Mikhlin, Y., and Avramov, K. V., 2010, “Nonlinear Normal Modes for Vibrating Mechanical Systems. Review of Theoretical Developments,” ASME Appl. Mech. Rev., 63(6), p. 060802.

[CrossRef]Manevich, L. I., Mikhlin, Y., and Pilipchuk, V. N., 1989, *The Method of Normal Oscillation for Essentially Nonlinear Systems*, Nauka, Moscow (in Russian).

Vakakis, A., Manevitch, L., Mikhlin, Y., Pilipchuk, V., and Zevin, A., 1996, *Normal Modes and Localization in Nonlinear Systems*, Wiley, New York.

Avramov, K. V., and Mikhlin, Y., 2010, *Nonlinear Dynamics of Elastic Systems: Models, Methods and Approaches*, Vol. 1, Scientific Centre “Regular and Chaotic Dynamics”, Moscow (in Russian).

Vakakis, A. F., Gendelman, O. V., Bergman, L. A., McFarland, D. M., Kerschen, G., and LeeY. S., 2008, *Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems* (Solid Mechanics and Its Applications), Vol. 156, Springer, New York.

Pilipchuk, V. N., 2010, *Nonlinear Dynamics: Between Linear and Impact Limits*, Springer-Verlag, Berlin.

Amabili, M., 2008, *Nonlinear Vibrations and Stability of Shells and Plates*, Cambridge University Press, New York.

Leissa, A. W., 1993, “Vibration of Shells,” NASA Report No. SP-288, Government Printing Office, Washington, DC.

Vakakis, A. F., and Cetinkaya, C., 1993, “Mode Localization in a Class of Multi Degrees-of-Freedom Nonlinear Systems With Cyclic Symmetry,” SIAM J. Appl. Math., 35, pp. 265–282.

[CrossRef]Mikhlin, Y., Vakakis, A. F., and Salenger, G., 1998, “Direct and Inverse Problems Encountered in Vibro-Impact Oscillations of a Discrete System,” J. Sound Vib., 216, pp. 227–250.

[CrossRef]Vedenova, E., Manevich, L., and Pilipchuk, V., 1985, “Normal Oscillations of a String With Concentrated Masses on Non-Linearly Elastic Support,” Prikl Matem i Mekh (PMM USSR), 49, pp. 203–211.

Mikhlin, Y., and Morgunov, B. I., 2001, “Normal Vibrations in Near-Conservative Self-Excited and Viscoelastic Nonlinear Systems,” Nonlinear Dyn., 25, pp. 33–48.

[CrossRef]Peeters, M., Kerschen, G., and Golinval, J. C., 2011, “Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes,” J. Sound Vib., 330, pp. 486–509.

[CrossRef]Mikhlin, Y., and Reshetnikova, S. N., 2005, “Dynamical Interaction of an Elastic System and Essentially Nonlinear Absorber,” J. Sound Vib., 283, pp. 91–120.

[CrossRef]Mikhlin, Y., and Reshetnikova, S. N., 2006, “Dynamical Interaction of an Elastic System and an Vibro-Impact Absorber,” Math. Probl. Eng., 2006, p. 37980.

[CrossRef]Mikhlin, Y., and Reshetnikova, S. N., 2004, “Analysis of Some Problems of the Elastic Vibrations Absorption by Using the Vibro-Impact Oscillators,” *Dynamics and Strength of Machines*, Vol. 20, O. K. Morachkovsky, ed., National Technical University “KhPI”, Kharkiv, Ukraine, pp. 55–64 (in Russian).

Avramov, K. V., and Mikhlin, Y., 2004, “Snap-Through Truss as a Vibration Absorber,” J. Vib. Control, 10, pp. 291–308.

[CrossRef]Avramov, K. V., and Mikhlin, Y., 2004, “Forced Oscillations of a System Containing a Snap-Through Truss, Close to Its Equilibrium Position,” Nonlinear Dyn., 35, pp. 361–379.

[CrossRef]Avramov, K. V., and Mikhlin, Y., 2006, “Snap-Through Truss as an Absorber of Forced Oscillations,” J. Sound Vib., 290, pp. 705–722.

[CrossRef]Jiang, X., and Vakakis, A. F., 2003, “Dual Mode Vibration Isolation Based on Non-Linear Mode Localization,” Int. J. Nonlinear Mech., 37, pp. 837–850.

