” J. Eng. Mech., 111(3), pp. 381–389. [CrossRef]
Belytschko, T., Bažant, Z. P., Yul-Woong, H., and Ta-Peng, C., 1986, “Strain-Softening Materials and Finite-Element Solutions,” Comput. Struct., 23(2), pp. 163–180. [CrossRef]
Oliver, J., Huespe, A. E., Pulido, M. D. G., and Chaves, E., 2002, “From Continuum Mechanics to Fracture Mechanics: The Strong Discontinuity Approach,” Eng. Fract. Mech., 69(2), pp. 113–136. [CrossRef]
Rudnicki, J. W., and Rice, J. R., 1975, “Conditions for Localization of Deformation in Pressure-Sensitive Dilatant Materials,” J. Mech. Phys. Solids, 23(6), pp. 371–394. [CrossRef]
Rice, J. R., and Rudnicki, J. W., 1980, “A Note on Some Features of the Theory of Localization of Deformation,” Int. J. Solids Struct., 16(7), pp. 597–605. [CrossRef]
Elices, M., Guinea, G. V., Gómez, J., and Planas, J., 2002, “The Cohesive Zone Model: Advantages, Limitations and Challenges,” Eng. Fract. Mech., 69(2), pp. 137–163. [CrossRef]
Elices, M., and Planas, J., 1996, “Fracture Mechanics Parameters of Concrete: An Overview,” Adv. Cem. Based Mater., 4(3–4), pp. 116–127. [CrossRef]
Ritchie, R. O., 1999, “Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids,” Int. J. Fract., 100(1), pp. 55–83. [CrossRef]
Ritchie, R. O., 2011, “The Conflicts Between Strength and Toughness,” Nature Mater., 10(11), pp. 817–822. [CrossRef]
Launey, M. E., and Ritchie, R. O., 2009, “On the Fracture Toughness of Advanced Materials,” Adv. Mater., 21(20), pp. 2103–2110. [CrossRef]
Li, H., and Chandra, N., 2003, “Analysis of Crack Growth and Crack-Tip Plasticity in Ductile Materials Using Cohesive Zone Models,” Int. J. Plast., 19(6), pp. 849–882. [CrossRef]
Irwin, G., 1957, “Analysis of Stresses and Strains Near to the End of Crack Traversing a Plate,” ASME J. Appl. Mech., 24, pp. 361–364.
Dugdale, D. S., 1960, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100–104. [CrossRef]
Barenblatt, G. I., 1962, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7(C), pp. 55–129. [CrossRef]
Barenblatt, G. I., 1959, “The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses. Axially-Symmetric Cracks,” J. Appl. Math. Mech., 23(3), pp. 622–636. [CrossRef]
Palmer, A. C., and Rice, J. R., 1973, “Growth of Slip Surfaces in Progressive Failure of Over-Consolidated Clay,” Proc. R. Soc. London, Ser. A, 332(1591), pp. 527–548. [CrossRef]
Rice, J. R., 1980, “The Mechanics of Earthquake Rupture,” Physics of the Earth's Interior, Proceedings of the International School of Physics “Enrico Fermi” (Course 78), A. M. Dziewonski, and E. Boschi, North Holland Publishing Co., North-Holland, Amsterdam, pp. 555–649.
Panasyuk, V. V., 2004, “Fracture Mechanics and Strength of Materials: Advances and Prospects,” Mater. Sci., 40(3), pp. 305–319.
Bao, G., and Suo, Z., 1992, “Remarks on Crack-Bridging Concepts,” ASME Appl. Mech. Rev., 45(8), pp. 355–366. [CrossRef]
Massabo, R., and Cox, B. N., 1999, “Concepts for Bridged Mode II Delamination Cracks,” J. Mech. Phys. Solids, 47(6), pp. 1265–1300. [CrossRef]
Yang, Q., and Cox, B., 2005, “Cohesive Models for Damage Evolution in Laminated Composites,” Int. J. Fract., 133(2), pp. 107–137. [CrossRef]
Hillerborg, A., Modéer, M., and Petersson, P. E., 1976, “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., 6(6), pp. 773–781. [CrossRef]
Bažant, Z. P., and Cedolin, L., 1979, “Blunt Crack Band Propagation in Finite Element Analysis,” ASCE J. Eng. Mech. Div., 105(2), pp. 297–315.
Bažant, Z. P., and Oh, B. H., 1983, “Crack Band Theory for Fracture of Concrete,” Mater. Constr., 16(93), pp. 155–177. [CrossRef]
Bažant, Z. P., and Cedolin, L., 1983, “Finite Element Modeling of Crack Band Propagation,” J. Struct. Eng., 109(1), pp. 69–92. [CrossRef]
Wittmann, F., Rokugo, K., Brühwiler, E., Mihashi, H., and Simonin, P., 1988, “Fracture Energy and Strain Softening of Concrete as Determined by Means of Compact Tension Specimens,” Mater. Struct., 21(1), pp. 21–32. [CrossRef]
