Pawlow, P., 1908, “Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers,” Z. physik. Chemie, 65, pp. 1–35.

Gibbs, J. W., 1961, *The Scientific Papers of J.W. Gibbs*, Dover Publications, New York.

Guggenheim, E. A., 1940, “The Thermodynamics of Interfaces in Systems of Several Components,” Trans. Faraday Soc., 35, pp. 397–412.

[CrossRef]Adam, N. K., 1941, *The Physics and Chemistry of Surfaces*, Oxford University Press, London.

Shuttleworth, R., 1950 “The Surface Tension of Solids,” Proc. Phys. Soc. A, 63(5), pp. 444–457.

[CrossRef]Herring, C., 1951, “Some Theorems on the Free Energies of Crystal Surfaces,” Phys. Rev., 82(1), pp. 87–93.

[CrossRef]Bikerman, J. J., 1965, “Surface Energy of Solids,” Phys. Status Solid. B, 10(1), pp. 3–16.

[CrossRef]Orowan, E., 1970, “Surface Energy and Surface Tension in Solids and Liquids,” Proc. R. Soc. A, 316(1527), pp. 473–491.

[CrossRef]Cahn, J. W., 1978, “Thermodynamics of Solid and Fluid Surfaces,” *Segregation to Interfaces* ( ASM Seminar Series), Cleveland, OH, pp. 3–23.

Cahn, J. W., 1989, “Interfacial Free Energy and Interfacial Stress: The Case of an Internal Interface in a Solid,” Acta Metall. Mater., 37(3), pp. 773–776.

[CrossRef]Murr, L. E., 1975, *Interfacial Phenomena in Metals and Alloys*, Addison-Wesley, Boston, MA.

Rottman, C., 1988, “Landau Theory of Coherent Interphase Interfaces,” Phys. Rev. B, 38, pp. 12031–12034.

[CrossRef]Adamson, A. W., 1990, *Physical Chemistry of Surfaces*, John Wiley & Sons, New York.

Howe, J. M., 1997, *Interfaces in Materials*, John Wiley & Sons, New York.

Marichev, V. A., 2010, “General Thermodynamic Equations for the Surface Tension of Liquids and Solids,” Surf. Sci., 604(3–4), pp. 458–463.

[CrossRef]Rusanov, A. I., 2005, “Surface Thermodynamics Revisited,” Surf. Sci. Rep., 58, pp. 111–239.

[CrossRef]Rusanov, A. I., 1996, “Thermodynamics of Solid Surfaces,” Surf. Sci. Rep., 23, pp. 173–247.

[CrossRef]Müller, P., and Saul, A., 2004, “Elastic Effects on Surface Physics,” Surf. Sci. Rep., 54(5–8), pp. 157–258.

[CrossRef]Ibach, H., 1997, “The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures,” Surf. Sci. Rep., 29(5–6), pp. 195–263.

[CrossRef]Leo, P. H., and Sekerka, R. F., 1989, “Overview No. 86: The Effect of Surface Stress on Crystal-Melt and Crystal-Crystal Equilibrium,” Acta Metall. Mater., 37(12), pp. 3119–3138.

[CrossRef]Cammarata, R. C., 1997, “Surface and Interface Stress Effects on Interfacial and Nanostructured Materials,” Mater. Sci. Eng. A,, 237(2), pp. 180–184.

[CrossRef]Cammarata, R. C., 1994, “Surface and Interface Stress Effects in Thin Films,” Prog. Surf. Sci., 46(1), pp. 1–38.

[CrossRef]Cammarata, R. C., Sieradzki, K., and Spaepen, F., 2000, “Simple Model for Interface Stresses With Application to Misfit Dislocation Generation in Epitaxial Thin Films,” J. Appl. Phys., 87(3), pp. 1227–1234.

[CrossRef]Cammarata, R. C., 2009, “Generalized Thermodynamics of Surfaces With Applications to Small Solid Systems,” Solid State Phys., 61, pp. 1–75.

[CrossRef]Fischer, F. D., Waitz, T., Vollath, D., and Simha, N. K., 2008, “On the Role of Surface Energy and Surface Stress in Phase-Transforming Nanoparticles,” Prog. Mater. Sci., 53(3), pp. 481–527.

[CrossRef]Gutman, E. M., 1995, “On the Thermodynamic Definition of Surface Stress,” J. Phys. Condens. Mat., 7(48), pp. L663–L667.