[CrossRef]Breslavsky, I., Avramov, K. V., Mikhlin, Y., and Kochurov, R., 2008, “Nonlinear Modes of Snap-Through Motions of a Shallow Arch,” J. Sound Vib., 311, pp. 297–313.

[CrossRef]Avramov, K. V., and Gendelman, O. V., 2010, “On Interaction of Vibrating Beam With Essentially Nonlinear Absorber,” Mecanica, 45, pp. 355–365.

[CrossRef]Chati, M., Rand, R., and Mukherjee, S., 1997, “Modal Analysis of a Cracked Beam,” J. Sound Vib., 207, pp. 249–270.

[CrossRef]Donnell, L. H., 1934, “A New Theory for the Buckling of Thin Cylinders Under Axial Compression and Bending,” Trans. ASME, 56, pp. 795–806.

Avramov, K. V., and Mikhlin, Y., 2002, “Analysis of Nonlinear Normal Modes in Cylindrical Shells,” *Nonlinear Dynamics of Shells With Fluid-Structure Interaction*, NATO CLG Grant Report Proceedings, F.Pellicano, Y.Mikhlin, and I.Zolotarev, eds., Institute of Thermomechanics, Prague, pp. 33–44.

Avramov, K. V., Mikhlin, Y., and Kurilov, E., 2007, “Asymptotic Analysis of Nonlinear Dynamics of Simply Supported Cylindrical Shells,” Nonlinear Dyn., 47, pp. 331–352.

[CrossRef]Kubenko, V. D., Koval'shuk, P. S., and Krasnopolskaya, T. S., 1984, *Nonlinear Interaction of Modes of Bending Shell Oscillations*, Naukova Dumka, Kiev (in Russian).

Avramov, K. V., 2012, “Nonlinear Modes of Vibrations for Simply Supported Cylindrical Shell With Geometrical Nonlinearity,” Acta Mech., 223, pp. 279–292.

[CrossRef]Avramov, K. V., 2011, “Many-Dimensional Models of Traveling Waves and Nonlinear Modes in Cylindrical Shell,” Int. Appl. Mech., 47, pp. 70–77.

[CrossRef]Kochurov, R., and Avramov, K. V., 2010, “Nonlinear Modes and Traveling Waves of Parametrically Excited Cylindrical Shells,” J. Sound Vib., 329, pp. 2193–2204.

[CrossRef]Kochurov, R., and Avramov, K. V., 2011, “Parametric Vibrations of Cylindrical Shells Subject to Geometrically Nonlinear Deformation: Multimode Models,” Int. Appl. Mech., 46, pp. 1010–1018.

[CrossRef]Mikhlin, Y., and Kurilov, E., 2009, “On Nonlinear Vibrations of Cylindrical Shells in Supersonic Flow,” J. Mech. Eng., 12, pp. 52–58 (in Russian).

Kurilov, E., and Mikhlin, Y., 2007, “Nonlinear Vibrations of Cylindrical Shells With Initial Imperfections in a Supersonic Flow,” Int. Appl. Mech., 43, pp. 1000–1008.

[CrossRef]Shaw, S. W., and Pierre, C., 1993, “Normal Modes for Non-Linear Vibratory Systems,” J. Sound Vib., 164, pp. 85–124.

[CrossRef]Pesheck, E., Pierre, C., and Shaw, S. W., 2002, “A New Galerkin-Based Approach for Accurate Non-Linear Normal Modes Through Invariant Manifolds,” J. Sound Vib., 249, pp. 971–993.

[CrossRef]Jiang, D., Pierre, C., and Shaw, S. W., 2005, “Nonlinear Normal Modes for Vibratory Systems Under Harmonic Excitation,” J. Sound Vib., 288, pp. 791–812.

[CrossRef]Falzarano, J. M., Clague, R. E., and Kota, R. S., 2001, “Application of Nonlinear Normal Mode Analysis to the Nonlinear and Coupled Dynamics of a Floating Offshore Platform With Damping,” Nonlinear Dyn., 25, pp. 255–274.

[CrossRef]Mikhlin, Y., and Mitrokhin, S., 2011, “Nonlinear Oscillatory Processes in Wheeled Vehicles,” Int. Appl. Mech., 46, pp. 1311–1318.

[CrossRef]Mikhlin, Y., and Perepelkin, N. V., 2011, “Nonlinear Normal Modes and Their Applications in Mechanical Systems,” Proc. Inst. Mech. Eng., Part C, 225, pp. 2369–2384.