Guinea, G. V., Planas, J., and Elices, M., 1994, “A General Bilinear Fit for the Softening Curve of Concrete,” Mater. Struct., 27(2), pp. 99–105. [CrossRef]
Dávila, C. G., Rose, C. A., and Camanho, P. P., 2009, “A Procedure for Superposing Linear Cohesive Laws to Represent Multiple Damage Mechanisms in the Fracture of Composites,” Int. J. Fract., 158(2), pp. 211–223. [CrossRef]
Bažant, Z. P., Kim, J. H., Daniel, I. M., Becq-Giraudon, E., and Zi, G., 1999, “Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation,” Int. J. Fract., 95(1–4), pp. 103–141. [CrossRef]
Gómez, F. J., Elices, M., and Valiente, A., 2000, “Cracking in PMMA Containing U-Shaped Notches,” Fatigue Fract. Eng. Mater. Struct., 23(9), pp. 795–803. [CrossRef]
Bažant, Z. P., 2004, “Scaling Theory for Quasibrittle Structural Failure,” Proc. Natl. Acad. Sci. U.S.A., 101(37), pp. 13400–13407. [CrossRef]
Maimí, P., Trias, D., González, E. V., and Renart, J., 2012, “Nominal Strength of Quasi-Brittle Open Hole Specimens,” Compos. Sci. Technol., 72(10), pp. 1203–1208. [CrossRef]
Pijaudier-Cabot, G., Bažant, Z. P., and Tabbara, M., 1988, “Comparison of Various Models for Strain-Softening,” Eng. Comput., 5(2), pp. 141–150. [CrossRef]
Peerlings, R. H. J., Geers, M. G. D., de Borst, R., and Brekelmans, W. A. M., 2001, “A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua,” Int. J. Solids Struct., 38(44–45), pp. 7723–7746. [CrossRef]
Jirásek, M., 1998, “Nonlocal Models for Damage and Fracture: Comparison of Approaches,” Int. J. Solids Struct., 35(31–32), pp. 4133–4145. [CrossRef]
Lasry, D., and Belytschko, T., 1988, “Localization Limiters in Transient Problems,” Int. J. Solids Struct., 24(6), pp. 581–597. [CrossRef]
Ladevèze, P., Allix, O., Deu, J. F., and Leveque, D., 2000, “A Mesomodel for Localisation and Damage Computation in Laminates,” Comput. Methods Appl. Mech. Eng., 183(1–2), pp. 105–122. [CrossRef]
Bažant, Z. P., 1984, “Size Effect in Blunt Fracture: Concrete, Rock, Metal,” J. Eng. Mech., 110(4), pp. 518–535. [CrossRef]
Bažant, Z. P., 1999, “Size Effect on Structural Strength: A Review,” Arch. Appl. Mech., 69(9–10), pp. 703–725. [CrossRef]
Bažant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Asymptotic Analysis,” Int. J. Fract., 83(1), pp. 19–40. [CrossRef]
Bažant, Z. P., 1997, “Scaling of Quasibrittle Fracture: Hypotheses of Invasive and Lacunar Fractality, Their Critique and Weibull Connection,” Int. J. Fract., 83(1), pp. 41–65. [CrossRef]
Bažant, Z. P., 2003, “Asymptoric Matching Analysis of Scaling of Structural Failure Due to Softening Hinges—I: Theory,” J. Eng. Mech., 129(6), pp. 641–650. [CrossRef]
Bažant, Z. P., and Yu, Q., 2009, “Universal Size Effect Law and Effect of Crack Depth on Quasi-Brittle Structure Strength,” J. Eng. Mech., 135(2), pp. 78–84. [CrossRef]
Östlund, S., and Kärenlampi, P., 2001, “Structural Geometry Effect on the Size-Scaling of Strength,” Int. J. Fract., 109(2), pp. 141–151. [CrossRef]
Bažant, Z. P., 2002, “Concrete Fracture Models: Testing and Practice,” Eng. Fract. Mech., 69(2), pp. 165–205. [CrossRef]
Planas, J., Guinea, G. V., and Elices, M., 1997, “Generalized Size Effect Equation for Quasi-brittle Materials,” Fatigue Fract. Eng. Mater. Struct., 20(5), pp. 671–687. [CrossRef]
Morel, S., 2008, “Size Effect in Quasibrittle Fracture: Derivation of the Energetic Size Effect Law From Equivalent LEFM and Asymptotic Analysis,” Int. J. Fract., 154(1–2), pp. 15–26. [CrossRef]
Morel, S., 2007, “R-Curve and Size Effect in Quasibrittle Fractures: Case of Notched Structures,” Int. J. Solids Struct., 44(13), pp. 4272–4290. [CrossRef]
Morel, S., and Dourado, N., 2011, “Size Effect in Quasibrittle Failure: Analytical Model and Numerical Simulations Using Cohesive Zone Model,” Int. J. Solids Struct., 48(10), pp. 1403–1412. [CrossRef]
Bažant, Z. P., Vořechovský, M., and Novák, D., 2007, “Asymptotic Prediction of Energetic-Statistical Size Effect From Deterministic Finite-Element Solutions,” J. Eng. Mech., 133(2), pp. 153–162. [CrossRef]