[CrossRef]Bottomley, D. J., and Ogino, T., 2001, “Alternative to the Shuttleworth Formulation of Solid Surface Stress,” Phys. Rev. B, 63, p. 165412.

[CrossRef]Marichev, V. A., 2006, “Structure-Mechanical Approach to Surface Tension of Solids,” Surf. Sci., 600(19), pp. 4527–4536.

[CrossRef]Kramer, D., and Weissmüller, J., 2007, “A Note on Surface Stress and Surface Tension and Their Interrelation via Shuttleworth's Equation and the Lippmann Equation,” Surf. Sci., 601(14), pp. 3042–3051.

[CrossRef]Maugin, G. A., 2010, *Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics*, CRC Press, Boca Raton, FL.

Steinmann, P., McBride, A., Bargmann, S., and Javili, A., 2012, “A Deformational and Configurational Framework for Geometrically Non-Linear Continuum Thermomechanics Coupled to Diffusion,” Int. J. Nonlinear Mech., 47(2), pp. 215–227.

[CrossRef]Gurtin, M. E., and Murdoch, A. I., 1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. An., 57(4), pp. 291–323.

[CrossRef]Gurtin, M. E., and Murdoch, A. I., 1978, “Surface Stress in Solids,” Int. J. Solid. Struct., 14(6), pp. 43–440.

[CrossRef]Dingreville, R., and Qu, J., 2005, “Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films,” J. Mech. Phys. Solid., 53(8), pp. 1827–1854.

[CrossRef]He, J., and Lilley, C. M., 2008, “Surface Effect on the Elastic Behavior of Static Bending Nanowires,” Nano Lett., 8(7), pp. 1798–1802.

[CrossRef] [PubMed]Duan, H. L., Wang, J., and Karihaloo, B. L., 2009, “Theory of Elasticity at the Nanoscale,” Adv. Appl. Mech., 42, pp. 1–68.

[CrossRef]Murdoch, A. I., 1976, “A Thermodynamical Theory of Elastic Material Interfaces,” Q. J. Mech. Appl. Math., 29(3), pp. 245–275.

[CrossRef]Gurtin, M. E., and Struthers, A., 1990, “Multiphase Thermomechanics With Interfacial Structure 3. Evolving Phase Boundaries in the Presence of Bulk Deformation,” Arch. Ration. Mech. An., 112(2), pp. 97–160.

[CrossRef]Gurtin, M. E., Weissmüller, J., and Larché, F., 1998, “A General Theory of Curved Deformable Interfaces in Solids at Equilibrium,” Philos. Mag. A, 78(5), pp. 1093–1109.

[CrossRef]Steigmann, D. J., and Ogden, R. W., 1999, “Elastic Surface-Substrate Interactions,” Proc. R. Soc. A, 455(1982), pp. 437–474.

[CrossRef]Fried, E., and Todres, R., 2005, “Mind the Gap: The Shape of the Free Surface of a Rubber-Like Material in Proximity to a Rigid Contactor,” J. Elasticity, 80, pp. 97–151.

[CrossRef]Chhapadia, P., Mohammadi, P., and Sharma, P., 2011, “Curvature-Dependent Surface Energy and Implications for Nanostructures,” J. Mech. Phys. Solid., 59(10), pp. 2103–2115.

[CrossRef]Moeckel, G. P., 1975, “Thermodynamics of an Interface,” Arch. Ration. Mech. An., 57, pp. 255–280.

[CrossRef]dell'Isola, F., and Romano, A., 1987, “On the Derivation of Thermomechanical Balance Equations for Continuous Systems With a Nonmaterial Interface,” Int. J. Eng. Sci., 25(11–12), pp. 1459–1468.

[CrossRef]Müller, I., 1971, “Entropy, Absolute Temperature, and Coldness in Thermodynamics,” *Courses and Lectures—International Centre for Mechanical Sciences*, Springer, New York.

Gogosov, V. V., Naletova, V. A., Bin, C. Z., and Shaposhnikova, G. A., 1983, “Conservation Laws for the Mass, Momentum, and Energy on a Phase Interface for True and Excess Surface Parameters,” Fluid Dyn., 18, pp. 923–930.

[CrossRef]Daher, N., and Maugin, G. A., 1986, “The Method of Virtual Power in Continuum Mechanics Application to Media Presenting Singular Surfaces and Interfaces,” Acta Mech., 60(3–4), pp. 217–240.