[CrossRef]Villa, C. V. S., Sinou, J. J., Thouverez, F., 2005, “The Invariant Manifold Approach Applied to Nonlinear Dynamics of a Rotor-Bearing System,” Eur. J. Mech. A/Solids, 24, pp. 676–689.

[CrossRef]Avramov, K. V., and Borisuk, A., 2011, “Nonlinear Dynamics of One Disk Asymmetrical Rotor Supported by Two Journal Bearings,” Nonlinear Dyn., 67, pp. 1201–1219.

[CrossRef]Avramov, K. V., 2010, “A Model of Asymmetric Single-Disk Rotor Self-Vibrations,” Strength Mater., 42, pp. 459–470.

[CrossRef]Perepelkin, N. V., and Mikhlin, Y., 2011, “Analysis of Forced Modes of One-Disk Rotors on Nonlinear Elastic Base,” Proc. Inst. Appl. Math. Mech.: Mech. Solids, 40, pp. 221–232 (in Russian).

Perepelkin, N. V., and Mikhlin, Y., 2011, “Nonlinear Normal Modes of Forced Vibrations in Rotor Systems,” Proceedings of the 7th European Nonlinear Dynamics Conference, Roma, Italy.

Avramov, K. V., 2008, “Analysis of Forced Vibrations by Nonlinear Modes,” Nonlinear Dyn., 53, pp. 117–127.

[CrossRef]Warminski, J., 2008, “Nonlinear Normal Modes of Coupled Self-Excited Oscillators in Regular and Chaotic Vibration Regimes,” J. Theor. Appl. Mech., 46, pp. 693–714. Available at

http://ptmts.org.pl/Warminski-3-08.pdfChen, S. L., and Shaw, S. W., 1996, “Normal Modes for Piecewise Linear Vibratory Systems,” Nonlinear Dyn., 10, pp. 135–164.

[CrossRef]Jiang, D., Pierre, C., and Shaw, S. W., 2004, “Large-Amplitude Non-Linear Normal Modes of Piecewise Linear Systems,” J. Sound Vib., 272, pp. 869–891.

[CrossRef]Boivin, N., Pierre, C., and Shaw, S. W., 1995, “Non-Linear Normal Modes, Invariance, and Modal Dynamics Approximations of Non-Linear Systems,” Nonlinear Dyn., 8, pp. 315–346. Available at

http://deepblue.lib.umich.edu/bitstream/handle/2027.42/43333/11071_2004_Article_BF00045620.pdf;jsessionid=078F06677999DA229F323481CFDBB5AD?sequence=1Pesheck, E., Boivin, N., and Pierre, C., 2001, “Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds,” Nonlinear Dyn., 25, pp. 183–205.

[CrossRef]Pesheck, E., Pierre, C., and Shaw, S. W., 2001, “Accurate Reduced-Order Models for a Simple Rotor Blade Model Using Nonlinear Normal Modes,” Math Comput. Model., 33, pp. 1085–1097.

[CrossRef]Pesheck, E., Pierre, C., and Shaw, S. W., 2002, “Modal Reduction of a Nonlinear Rotating Beams Through Nonlinear Normal Modes,” ASME J.Vib. Acoust., 124(2), pp. 229–236.

[CrossRef]Jiang, D., Pierre, C., and Shaw, S. W., 2005, “The Construction of Non-Linear Normal Modes for Systems With Internal Resonances,” Int. J. Nonlinear Mech., 40, pp. 729–746.

[CrossRef]Xie, W. C., Lee, H. P., and Lim, S. P., 2002, “Normal Modes of a Non-Linear Clamped-Clamped Beam,” J. Sound Vib., 250, pp. 339–349.

[CrossRef]Avramov, K. V., Pierre, C., and Shyriaieva, N., 2007, “Flexural-Flexural-Torsional Nonlinear Vibrations of Pre-Twisted Rotating Beams With Asymmetric Cross-Sections,” J. Vib. Control, 13, pp. 329–364.

[CrossRef]Avramov, K. V., Galas, O. S., and Morachkovskii, O. K., 2009, “Analysis of Flexural-Flexural-Torsional Nonlinear Vibrations of Twisted Rotating Beams With Cross-Sectional Deplanation,” Strength Mater., 41, pp. 200–208.