Bažant, Z. P., Pang, S. D., Vořechovský, M., and Novák, D., 2007, “Energetic-Statistical Size Effect Simulated by SFEM With Stratified Sampling and Crack Band Model,” Int. J. Numer. Methods Eng., 71(11), pp. 1297–1320. [CrossRef]
Bažant, Z. P., and Pang, S. D., 2006, “Mechanics-Based Statistics of Failure Risk of Quasibrittle Structures and Size Effect on Safety Factors,” Proc. Natl. Acad. Sci. U.S.A., 103(25), pp. 9434–9439. [CrossRef]
Le, J.-L., Bažant, Z. P., and Bažant, M. Z., 2011, “Unified Nanomechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Static Crack Growth, Lifetime and Scaling,” J. Mech. Phys. Solids, 59(7), pp. 1291–1321. [CrossRef]
Le, J.-L., and Bažant, Z. P., 2011, “Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling,” J. Mech. Phys. Solids, 59(7), pp. 1322–1337. [CrossRef]
Bažant, Z. P., Le, J. L., and Bažant, M. Z., 2009, “Scaling of Strength and Lifetime Probability Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics,” Proc. Natl. Acad. Sci. U.S.A., 106(28), pp. 11484–11489. [CrossRef]
Carpinteri, A., and Ferro, G., 1994, “Size Effects on Tensile Fracture Properties: A Unified Explanation Based on Disorder and Fractality of Concrete Microstructure,” Mater. Struct., 27(10), pp. 563–571. [CrossRef]
Carpinteri, A., and Pugno, N., 2005, “Are Scaling Laws on Strength of Solids Related to Mechanics or to Geometry?,” Nature Mater., 4(6), pp. 421–423. [CrossRef]
Carpinteri, A., Chiaia, B., and Ferro, G., 1995, “Size Effects on Nominal Tensile Strength of Concrete Structures: Multifractality of Material Ligaments and Dimensional Transition From Order to Disorder,” Mater. Struct., 28(6), pp. 311–317. [CrossRef]
Carpinteri, A., and Puzzi, S., 2009, “The Fractal-Statistical Approach to the Size-Scale Effects on Material Strength and Toughness,” Probab. Eng. Mech., 24(1), pp. 75–83. [CrossRef]
Bažant, Z. P., and Yavari, A., 2005, “Is the Cause of Size Effect on Structural Strength Fractal or Energetic-Statistical?,” Eng. Fract. Mech., 72(1), pp. 1–31. [CrossRef]
Taylor, D., 2008, “The Theory of Critical Distances,” Eng. Fract. Mech., 75(7), pp. 1696–1705. [CrossRef]
Taylor, D., 2011, “Applications of the Theory of Critical Distances in Failure Analysis,” Eng. Failure Anal., 18(2), pp. 543–549. [CrossRef]
Tan, S. C., 1988, “Effective Stress Fracture Models for Unnotched and Notched Multidirectional Laminates,” J. Compos. Mater., 22(4), pp. 322–340. [CrossRef]
Tan, S. C., 1987, “Laminated Composites Containing an Elliptical Opening. I. Approximate Stress Analyses and Fracture Models,” J. Compos. Mater., 21(10), pp. 925–948. [CrossRef]
Tan, S. C., 1987, “Laminated Composites Containing an Elliptical Opening. II. Experiment and Model Modification,” J. Compos. Mater., 21(10), pp. 949–968. [CrossRef]
Wisnom, M. R., Hallett, S. R., and Soutis, C., 2010, “Scaling Effects in Notched Composites,” J. Compos. Mater., 44(2), pp. 195–210. [CrossRef]
Rao, A. S., Krishna, Y., and Rao, B. N., 2004, “Comparison of Fracture Models to Assess the Notched Strength of Composite/Solid Propellant Tensile Specimens,” Mater. Sci. Eng. A, 385(1–2), pp. 429–439. [CrossRef]
Kinloch, A. J., and Williams, J. G., 1980, “Crack Blunting Mechanisms in Polymers,” J. Mater. Sci., 15(4), pp. 987–996. [CrossRef]
Kasiri, S., and Taylor, D., 2008, “A Critical Distance Study of Stress Concentrations in Bone,” J. Biomech., 41(3), pp. 603–609. [CrossRef]
Luca, S., 2008, “The Theory of Critical Distances: A Review of Its Applications in Fatigue,” Eng. Fract. Mech., 75(7), pp. 1706–1724. [CrossRef]
Arajo, J. A., Susmel, L., Taylor, D., Ferro, J. C. T., and Ferreira, J. L. A., 2008, “On the Prediction of High-Cycle Fretting Fatigue Strength: Theory of Critical Distances vs. Hot-Spot Approach,” Eng. Fract. Mech., 75(7), pp. 1763–1778. [CrossRef]
Taylor, D., and Susmel, L., 2008, “Special Issue on Critical Distance Theories of Fracture,” Eng. Fract. Mech., 75(7), p. 1695. [CrossRef]
Dyskin, A. V., 1997, “Crack Growth Criteria Incorporating Nonsingular Stresses: Size Effect in Apparent Fracture Toughness,” Int. J. Fract., 83(2), pp. 191–206. [CrossRef]