[CrossRef]Germain, P., 1973, “The Method of Virtual Power in Continuum Mechanics—Part 2: Microstructure,” SIAM J. Appl. Math., 25, pp. 556–575.

[CrossRef]Maugin, G. A., 1980, “The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields,” Acta Mech., 35, pp. 1–70.

[CrossRef]Daher, N., and Maugin, G. A., 1987, “Deformable Semiconductors With Interfaces: Basic Continuum Equations,” Int. J. Eng. Sci., 25(9), pp. 1093–1129.

[CrossRef]Daher, N., and Maugin, G. A., 1986, “Virtual Power and Thermodynamics for Electromagnetic Continua With Interfaces,” J. Math. Phys., 27, p. 3022.

[CrossRef]Murdoch, A. I., 2005, “Some Fundamental Aspects of Surface Modelling,” J. Elasticity, 80(1), pp. 33–52.

[CrossRef]Šilhavý, M., 2011, “Equilibrium of Phases With Interfacial Energy: A Variational Approach,” J. Elasticity, 105, pp. 271–303.

[CrossRef]Park, H. S., Klein, P. A., and Wagner, G. J., 2006, “A Surface Cauchy–Born Model for Nanoscale Materials,” Int. J. Num. Meth. Eng., 68(10), pp. 1072–1095.

[CrossRef]Park, H. S., and Klein, P. A., 2008, “A Surface Cauchy–Born Model for Silicon Nanostructures,” Comput. Meth. Appl. Mech. Eng., 197(41–42), pp. 3249–3260.

[CrossRef]Park, H. S., and Klein, P. A., 2007, “Surface Cauchy–Born Analysis of Surface Stress Effects on Metallic Nanowires,” Phys. Rev. B, 75(8), p. 085408.

[CrossRef]Park, H. S., Cai, W., and Espinosa, H. D., 2009, “Mechanics of Crystalline Nanowires,” MRS Bulletin, 34(3), pp. 178–183.

[CrossRef]Sharma, P., Ganti, S., and Bhate, N., 2003, “Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities,” Appl. Phys. Lett., 82(4), pp. 535–537.

[CrossRef]Sharma, P., and Ganti, S., 2004, “Size-Dependent Eshelby's Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies,” ASME J. Appl. Mech., 71(5), pp. 663–671.

[CrossRef]Sharma, P., and Wheeler, L. T., 2007, “Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension,” ASME J. Appl. Mech., 74(3), pp. 447–454.

[CrossRef]Eshelby, J. D., 1951, “The Force on an Elastic Singularity,” Philos. Trans. R. Soc. A, 244(877), pp. 87–112.

[CrossRef]Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. A, 241(1226), pp. 376–396.

[CrossRef]Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L., 2005, “Eshelby Formalism for Nano-Inhomogeneities,” Proc. R. Soc. A, 461(2062), pp. 3335–3353.

[CrossRef]Duan, H. L., Wang, J., Huang, Z. P., and Karihaloo, B. L., 2005, “Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress,” J. Mech. Phys. Solid., 53(7), pp. 1574–1596.

[CrossRef]Duan, H. L., and Karihaloo, B. L., 2007, “Effective Thermal Conductivities of Heterogeneous Media Containing Multiple Imperfectly Bonded Inclusions,” Phys. Rev. B, 75, p. 064206.

[CrossRef]Benveniste, Y., and Miloh, T., 2001, “Imperfect Soft and Stiff Interfaces in Two-Dimensional Elasticity,” Mech. Mater., 33(6), pp. 309–323.

[CrossRef]Huang, Z., and Sun, L., 2007, “Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis,” Acta Mech., 190, pp. 151–163.

[CrossRef]Fischer, F. D., and Svoboda, J., 2010, “Stresses in Hollow Nanoparticles,” Int. J. Solid. Struct., 47(20), pp. 2799–2805.

[CrossRef]Mogilevskaya, S. G., Crouch, S. L., and Stolarski, H. K., 2008, “Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects,” J. Mech. Phys. Solid., 56(6), pp. 2298–2327.

[CrossRef]Lim, C. W., Li, Z. R., and He, L. H., 2006, “Size Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress,” Int. J. Solid. Struct., 43(17), pp. 5055–5065.

[CrossRef]He, L. H., and Li, Z. R., 2006, “Impact of Surface Stress on Stress Concentration,” Int. J. Solid. Struct., 43(20), pp. 6208–6219.