[CrossRef]Avramov, K. V., 2009, “Nonlinear Modes of Parametric Vibrations and Their Applications to Beams Dynamics,” J. Sound Vib., 322, pp. 476–489.

[CrossRef]Touze, C., Thomas, O., and Chaigne, A., 2004, “Hardening/Softening Behaviour in Non-Linear Oscillations of Structural Systems Using Non-Linear Normal Modes,” J. Sound Vib., 273, pp. 77–101.

[CrossRef]Li, X., Chen, Y., Wu, Z., and Chen, F., 2002, “Bifurcation of Nonlinear Internal Resonant Normal Modes of a Class of Multi-Degrees-Of-Freedom Systems,” Mech. Res. Commun., 29, pp. 299–306.

[CrossRef]Soares, M. E. S., and Mazzilli, C. E. N., 2000, “Nonlinear Normal Modes of Planar Frames Discretised by the Finite Element Method,” Comput. Struct., 77, pp. 485–493.

[CrossRef]Legrand, M., Jiang, D., Pierre, C., and Shaw, S. W., 2004, “Nonlinear Normal Modes of a Rotating Shaft Based on the Invariant Manifold Method,” Int. J. Rotating Mach., 10, pp. 319–335.

[CrossRef]Mazzilli, C. E. N., Monticelli, G. C., and Galan Neto, N. A., 2011, “Reduced-Order Modeling in Non-Linear Dynamics: An Approach Based on Non-Linear Modes,” Proc. Inst. Mech. Eng., Part C, 225, pp. 2354–2368.

[CrossRef]Breslavsky, I., and Avramov, K. V., 2011, “Nonlinear Modes of Cylindrical Panels With Complex Boundaries. R-Function Method,” Meccanica, 46, pp. 817–832.

[CrossRef]Breslavsky, I. D., and Avramov, K. V., 2010, “Vibrations of a Complex-Shaped Panel,” Int. Appl. Mech., 46, pp. 580–587.

[CrossRef]Rvachev, V. L., 1982, *R-Functions Theory and Some of Its Applications*, Naukova Dumka, Kiev (in Russian).

Avramov, K. V., Tyshkovets, O., and Maksymenko-Sheyko, K. V., 2010, “Analysis of Nonlinear Free Vibration of Circular Plates With Cut-Outs Using R-Function Method,” ASME J. Vib. Acoust., 132(5), p. 051001.

[CrossRef]Breslavsky, I. D., Strel'nikova, E. A., and Avramov, K. V., 2011, “Dynamics of Shallow Shells With Geometrical Nonlinearity Interacting With Fluid,” Comput. Struct., 89, pp. 496–506.

[CrossRef]Belotserkovskii, S. M., 1977, “Study of the Unsteady Aerodynamics of Lifting Surfaces Using the Computer,” Ann. Rev. Fluid Mech., 9, pp. 469–494.

[CrossRef]Shaw, S., and Pierre, C., 1994, “Normal Modes of Vibration for Non-Linear Continuous Systems,” J. Sound Vib., 169, pp. 319–347.

[CrossRef]Hsieh, S. R., Shaw, S. W., and Pierre, C., 1994, “Normal Modes for Large Amplitude Vibration of a Cantilever Beam,” Int. J. Solids Struct., 31, pp. 1981–2014.

[CrossRef]Pellicano, F., and Vakakis, A. F., 2001, “Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation,” Nonlinear Dyn., 25, pp. 79–93.

[CrossRef]King, M. E., and Vakakis, A. F., 1995, “Asymptotic Analysis of Nonlinear Mode Localization in a Class of Coupled Continuous Structures,” Int. J. Soilds Struct., 32, pp. 1161–1177.

[CrossRef]Samaranayake, S., and Bajaj, A. K., 1997, “Subharmonic Oscillations in Harmonically Excited Mechanical Systems With Cyclic Symmetry,” J. Sound Vib., 206, pp. 39–60.

[CrossRef]Wang, F., Bajaj, A., and Kamiya, K., 2005, “Nonlinear Normal Modes and Their Bifurcations for an Inertially Coupled Nonlinear Conservative System,” Nonlinear Dyn., 42, pp. 233–265.

[CrossRef]Wang, F., Bajaj, A. K., 2011, “Model Reduction for Discrete and Elastic Structures With Internal Quadratic Non-Linearities,” Proc. Inst. Mech Eng., Part C, 225, pp. 2422–2435.