Leguillon, D., 2002, “Strength or Toughness? A Criterion for Crack Onset at a Notch,” Eur. J. Mech. A/Solids, 21(1), pp. 61–72. [CrossRef]
Andrzej, S., 1994, “Brittle Fracture Criterion for Structures With Sharp Notches,” Eng. Fract. Mech., 47(5), pp. 673–681. [CrossRef]
Kannan, V. K., Murali, V., Rajadurai, A., and Rao, B. N., 2010, “Tension and Compression Strength Evaluation of Composite Plates With Circular Holes,” J. Reinf. Plast. Compos., 29(10), pp. 1500–1514. [CrossRef]
Ritchie, R. O., Knott, J. F., and Rice, J. R., 1973, “On the Relationship Between Critical Tensile Stress and Fracture Toughness in Mild Steel,” J. Mech. Phys. Solids, 21(6), pp. 395–410. [CrossRef]
Eriksson, I., and Aronsson, C. G., 1990, “Strength of Tensile Loaded Graphite/Epoxy Laminates Containing Cracks, Open and Filled Holes,” J. Compos. Mater., 24, pp. 456–482. [CrossRef]
Srivastava, V. K., 2002, “Notched Strength Prediction of Laminated Composite Under Tensile Loading,” Mater. Sci. Eng. A, 328(1–2), pp. 302–309. [CrossRef]
Potti, P. K. G., Rao, B. N., and Srivastava, V. K., 2001, “Tensile Fracture Strength of Boron/Aluminum Laminates With Holes and Slits,” Mater. Sci. Eng. A, 301(2), pp. 244–252. [CrossRef]
Potti, P. K. G., Rao, B. N., and Srivastava, V. K., 2000, “Notched Tensile Strength of Randomly Oriented E-Glass Composite Laminates,” Mater. Sci. Eng. A, 282(1–2), pp. 59–66. [CrossRef]
Tada, H., Paris, P. C., and Irwin, G. R., 2000, The Stress Analysis of Cracks Handbook, 3rd ed., American Society of Mechanical Engineers, New York.
El Haddad, M. H., Smith, K. N., and Topper, T. H., 1979, “Fatigue Crack Propagation of Short Cracks,” ASME J. Eng. Mater. Technol., 101(1), pp. 42–46. [CrossRef]
El Haddad, M. H., Topper, T. H., and Smith, K. N., 1979, “Prediction of Non Propagating Cracks,” Eng. Fract. Mech., 11(3), pp. 573–584. [CrossRef]
Taylor, D., Cornetti, P., and Pugno, N., 2005, “The Fracture Mechanics of Finite Crack Extension,” Eng. Fract. Mech., 72(7), pp. 1021–1038. [CrossRef]
Cornetti, P., Pugno, N., Carpinteri, A., and Taylor, D., 2006, “Finite Fracture Mechanics: A Coupled Stress and Energy Failure Criterion,” Eng. Fract. Mech., 73(14), pp. 2021–2033. [CrossRef]
Williams, T. N., Newman, J. C., Jr., and Gullett, P. M., 2011, “Crack-Surface Displacements for Cracks Emanating From a Circular Hole Under Various Loading Conditions,” Fatigue Fract. Eng. Mater. Struct., 34(4), pp. 250–259. [CrossRef]
Camanho, P. P., and Lambert, M., 2006, “A Design Methodology for Mechanically Fastened Joints in Laminated Composite Materials,” Compos. Sci. Technol., 66(15), pp. 3004–3020. [CrossRef]
Whitworth, H. A., Aluko, O., and Tomlinson, N. A., 2008, “Application of the Point Stress Criterion to the Failure of Composite Pinned Joints,” Eng. Fract. Mech., 75(7), pp. 1829–1839. [CrossRef]
Carpinteri, A., Spagnoli, A., Vantadori, S., and Viappiani, D., 2008, “A Multiaxial Criterion for Notch High-Cycle Fatigue Using a Critical-Point Method,” Eng. Fract. Mech., 75(7), pp. 1864–1874. [CrossRef]
Reifsnider, K., Case, S., and Duthoit, J., 2000, “The Mechanics of Composite Strength Evolution,” Compos. Sci. Technol., 60(12–13), pp. 2539–2546. [CrossRef]
Bellett, D., Taylor, D., Marco, S., Mazzeo, E., Guillois, J., and Pircher, T., 2005, “The Fatigue Behaviour of Three-Dimensional Stress Concentrations,” Int. J. Fatigue, 27(3), pp. 207–221. [CrossRef]
Iarve, E. V., Kim, R., and Mollenhauer, D., 2007, “Three Dimensional Stress Analysis and Weibull Statistics Based Strength Prediction in Open Hole Composites,” Composites Part A, 38(1), pp. 174–185. [CrossRef]
Hunt, R. A., and McCartney, L. N., 1979, “A New Approach to Weibull's Statistical Theory of Brittle Fracture,” Int. J. Fract., 15(4), pp. 365–375.
Suo, Z., Ho, S., and Gong, X., 1993, “Notch Ductile-to-Brittle Transition Due to Localized Inelastic Band,” J. Eng. Mater. Technol., 115(3), pp. 319–326. [CrossRef]
Maiti, S. K., Ashby, M. F., and Gibson, L. J., 1984, “Fracture Toughness of Brittle Cellular Solids,” Scr. Metall., 18(3), pp. 213–217. [CrossRef]