[CrossRef]Mi, C., and Kouris, D. A., 2006, “Nanoparticles Under the Influence of Surface/Interface Elasticity,” J. Mech. Mater. Struct., 1(4), pp. 763–791.

[CrossRef]Zöllner, A. M., Buganza Tepole, A., and Kuhl, E., 2012, “On the Biomechanics and Mechanobiology of Growing Skin,” J. Theoret. Biol., 297, pp. 166–175.

[CrossRef]Sun, C. Q., 2009, “Thermo-Mechanical Behavior of Low-Dimensional Systems: The Local Bond Average Approach,” Prog. Mater. Sci., 54(2), pp. 179–307.

[CrossRef]Johnson, W. C., 2000, “Superficial Stress and Strain at Coherent Interfaces,” Acta Mater., 48(2), pp. 433–444.

[CrossRef]Yvonnet, J., Mitrushchenkov, A., Chambaud, G., and He, Q.-C., 2011, “Finite Element Model of Ionic Nanowires With Size-Dependent Mechanical Properties Determined by

*Ab Initio* Calculations,” Comput. Meth. Appl. Mech. Eng., 200(5-8), pp. 614–625.

[CrossRef]McBride, A., Javili, A., Steinmann, P., and Bargmann, S., 2011, “Geometrically Nonlinear Continuum Thermomechanics With Surface Energies Coupled to Diffusion,” J. Mech. Phys. Solid., 59(10), pp. 2116–2133.

[CrossRef]Özdemir, I., Brekelmans, W. A. M., and Geers, M. G. D., 2010, “A Thermo-Mechanical Cohesive Zone Model,” Computat. Mech., 46(5), pp. 735–745.

[CrossRef]Benveniste, Y., 2006, “A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between Two Anisotropic Media,” J. Mech. Phys. Solid., 54(4), pp. 708–734.

[CrossRef]Le-Quang, H., Bonnet, G., and He, Q.-C., 2010, “Size-Dependent Eshelby Tensor Fields and Effective Conductivity of Composites Made of Anisotropic Phases With Highly Conducting Imperfect Interfaces,” Phys. Rev. B, 81(6), p. 064203.

[CrossRef]Gu, S. T., and He, Q.-C., 2011, “Interfacial Discontinuity Relations for Coupled Multifield Phenomena and Their Application to the Modeling of Thin Interphases as Imperfect Interfaces,” J. Mech. Phys. Solid., 59(7), pp. 1413–1426.

[CrossRef]Kapitza, P. L., 1941, “The Study of Heat Transfer in Helium II,” J. Phys. (USSR), 4, pp. 181–210.

Yvonnet, J., He, Q.-C., Zhu, Q.-Z., and Shao, J. F., 2011, “A General and Efficient Computational Procedure for Modelling the Kapitza Thermal Resistance Based on XFEM,” Comput. Mater. Sci., 50(4), pp. 1220–1224.

[CrossRef]Yvonnet, J., He, Q.-C., and Toulemonde, C., 2008, “Numerical Modelling of the Effective Conductivities of Composites With Arbitrarily Shaped Inclusions and Highly Conducting Interface,” Composit. Sci. Tech., 68(13), pp. 2818–2825.

[CrossRef]Miloh, T., and Benveniste, Y., 1999, “On the Effective Conductivity of Composites With Ellipsoidal Inhomogeneities and Highly Conducting Interfaces,” Proc. R. Soc. A, 455(1987), pp. 2687–2706.

[CrossRef]Javili, A., McBride, A., and Steinmann, P., 2013, “Numerical Modelling of Thermomechanical Solids With Highly Conductive Energetic Interfaces,” Int. J. Numer. Meth. Eng., 93(5), pp. 551–574.

[CrossRef]Mosler, J., and Scheider, I., 2011, “A Thermodynamically and Variationally Consistent Class of Damage-Type Cohesive Models,” Technical Report.

Steinmann, P., and Häsner, O., 2005, “On Material Interfaces in Thermomechanical Solids,” Arch. Appl. Mech., 75(1), pp. 31–41.

[CrossRef]Steinmann, P., 2008, “On Boundary Potential Energies in Deformational and Configurational Mechanics,” J. Mech. Phys. Solid., 56(3), pp. 772–800.

[CrossRef]Javili, A., and Steinmann, P., 2009, “A Finite Element Framework for Continua With Boundary Energies—Part I: The Two-Dimensional Case,” Comput. Meth. Appl. Mech. Eng., 198(27–29), pp. 2198–2208.