[CrossRef]Vestroni, F., Luongo, A., and Paolone, A., 2008, “A Perturbation Method for Evaluating Nonlinear Normal Modes of a Piecewise Linear Two-Degrees-of-Freedom System,” Nonlinear Dyn., 54, pp. 379–393.

[CrossRef]Warminski, J., 2010, “Nonlinear Normal Modes of a Self-Excited System Driven by Parametric and External Excitation,” Nonlinear Dyn., 61, pp. 677–689.

[CrossRef]Nayfeh, A. H., and Nayfeh, S. A., 1994, “On Nonlinear Modes of Continuous Systems,” ASME J. Vib. Acoust., 116(1), pp. 129–136.

[CrossRef]Nayfeh, A. H., and Nayfeh, S. A., 1995, “Nonlinear Normal Modes of a Continuous System With Quadratic Nonlinarities,” ASME J. Vib. Acoust., 117(2), pp. 199–205.

[CrossRef]Nayfeh, A. H., Lacarbonara, W., and Chin, C. M., 1999, “Nonlinear Normal Modes of Buckled Beams: Three-to-One and One-to-One Internal Resonances,” Nonlinear Dyn., 18, pp. 253–273.

[CrossRef]Yabuno, H., and Nayfeh, A. H., 2001, “Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam,” Nonlinear Dyn., 25, pp. 65–77.

[CrossRef]Pilipchuk, V. N., 2009, “Transition From Normal to Local Modes in an Elastic Beam Supported by Nonlinear Springs,” J. Sound Vib., 322, pp. 554–563.

[CrossRef]Ma, X., Azeez, M. F. A., and Vakakis, A. F., 2000, “Non-Linear Normal Modes and Non-Parametric System Identification of Non-Linear Oscillators,” Mech. Syst. Signal Process., 14, pp. 37–48.

[CrossRef]Lacarbonara, W., and Rega, G., 2003, “Resonant Non-Linear Normal Modes. Part II: Activation/Orthogonality Conditions for Shallow Structural Systems,” Int. J. Nonlinear Mech., 38, pp. 873–887.

[CrossRef]Touze, C., and Amabili, M., 2006, “Nonlinear Normal Modes for Damped Geometrically Nonlinear Systems: Applications to Reduced-Order Modelling of Harmonically Forced Structures,” J. Sound Vib., 298, pp. 958–981.

[CrossRef]Touze, C., Amabili, M., and Thomas, O., 2008, “Reduced-Order Models for Large-Amplitude Vibrations of Shells Including In-Plane Inertia,” Comput. Methods Appl. Mech. Eng., 197, pp. 2030–2045.

[CrossRef]Amabili, M., and Touze, C., 2007, “Reduced-Order Models for Nonlinear Vibrations of Fluids-Filled Circular Cylindrical Shells: Comparison of POD and Asymptotic Nonlinear Normal Modes Methods,” J. Fluids Struct., 23, pp. 885–903.

[CrossRef]Pellicano, F., Amabili, M., and Vakakis, A. F., 2000, “Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells. Part 2: Perturbation Analysis,” ASME J. Vib. Acoust., 122(4), pp. 355–364.

[CrossRef]Amabili, M., Pellicano, F., Paidoussis, M. P., 1998, “Nonlinear Vibrations of Simply Supported, Circular Cylindrical Shells, Coupled to Quiescent Fluid,” J. Fluids Struct., 12, pp. 883–918.

[CrossRef]King, M. E., and Vakakis, A. F., 1996, “An Energy-Based Approach to Computing Resonant Nonlinear Normal Modes,” ASME J. Appl. Mech., 63(3), pp. 810–819.

[CrossRef]Boivin, N., Pierre, C., and Shaw, S. W., 1995, “Nonlinear Modal Analysis of Structural Systems Featuring Internal Resonances,” J. Sound Vib., 182, pp. 336–341.

[CrossRef]Vakakis, A. F., 1996, “Nonlinear Mode Localization in Systems Governed by Partial Differential Equations,” ASME Appl. Mech. Rev., 49, pp. 87–99.

[CrossRef]Lacarbonara, W., Rega, G., and Nayfeh, A. H., 2003, “Resonant Nonlinear Normal Modes, Part I: Analytical Treatment for Structural One Dimensional Systems,” Int. J. Nonlinear Mech., 38, pp. 851–872.

[CrossRef]Zaslavskii, G. M., 2005, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, Oxford.