Maimí, P., Turon, A., and Trias, D., 2011, “Crack Propagation in Quasi-Brittle Two-Dimensional Isotropic Lattices,” Eng. Fract. Mech., 78(1), pp. 60–70. [CrossRef]
Leguillon, D., and Piat, R., 2008, “Fracture of Porous Materials Influence of the Pore Size,” Eng. Fract. Mech., 75(7), pp. 1840–1853. [CrossRef]
Leguillon, D., Quesada, D., Putot, C., and Martin, E., 2007, “Prediction of Crack Initiation at Blunt Notches and Cavities—Size Effects,” Eng. Fract. Mech., 74(15), pp. 2420–2436. [CrossRef]
Hitchen, S. A., Ogin, S. L., Smith, P. A., and Soutis, C., 1994, “The Effect of Fibre Length on Fracture Toughness and Notched Strength of Short Carbon Fibre/Epoxy Composites,” Composites, 25(6), pp. 407–413. [CrossRef]
Belmonte, H. M. S., Manger, C. I. C., Ogin, S. L., Smith, P. A., and Lewin, R., 2001, “Characterisation and Modelling of the Notched Tensile Fracture of Woven Quasi-Isotropic GFRP Laminates,” Compos. Sci. Technol., 61(4), pp. 585–597. [CrossRef]
Belmonte, H. M. S., Ogin, S. L., Smith, P. A., and Lewin, R., 2004, “A Physically Based Model for the Notched Strength of Woven Quasi-Isotropic CFRP Laminates,” Composites, Part A, 35(7–8), pp. 763–778. [CrossRef]
Camanho, P. P., Ercin, G. H., Catalanotti, G., Mahdi, S., and Linde, P., 2012, “A Finite Fracture Mechanics Model for the Prediction of the Open-Hole Strength of Composite Laminates,” Composites, Part A, 43(8), pp. 1219–1225. [CrossRef]
Li, J., and Zhang, X. B., 2005, “A Criterion Study for Non-Singular Stress Concentrations With Size Effect,” Strength, Fract. Complexity, 3(2–4), pp. 205–215.
Li, J., and Zhang, X. B., 2006, “A Criterion Study for Non-Singular Stress Concentrations in Brittle or Quasi-Brittle Materials,” Eng. Fract. Mech., 73(4), pp. 505–523. [CrossRef]
Zhang, X. B., and Li, J., 2008, “A Failure Criterion for Brittle and Quasi-Brittle Materials Under Any Level of Stress Concentration,” Eng. Fract. Mech., 75(17), pp. 4925–4932. [CrossRef]
Newman, J. C., Jr., James, M. A., and Zerbst, U., 2003, “A Review of the CTOA/CTOD Fracture Criterion,” Eng. Fract. Mech., 70(3–4), pp. 371–385. [CrossRef]
Scheider, I., Schödel, M., Brocks, W., and Schönfeld, W., 2006, “Crack Propagation Analyses With CTOA and Cohesive Model: Comparison and Experimental Validation,” Eng. Fract. Mech., 73(2), pp. 252–263. [CrossRef]
Zhu, X.-K., and Joyce, J. A., 2012, “Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization,” Eng. Fract. Mech., 85, pp. 1–46. [CrossRef]
Jenq, Y. S., and Shah, S. P., 1985, “Two Parameter Fracture Model for Concrete,” J. Eng. Mech., 111(10), pp. 1227–1241. [CrossRef]
Jenq, Y. S., and Shah, S. P., 1985, “A Fracture Toughness Criterion for Concrete,” Eng. Fract. Mech., 21(5), pp. 1055–1069. [CrossRef]
Jenq, Y. S., and Shah, S. P., 1988, “Mixed-Mode Fracture of Concrete,” Int. J. Fract., 38(2), pp. 123–142.
Gettu, R., Saldívar, H., and Kazemi, M. T., 1998, “Implications of the Size Effect Method for Analyzing the Fracture of Concrete,” Int. J. Solids Struct., 35(31–32), pp. 4121–4132. [CrossRef]
Bilby, B. A., Cottrell, A. H., and Swinden, K. H., 1963, “The Spread of Plastic Yield From a Notch,” Proc. R. Soc. London, Ser. A, 272(1350), pp. 304–314. [CrossRef]
Bilby, B. A., Cottrell, A. H., Smith, E., and Swinden, K. H., 1964, “Plastic Yielding From Sharp Notches,” Proc. R. Soc. London, Ser. A, 279(1376), pp. 1–9. [CrossRef]
Soutis, C., Fleck, N. A., and Smith, P. A., 1991, “Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate With Open Holes,” J. Compos. Mater., 25(11), pp. 1476–1498.
Backlund, J., and Aronsson, C.-G., 1986, “Tensile Fracture of Laminates With Holes,” J. Compos. Mater., 20(3), pp. 259–286. [CrossRef]
Aronsson, C.-G., and Backlund, J., 1986, “Tensile Fracture of Laminates With Cracks,” J. Compos. Mater., 20(3), pp. 287–307. [CrossRef]
Carpinteri, A., 1990, “A Catastrophe Theory Approach to Fracture Mechanics,” Int. J. Fract., 44(1), pp. 57–69. [CrossRef]