[CrossRef]Javili, A., and Steinmann, P., 2010, “A Finite Element Framework for Continua With Boundary Energies—Part II: The Three-Dimensional Case,” Comput. Meth. Appl. Mech. Eng., 199(9–12), pp. 755–765.

[CrossRef]Javili, A., and Steinmann, P., 2010, “On Thermomechanical Solids With Boundary Structures,” Int. J. Solid. Struct., 47(24), pp. 3245–3253.

[CrossRef]Javili, A., and Steinmann, P., 2011, “A Finite Element Framework for Continua With Boundary Energies—Part III: The Thermomechanical Case,” Comput. Meth. Appl. Mech. Eng., 200(21–22), pp. 1963–1977.

[CrossRef]Gough, J., 1805, “A Description of a Property of Caoutchouc on Indian Rubber; With Some Reflections on the Case of the Elasticity of This Substance,” *Memoirs of the Literary and Philosophical Society of Manchester*, Vol. 1, pp. 288–295.

Joule, J. P., 1859, “On Some Thermo-Dynamic Properties of Solids,” Philos. Trans. R. Soc. A, 149, pp. 91–131.

[CrossRef]Marsden, J. E., and Hughes, T. J. R., 1994, *Mathematical Foundations of Elasticity*, Dover Publications, New York.

Šilhavý, M., 1997, *The Mechanics and Thermodynamics of Continuous Media*, Springer, Berlin, Germany.

Truesdell, C., and Noll, W., 2004, *The Non-Linear Field Theories of Mechanics*, Springer, Berlin, Germany.

Gurtin, M. E., Fried, E., and Anand, L., 2009, *The Mechanics and Thermodynamics of Continua*, Cambridge University Press, New York.

Holzapfel, G. A., 2000, *Nonlinear Solid Mechanics: A Continuum Approach for Engineering*, John Wiley & Sons, Chichester, UK.

Besson, J., Cailletaud, G., Chaboche, J. L., and Forest, S., 2010, *Non-Linear Mechanics of Materials*, Springer, Heidelberg, Germany.

Bowen, R. M., and Wang, C. C., 1976, *Introduction to Vectors and Tensors: Linear and Multilinear Algebra*, Plenum Press, New York.

Kreyszig, E., 1991, *Differential Geometry*, Dover Publications, New York.

Ciarlet, P. G., 2005, *An Introduction to Differential Geometry With Applications to Elasticity*, Springer, The Netherlands.

Gurtin, M. E., 2000, *Configurational Forces as Basic Concepts of Continuum Physics*, Springer, New York.

Eringen, A. C., 1967, *Mechanics of Continua*, Wiley, New York.

Hutter, K., 1977, “The Foundations of Thermodynamics, Its Basic Postulates and Implications: A Review of Modern Thermodynamics,” Acta Mech., 27, pp. 1–54.

[CrossRef]Müller, I., 1967, “On the Entropy Inequality,” Arch. Ration. Mech. An., 26, pp. 118–141.

[CrossRef]Simha, N. K., and Bhattacharya, K., 2000, “Kinetics of Phase Boundaries With Edges and Junctions in a Three-Dimensional Multi-Phase Body,” J. Mech. Phys. Solid., 48(12), pp. 2619–2641.

[CrossRef]Miehe, C., 1995, “Entropic Thermoelasticity at Finite Strains. Aspects of the Formulation and Numerical Implementation,” Comput. Meth. Appl. Mech. Eng., 120(3–4), pp. 243–269.

[CrossRef]Javili, A., McBride, A., and Steinmann, P., 2012, “Numerical Modelling of Thermomechanical Solids With Mechanically Energetic (Generalised) Kapitza Interfaces,” Computat. Mater. Sci., 65, pp. 542–551.

[CrossRef]Ye, J. C., Lu, J., Liu, C. T., Wang, Q., and Yang, Y., 2010, “Atomistic Free-Volume Zones and Inelastic Deformation of Metallic Glasses,” Nature Mater., 9(8), pp. 619–623.

[CrossRef]Javili, A., McBride, A., Steinmann, P., and Reddy, B. D., 2012, “Relationships Between the Admissible Range of Surface Material Parameters and Stability of Linearly Elastic Bodies,” Philosoph. Mag., 92(28–30), pp. 3540–3563.

[CrossRef]Ciarlet, P. G., 1988, *Mathematical Elasticity*, Vol. 1, Elsevier, Amsterdam, The Netherlands.