Nayfeh, A. H., and Mook, D. T., 1995, *Nonlinear Oscillations*, John Wiley & Sons, New York.

Nayfeh, A. H., 2000, *Nonlinear Interactions: Analytical, Computational and Experimental Methods*, Wiley Interscience, New York.

Nayfeh, S. A., and Nayfeh, A. H., 1994, “Energy Transfer From High- to Low-Frequency Modes in a Flexible Structure via Modulation,” ASME J. Vib. Acoust., 116(2), pp. 203–207.

[CrossRef]Nayfeh, A. H., and Mook, D. T., 1995, “Energy Transfer From High-Frequency to Low-Frequency Modes in Structures,” ASME J. Vib. Acoust., 117(B), pp. 186–195.

[CrossRef]Oh, K., and Nayfeh, A. H., 1998, “High- to Low-Frequency Modal Interactions in a Cantilever Composite Plate,” ASME J. Vib. Acoust., 120(2), pp. 579–587.

[CrossRef]Malatkar, P., and Nayfeh, A. H., 2003, “On the Transfer of Energy Between Widely Spaced Modes in Structures,” Nonlinear Dyn., 31, pp. 225–242.

[CrossRef]Kerschen, G., Peeters, M., Golinval, J. C., and Vakakis, A. F., 2009, “Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamics,” Mech. Syst. Signal Process., 23, pp. 195–216.

[CrossRef]Breslavsky, I. D., and Avramov, K. V., 2012, “Two Modes Nonresonance Interaction for Rectangular Plate With Geometrical Non-Linearity,” Nonlinear Dyn., 69, pp. 285–294.

[CrossRef]Manevitch, L. I., 2007, “New Approach to Beating Phenomenon in Coupled Nonlinear Oscillatory Chain,” Arch. Appl. Mech., 77, pp. 301–312.

[CrossRef]Manevitch, L. I., and Gendelman, O. V., 2011, *Tractable Models of Solid Mechanics*, Springer, Berlin.

Anderson, P. W., 1958, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev., 109, pp. 1492–1505.

[CrossRef]Pierre, C., and Dowell, E. H., 1987, “Localization of Vibrations by Structural Irregularity,” J. Sound Vib., 114, pp. 549–564.

[CrossRef]Hodges, C. H., 1982, “Confinement of Vibration by Structural Irregularity,” J. Sound Vib., 82, pp. 411–424.

[CrossRef]Vakakis, A. F., Nayfeh, A. H., and King, M. E., 1993, “A Multiple-Scales Analysis of Nonlinear, Localized Modes in a Cyclic Periodic System,” ASME J. Appl. Mech., 60(2), pp. 388–397.

[CrossRef]Vakakis, A. F., King, M. E., and Pearlstein, A. J., 1994, “Forced Localization in a Periodic Chain of Nonlinear Oscillators,” Int. J. Nonlinear Mech., 29, pp. 429–447.

[CrossRef]King, M. E., and Vakakis, A. F., 1995, “Mode Localization in a System of Coupled Flexible Beams With Geometric Nonlinearities,” ZAMM, 75, pp. 127–139.

[CrossRef]Vakakis, A. F., 1992, “Fundamental and Subharmonic Resonances in a System With a 1-1 Internal Resonance,” Nonlinear Dyn., 3, pp. 123–143.

[CrossRef]Vakakis, A. F., 1994, “Passive Spatial Confinement of Impulsive Responses in Coupled Nonlinear Beams,” AIAA J., 32, pp. 1902–1910.

[CrossRef]Aubrecht, J., and Vakakis, A. F., 1996, “Localized and Non-Localized Nonlinear Normal Modes in a Multi-Span Beam With Geometric Nonlinearities,” ASME J. Vib. Acoust., 118(4), pp. 533–542.

[CrossRef]Aubrecht, J., Vakakis, A. F., Tsao, T. C., and Bentsman, J., 1996, “Experimental Study of Nonlinear Transient Motion Confinement in a System of Coupled Beams,” J. Sound Vib., 195, pp. 629–648.

[CrossRef]Emaci, E., Nayfeh, T. A., and Vakakis, A. F., 1997, “Numerical and Experimental Study of Nonlinear Localization in a Flexible Structure With Vibro-Impacts,” ZAMM, 77, pp. 527–541.

[CrossRef]Avramov, K. V., and Gendelman, O. V., 2009, “Interaction of Elastic System With Snap-Through Vibration Absorber,” Int. J. Nonlinear Mech., 44, pp. 81–89.