He, M. Y., Wu, B., and Suo, Z., 1994, “Notch-Sensitivity and Shear Bands in Brittle Matrix Composites,” Acta Metall. Mater., 42(9), pp. 3065–3070. [CrossRef]
Connell, S. J., Zok, F. W., Du, Z. Z., and Suo, Z., 1994, “On the Tensile Properties of a Fiber Reinforced Titanium Matrix Composite—II. Influence of Notches and Holes,” Acta Metall. Mater., 42(10), pp. 3451–3461. [CrossRef]
Shin, C. S., and Wang, C. M., 2004, “An Improved Cohesive Zone Model for Residual Notched Strength Prediction of Composite Laminates With Different Orthotropic Layups,” J. Compos. Mater., 38(9), pp. 713–736. [CrossRef]
Afaghi-Khatibi, A., Ye, L., and Mai, Y.-W., 1996, “Evaluations of Effective Crack Growth and Residual Strength of Fibre Reinforced Metal Laminates With a Sharp Notch,” Compos. Sci. Technol., 56(9), pp. 1079–1088. [CrossRef]
Newman, J. C., Jr., 1983, “A Nonlinear Fracture Mechanics Approach to the Growth of Small Cracks,” AGARD Conf. Proc., 328(6), pp. 1–26.
Cox, B. N., and Marshall, D. B., 1994, “Concepts for Bridged Cracks in Fracture and Fatigue,” Acta Metall. Mater., 42(2), pp. 341–363. [CrossRef]
Guinea, G. V., Elices, M., and Planas, J., 2000, “Assessment of the Tensile Strength Through Size Effect Curves,” Eng. Fract. Mech., 65(2–3), pp. 189–207. [CrossRef]
Yu, M. H., 2002, “Advances in Strength Theories for Materials Under Complex Stress State in the 20th Century,” ASME Appl. Mech. Rev., 55(3), pp. 169–218. [CrossRef]
Bažant, Z. P., and Becq-Giraudon, E., 2002, “Statistical Prediction of Fracture Parameters of Concrete and Implications for Choice of Testing Standard,” Cem. Concr. Res., 32(4), pp. 529–556. [CrossRef]
Planas, J., and Elices, M., 1990, “Fracture Criteria for Concrete: Mathematical Approximations and Experimental Validation,” Eng. Fract. Mech., 35(13), pp. 87–94. [CrossRef]
Ceb-90, 1991, Final Draft CEB-FIP Mode Code 1990. Bulletin Information 203, Committee Euro-International du Beton, London.
Camanho, P. P., Maimí, P., and Dávila, C. G., 2007, “Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics,” Compos. Sci. Technol., 67(13), pp. 2715–2727. [CrossRef]
Evans, R. H., and Marathe, M. S., 1968, “Microcracking and Stress-Strain Curves for Concrete in Tension,” Mater. Construct., 1(1), pp. 61–64. [CrossRef]
Markeset, G., and Hillerborg, A., 1995, “Softening of Concrete in Compression Localization and Size Effects,” Cem. Concr. Res., 25(4), pp. 702–708. [CrossRef]
Sangha, C. M., and Dhir, R. K., 1972, “Strength and Complete Stress-Strain Relationships for Concrete Tested in Uniaxial Compression Under Different Test Conditions,” Mater. Construct., 5(6), pp. 361–370. [CrossRef]
van Mier, J. G. M., and van Vliet, M. R. A., 2002, “Uniaxial Tension Test for the Determination of Fracture Parameters of Concrete: State of the Art,” Eng. Fract. Mech., 69(2), pp. 235–247. [CrossRef]
Guinea, G. V., Planas, J., and Elices, M., 1992, “Measurement of the Fracture Energy Using Three-Point Bend Tests: Part 1—Influence of Experimental Procedures,” Mater. Struct., 25(4), pp. 212–218. [CrossRef]
Planas, J., Elices, M., and Guinea, G. V., 1992, “Measurement of the Fracture Energy Using Three-Point Bend Tests: Part 2—Influence of Bulk Energy Dissipation,” Mater. Struct., 25(5), pp. 305–312. [CrossRef]
Elices, M., Guinea, G. V., and Planas, J., 1992, “Measurement of the Fracture Energy Using Three-Point Bend Tests: Part 3—Influence of Cutting the P-Tail,” Mater. Struct., 25(6), pp. 327–334. [CrossRef]
Tang, T., Ouyang, C., and Shah, S., 1996, “A Simple Method for Determining Material Fracture Parameters From Peak Loads,” ACI Mater. J., 93(2), pp. 147–157.
Kurihara, N., Kunieda, M., Kamada, T., Uchida, Y., and Rokugo, K., 2000, “Tension Softening Diagrams and Evaluation of Properties of Steel Fiber Reinforced Concrete,” Eng. Fract. Mech., 65(2–3), pp. 235–245. [CrossRef]
Kunieda, M., Kurihara, N., Uchida, Y., and Rokugo, K., 2000, “Application of Tension Softening Diagrams to Evaluation of Bond Properties at Concrete Interfaces,” Eng. Fract. Mech., 65(2–3), pp. 299–315. [CrossRef]