Ogden, R. W., 1997, *Non-Linear Elastic Deformations*, Dover Publications, New York.

Gurtin, M. E., and Murdoch, A. I., 1975, “Addenda to Our Paper a Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. An., 59(4), pp. 1–2.

[CrossRef]Ru, C. Q., 2010, “Simple Geometrical Explanation of Gurtin–Murdoch Model of Surface Elasticity With Clarification of Its Related Versions,” Sci. China, Phys. Mech. Astron., 53(3), pp. 536–544.

[CrossRef]Haiss, W., 2001, “Surface Stress of Clean and Adsorbate-Covered Solids,” Rep. Progress Phys., 64(5), pp. 591–648.

[CrossRef]Dingreville, R., and Qu, J., 2007, “A Semi-Analytical Method to Compute Surface Elastic Properties,” Acta Mater., 55(1), pp. 141–147.

[CrossRef]Malvern, L. E., 1969, *Introduction to the Mechanics of a Continuous Medium*, Prentice-Hall, Englewood Cliffs, NJ.

Huang, Z. P., and Wang, J., 2006, “A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect,” Acta Mech., 182(3-4), pp. 195–210.

[CrossRef]Miller, R. E., and Shenoy, V. B., 2000, “Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology, 11(3), p. 139.

[CrossRef]Wei, G. W., Shouwen, Y. U., and Ganyun, H., 2006, “Finite Element Characterization of the Size-Dependent Mechanical Behaviour in Nanosystems,” Nanotechnology, 17(4), pp. 1118–1122.

[CrossRef] [PubMed]Hill, R., 1958, “A General Theory of Uniqueness and Stability in Elastic-Plastic Solids,” J. Mech. Phys. Solid., 6(3), pp. 236–249.

[CrossRef]Simpson, H. C., and Spector, S. J., 1985, “On Failure of the Complementing Condition and Nonuniqueness in Linear Elastostatics,” J. Elasticity, 15, pp. 229–231.

[CrossRef]Benallal, A., Billardon, R., and Geymonat, G., 1993, “Bifurcation and Localization in Rate-Independent Materials. Some General Considerations,” *Bifurcation and Stability of Dissipative Systems* (CISM Courses and Lectures, Vol. 327), Springer, Berlin, Germany, pp. 1–44.

Reddy, B. D., 1982, “Surface Instabilities on an Equibiaxially Stretched Elastic Half-Space,” Math. Proc. Cambridge Phil. Soc., 91, pp. 491–501.

[CrossRef]Reddy, B. D., 1983, “The Occurrence of Surface Instabilities and Shear Bands in Plane Strain Deformation of an Elastic Half-Space,” Q. J. Mech. Appl. Math., 36, pp. 337–350.

[CrossRef]Bigoni, D., Ortiz, M., and Needleman, A., 1997, “Effect of Interfacial Compliance on Bifurcation of a Layer Bonded to a Substrate,” Int. J. Solid. Struct., 34(97), pp. 4305–4326.

[CrossRef]Han, W., and Reddy, B. D., 1999, *Plasticity: Mathematical Theory and Numerical Analysis*, Vol. 9, Springer, New York.

Bigoni, D., and Gei, M., 2001, “Bifurcations of a Coated, Elastic Cylinder,” Int. J. Solid. Struct., 38(30–31), pp. 5117–5148.

[CrossRef]Steigmann, D. J., 2010, “Elastic Waves Interacting With a Thin, Prestressed, Fiber-Reinforced Surface Film,” Int. J. Eng. Sci., 48(11), pp. 1604–1609.

[CrossRef]Steigmann, D. J., 2012, “Refined Theory for Linearly Elastic Plates: Laminae and Laminates,” Math. Mech. Solid, 17(4), pp. 351–363.

[CrossRef]Shenoy, V. B., 2005, “Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces,” Phys. Rev. B, 71(9), p. 094104.

[CrossRef]Forest, S., Cordero, N. M., and Busso, E. P., 2011, “First vs. Second Gradient of Strain Theory for Capillarity Effects in an Elastic Fluid at Small Length Scales,” Computat. Mater. Sci., 50(4), pp. 1299–1304.

[CrossRef]Gurtin, M. E., and Jabbour, M. E., 2002, “Interface Evolution in Three Dimensions With Curvature-Dependent Energy and Surface Diffusion: Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films,” Arch. Ration. Mech. An., 163, pp. 171–208.

[CrossRef]