[CrossRef]Gendelman, O. V., 2001, “Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators,” Nonlinear Dyn., 25, pp. 237–253.

[CrossRef]Vakakis, A. F., 2001, “Inducing Passive Nonlinear Energy Sinks in Vibrating Systems,” ASME J. Vib. Acoust., 123(3), pp. 324–332.

[CrossRef]Vakakis, A. F., and Gendelman, O., 2001, “Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture,” ASME J. Appl. Mech., 68(1), pp. 42–48.

[CrossRef]Gendelman, O. V., Manevitch, L. I., Vakakis, A. F., and McCloskey, R., 2001, “Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., 68(1), pp. 34–41.

[CrossRef]Gendelman, O., 2011, “Targeted Energy Transfer in Systems With External and Self–Excitation,” Proc. Inst. Mech. Eng., Part C, 225, pp. 2007–2043.

[CrossRef]Manevitch, L. I., 1999, “Complex Representation of Dynamics of Coupled Nonlinear Oscillators,” *Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media*, Kluwer Academic/Plenum Publishers, New York, pp. 269–300.

McFarland, D. M., Kerschen, G., Kowtko, J. J., Lee, Y. S., Bergman, L. A., and Vakakis, A. F., 2005, “Experimental Investigation of Targeted Energy Transfer in Strongly and Nonlinearly Coupled Oscillators,” J. Acoust. Soc. Am., 118, pp. 791–799.

[CrossRef]Gendelman, O. V., Manevitch, L. I., Vakakis, A. F., and Bergman, L. A., 2003, “A Degenerate Bifurcation Structure in the Dynamics of Coupled Oscillators With Essential Stiffness Nonlinearities,” Nonlinear Dyn., 33, pp. 1–10.

[CrossRef]Vakakis, A. F., and Rand, R. H., 2004, “Non-Linear Dynamics of a System of Coupled Oscillators With Essential Stiffness Non-Linearities,” Int. J. Nonlinear Mech., 39, pp. 1079–1091.

[CrossRef]Gendelman, O. V., 2004, “Bifurcations of Nonlinear Normal Modes of Linear Oscillator With Strongly Nonlinear Damped Attachment,” Nonlinear Dyn., 37, pp. 115–128.

[CrossRef]Pilipchuk, V. N., Vakakis, A. F., and Azeez, M. A. F., 1997, “Study of a Class of Subharmonic Motions Using a Non-Smooth Temporal Transformation,” Phys. D., 100, pp. 145–164.

[CrossRef]Vakakis, A. F., McFarland, D. M., Bergman, L., Manevitch, L. I., and Gendelman, O., 2004, “Isolated Resonance Captures and Resonance Capture Cascades Leading to Single- or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators,” ASME J. Vib. Acoust., 126(2), pp. 235–244.

[CrossRef]Starosvetsky, Y., and Gendelman, O. V., 2009, “Vibration Absorption in Systems Comprising Nonlinear Energy Sink: Nonlinear Damping,” J. Sound Vib., 324, pp. 916–939.

[CrossRef]Gourdon, E., and Lamarque, C. H., 2005, “Energy Pumping for a Larger Span of Energy,” J. Sound Vib., 285, pp. 711–720.

[CrossRef]Musienko, A. I., Lamarque, C. H., and Manevitch, L. I., 2006, “Design of Mechanical Energy Pumping Devices,” J. Vib. Control, 12, pp. 355–371.

[CrossRef]Tsakirtzis, S., Panagopoulos, P. N., Kerschen, G., Gendelman, O., Vakakis, A. F., and Bergman, L. A., 2007, “Complex Dynamics and Targeted Energy Transfer in Systems of Linear Oscillators Coupled to Multi-Degrees-of-Freedom Essentially Nonlinear Attachments,” Nonlinear Dyn., 48, pp. 285–318.

[CrossRef]Vakakis, A. F., Manevitch, L. I., Gendelman, O., Bergman, L. A., 2003, “Dynamics of Linear Discrete Systems Connected to Local Essentially NonLinear Attachments,” J. Sound Vib., 264, pp. 559–577.

[CrossRef]Tsakirtzis, S., Vakakis, A. F., and Panagopoulos, S., 2007, “Broadband Energy Exchanges Between a Dissipative Elastic Rod and a Multi-Degrees-of-Freedom Dissipative, Essentially Nonlinear Attachment,” Int. J. Nonlinear Mech., 42, pp. 36–57.