Gregory, J. R., and Spearing, S. M., 2004, “A Fiber Bridging Model for Fatigue Delamination in Composite Materials,” Acta Mater., 52(19), pp. 5493–5502. [CrossRef]
Zhu, Y., Liechti, K. M., and Ravi-Chandar, K., 2009, “Direct Extraction of Rate-Dependent Traction Separation Laws for Polyurea/Steel Interfaces,” Int. J. Solids Struct., 46(1), pp. 31–51. [CrossRef]
Jacobsen, T. K., and Sorensen, B. F., 2001, “Mode I Intra-Laminar Crack Growth in Composites—Modelling of R-Curves From Measured Bridging Laws,” Composites, Part A, 32(1), pp. 1–11. [CrossRef]
Mihashi, H., and Nomura, N., 1996, “Correlation Between Characteristics of Fracture Process Zone and Tension-Softening Properties of Concrete,” Nucl. Eng. Des., 165(3), pp. 359–376. [CrossRef]
Hanson, J. H., Bittencourt, T. N., and Ingraffea, A. R., 2004, “Three-Dimensional Influence Coefficient Method for Cohesive Crack Simulations,” Eng. Fract. Mech., 71(15), pp. 2109–2124. [CrossRef]
Planas, J., Guinea, G. V., and Elices, M., 1999, “Size Effect and Inverse Analysis in Concrete Fracture,” Int. J. Fract., 95(1–4), pp. 367–378. [CrossRef]
Guo, X. H., Tin-Loi, F., and Li, H., 1999, “Determination of Quasibrittle Fracture Law for Cohesive Crack Models,” Cem. Concr. Res., 29(7), pp. 1055–1059. [CrossRef]
Tin-Loi, F., and Que, N. S., 2002, “Identification of Cohesive Crack Fracture Parameters by Evolutionary Search,” Comput. Methods Appl. Mech. Eng., 191(49–50), pp. 5741–5760. [CrossRef]
Que, N. S., and Tin-Loi, F., 2002, “Numerical Evaluation of Cohesive Fracture Parameters From a Wedge Splitting Test,” Eng. Fract. Mech., 69(11), pp. 1269–1286. [CrossRef]
Que, N. S., and Tin-Loi, F., 2002, “An Optimization Approach for Indirect Identification of Cohesive Crack Properties,” Comput. Struct., 80(16–17), pp. 1383–1392. [CrossRef]
Park, K., Paulino, G. H., and Roesler, J. R., 2008, “Determination of the Kink Point in the Bilinear Softening Model for Concrete,” Eng. Fract. Mech., 75(13), pp. 3806–3818. [CrossRef]
Cusatis, G., and Schauffert, E. A., 2009, “Cohesive Crack Analysis of Size Effect,” Eng. Fract. Mech., 76(14), pp. 2163–2173. [CrossRef]
Cedolin, L., and Cusatis, G., 2008, “Identification of Concrete Fracture Parameters Through Size Effect Experiments,” Cem. Concr. Compos., 30(9), pp. 788–797. [CrossRef]
Sorensen, B. F., Gamstedt, E. K., Ostergaard, R. C., and Goutianos, S., 2008, “Micromechanical Model of Cross-Over Fibre Bridging Prediction of Mixed Mode Bridging Laws,” Mech. Mater., 40(4–5), pp. 220–234. [CrossRef]
Cusatis, G., Pelessone, D., and Mencarelli, A., 2011, “Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. I: Theory,” Cem. Concr. Compos., 33(9), pp. 881–890. [CrossRef]
Cusatis, G., and Cedolin, L., 2007, “Two-Scale Study of Concrete Fracturing Behavior,” Eng. Fract. Mech., 74(12), pp. 3–17. [CrossRef]
Bažant, Z. P., Ožbolt, J., and Eligehausen, R., 1994, “Fracture Size Effect: Review of Evidence for Concrete Structures,” J. Struct. Eng., 120(8), pp. 2377–2398. [CrossRef]
Bažant, Z. P., Daniel, I. M., and Li, Z., 1996, “Size Effect and Fracture Characteristics of Composite Laminates,” ASME J. Eng. Mater. Technol., 118(3), pp. 317–324. [CrossRef]
Bažant, Z. P., and Yu, Q., 2006, “Size Effect on Strength of Quasibrittle Structures With Reentrant Corners Symmetrically Loaded in Tension,” J. Eng. Mech., 132(11), pp. 1168–1176. [CrossRef]
Bažant, Z. P., and Pfeiffer, P. A., 1987, “Determination of Fracture Energy From Size Effect and Brittleness Number,” ACI Mater. J., 84(6), pp. 463–480.
de Azevedo Soriano, E., and de Almeida, S. F. M., 1999, “Notch Sensitivity of Carbon/Epoxy Fabric Laminates,” Compos. Sci. Technol., 59(8), pp. 1143–1151. [CrossRef]
Taylor, D., 2007, “Chapter 9-Fatigue: Predicting Fatigue Limit and Fatigue Life,” The Theory of Critical Distances, Elsevier, Oxford, pp. 163–II.
Taylor, D., 2007, “Chapter 6-Polymers: Brittle Fracture in Polymeric Materials,” The Theory of Critical Distances, Elsevier, Oxford, pp. 93–I.