[CrossRef]Georgiades, F., and Vakakis, A. F., 2007, “Dynamics of a Linear Beam With an Attached Local Nonlinear Energy Sink,” Commun Nonlinear Sci Numer Simul., 12, pp. 643–661.

[CrossRef]Panagopoulos, P. N., Georgiades, F., Tsakirtzis, S., Vakakis, A. F., and Bergman, L. A., 2007, “Multi-Scaled Analysis of the Damped Dynamics of an Elastic Continuum With an Essentially Nonlinear End Attachment,” Int. J. Solids Struct., 44, pp. 6256–6278.

[CrossRef]Georgiades, F., and Vakakis, A. F., 2009, “Passive Targeted Energy Transfers and Strong Modal Interactions in the Dynamics of a Thin Plate With Strongly Nonlinear End Attachments,” Int. J. Solids Struct., 46, pp. 2330–2353.

[CrossRef]Gendelman, O. V., Gourdon, E., and Lamarque, C. H., 2006, “Quasi-Periodic Energy Pumping in Coupled Oscillators Under Periodic Forcing,” J. Sound Vib., 294, pp. 651–662.

[CrossRef]Gendelman, O. V., and Starosvetsky, Y., 2007, “Quasi-Periodic Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink Under Periodic Forcing,” ASME J. Appl. Mech., 74(2), pp. 325–331.

[CrossRef]Gendelman, O. V., Starosvetsky, Y., and Feldman, M., 2008, “Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes,” Nonlinear Dyn., 51, pp. 31–46.

[CrossRef]Starosvetsky, Y., and Gendelman, O. V., 2008, “Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry,” Phys. D., 237, pp. 1719–1733.

[CrossRef]Shiroky, I. B., and Gendelman, O. V., 2008, “Essentially Nonlinear Vibration Absorber in a Parametrically Excited System,” ZAMM, 88, pp. 573–596.

[CrossRef]Sinha, S. C., Redkara, S., and Butcher, E. A., 2005, “Order Reduction of Nonlinear Systems with Time Periodic Coefficients Using Invariant Manifolds,” J. Sound Vib., 284, pp. 985–1002.

[CrossRef]Gabale, A. P., and Sinha, S. C., 2011, “Model Reduction of Nonlinear Systems With External Periodic Excitations via Construction of Invariant Manifolds,” J. Sound Vib., 330, pp. 2596–2607.

[CrossRef]Gabale, A., and Sinha, S. C., 2010, “Construction of Reduced Order Controllers for Nonlinear Systems With Periodic Coefficients,” J. Vib. Control, 17, pp. 391–406.

[CrossRef]Steindl, A., and Troger, H., 2001, “Methods for Dimension Reduction and their Application in Nonlinear Dynamics,” Int. J. Solids Struct., 38, pp. 2131–2147.

[CrossRef]Apiwattanalunggarn, P., Shaw, S., and Pierre, C., 2005, “Component Mode Synthesis Using Nonlinear Normal Modes,” Nonlinear Dyn., 41, pp. 17–46.

[CrossRef]Rand, R. H., and Ramani, D. V., 2001, “Nonlinear Normal Modes in a System With Nonholonomic Constraints,” Nonlinear Dyn., 25, pp. 49–64.

[CrossRef]Georgiou, I. T., and Schwartz, I. B., 2001, “Invariant Manifolds, Nonclassical Normal Modes, and Proper Orthogonal Modes in the Dynamics of the Flexible Spherical Pendulum,” Nonlinear Dyn., 25, pp. 3–31.

[CrossRef]Jayaprakash, K. R., Starosvetsky, Y., Vakakis, A. F., Peeters, M., and Kerschen, G., 2011, “Nonlinear Normal Modes and Band Zones in Granular Chains With No Pre-Compression,” Nonlinear Dyn., 63, pp. 359–385.

[CrossRef]Mikhlin, Y. V., and Volok, A. M., 2000, “Solitary Transversal Waves and Vibro-Impact Motions in Infinite Chains and Rods,” Int. J. Solids Struct., 37(25), pp. 3403–3420.

[CrossRef]Burton, T. D., 2007, “Numerical Calculations of Nonlinear Normal Modes in Structural Systems,” Nonlinear Dyn., 49, pp. 425–441.

[CrossRef]