Grahic Jump Location
Fig. 1

(a) Notched and open hole specimen and (b) size effect law on structural strength

Grahic Jump Location
Fig. 2

Description of a failure process zone when a crack is progressing and constitutive law relations

Grahic Jump Location
Fig. 3

Failure process zone of a fiber composite

Grahic Jump Location
Fig. 4

Nominal strength according to the SEL for cracked (r = 2) and holed specimens with r = 2 and r = 1

Grahic Jump Location
Fig. 5

Influence of the Weibull statistics in the size effect law: Eq. (7) for α = 1 and α = 0.1 and nD/nW = 1/10 and nD/nW = 1/20

Grahic Jump Location
Fig. 6

Nominal strength of the cracked specimen according to the PSM, ASM, IFM, FFM, and DBM

Grahic Jump Location
Fig. 7

Nominal strength of the holed specimen according to the PSM, ASM, IFM, FFM, and DBM

Grahic Jump Location
Fig. 8

Strip yield model for the open hole specimen

Grahic Jump Location
Fig. 9

Stress profile at failure plane for a given length of the FPZ. The nominal strength is defined when the sign of stress at point A changes from negative to positive.

Grahic Jump Location
Fig. 10

Nominal strength of the cracked specimen according to CDT combinations with variable characteristic length

Grahic Jump Location
Fig. 11

Nominal strength of the holed specimen according to CDT combinations with variable characteristic length

Grahic Jump Location
Fig. 12

Open hole specimen with a failure process zone as a superposition of n + 1 linear problems

Grahic Jump Location
Fig. 13

Constant and linear cohesive laws

Grahic Jump Location
Fig. 14

Nominal strength and length of the FPZ for the cracked (gray) and open hole (black) specimens with a constant and a linear cohesive law

Grahic Jump Location
Fig. 15

Crack opening displacement at maximum load for the cracked (gray) and holed (black) specimens for a linear cohesive law

Grahic Jump Location
Fig. 16

Bilinear cohesive laws

Grahic Jump Location
Fig. 17

Bilinear cohesive laws (a) normalized by means of the total fracture energy (GC) and (b) by means of the first part of the cohesive law expressed by the initial fracture energy (GCI)

Grahic Jump Location
Fig. 18

Nominal strength and crack opening displacement of the cracked and open hole specimens for the cohesive laws shown in Fig. 17 normalized with the critical fracture energy

Grahic Jump Location
Fig. 19

Nominal strength and crack opening displacement of the cracked and open hole specimens for the cohesive laws shown in Fig. 17 normalized with the initial fracture energy




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In