Tadmor, E. B., Ortiz, M., and Phillips, R., 1996, “Quasi-Continuum Analysis of Defects in Solids,” Philos. Mag. A, 73(6), pp. 1529–1563.

[CrossRef]Shenoy, V. B., Miller, R., Tadmor, E. B., Phillips, R., and Ortiz, M., 1998, “Quasi-Continuum Models of Interfacial Structure and Deformation,” Phys. Rev. Lett., 80(4), pp. 742–745.

[CrossRef]Shenoy, V. B., Miller, R., Tadmor, E., Rodney, D., Phillips, R., and Ortiz, M., 1999, “An Adaptive Methodology for Atomic Scale Mechanics: The Quasi-Continuum Method,” J. Mech. Phys. Solids, 47, pp. 611–642.

[CrossRef]Curtin, W. A., and Miller, R. E., 2003, “Atomistic/Continuum Coupling Methods in Multi-Scale Materials Modeling,” Modell. Simul.Mater. Sci. Eng., 11(3), pp. R33–R68.

[CrossRef]Miller, R. E., and Tadmor, E. B., 2009, “A Unified Framework and Performance Benchmark of Fourteen Multiscale Atomistic/Continuum Coupling Methods,” Modell. Simul. Mater. Sci. Eng., 17, p. 053001.

[CrossRef]Tadmor, E. B., and Miller, R. E., 2011, *Modeling Materials: Continuum, Atomistic and Multiscale Techniques*, Cambridge University Press, Cambridge, UK.

Hoover, W. G., 1986, *Molecular Dynamics* (Lecture Notes in Physics, Vol. 258), Springer, Berlin, Germany.

Allen, M. P., and Tildesley, D. J., 1987, *Computer Simulation of Liquids*, Clarendon Press, Oxford, UK.

Frenkel, D., and Smit, B., 2002, *Understanding Molecular Simulation: From Algorithms to Applications*, 2nd ed., Academic Press, San Diego, CA.

Holian, B. L., Voter, A. F., and Ravelo, R., 1995, “Thermostatted Molecular Dynamics: How to Avoid the Toda Demon Hidden in Nosé–Hoover Dynamics,” Phys. Rev. E, 52(3), pp. 2338–2347.

[CrossRef]Bažant, Z. P., 1978, “Spurious Reflection of Elastic Waves in Nonuniform Finite Element Grids,” Comput. Meth. Appl. Mech. Eng., 16, pp. 91–100.

[CrossRef]Mullen, R., and Belytschko, T., 1982, “Dispersion Analysis of Finite Element Semidiscretizations of the Two-Dimensional Wave Equation,” Int. J. Numer. Methods Eng., 18, pp. 11–29.

[CrossRef]Adelman, S. A., and Doll, J. D., 1974, “Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering—Collinear Atom/Harmonic Chain Model,” J. Chem. Phys., 61(10), pp. 4242–4245.

[CrossRef]Doll, J. D., Myers, L. E., and Adelman, S. A., 1975, “Generalized Langevin Equation Approach for Atom/Solid-Surface Scattering: Inelastic Studies,” J. Chem. Phys., 63(11), pp. 4908–4914.

[CrossRef]Cai, W., de Koning, M., Bulatov, V. V., and Yip, S., 2000, “Minimizing Boundary Reflections in Coupled-Domain Simulations,” Phys. Rev. Lett., 85(15), pp. 3213–3216.

[CrossRef] [PubMed]Weinan, E., and Huang, Z., 2001, “Matching Conditions in Atomistic-Continuum Modeling of Materials,” Phys. Rev. Lett., 87(13), p. 135501

[CrossRef] [PubMed]Weinan, E., Engquist, B., Li, X., Ren, W., and Vanden-Eijnden, E., 2007, “Heterogeneous Multiscale Methods: A Review,” Commun. Comput. Phys., 2(3), pp. 367–450.

Wagner, G. J., and Liu, W. K., 2003, “Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition,” J. Comput. Phys., 190, pp. 249–274.

[CrossRef]Wagner, G. J., Karpov, E. G., and Liu, W. K., 2004, “Molecular Dynamics Boundary Conditions for Regular Crystal Lattices,” Comput. Meth. Appl. Mech. Eng., 193, pp. 1579–1601.

[CrossRef]Mathew, N., Picu, R. C., and Bloomfield, M., 2011, “Concurrent Coupling of Atomistic and Continuum Models at Finite Temperature,” Comput. Meth. Appl. Mech. Eng., 200(5–8), pp. 765–773.

[CrossRef]Karpov, E. G., Park, H. S., and Liu, W. K., 2007, “A Phonon Heat Bath Approach for the Atomistic and Multiscale Simulation of Solids,” Int. J. Numer. Methods Eng., 70(3), pp. 351–378.

[CrossRef]Qu, S., Shastry, V., Curtin, W. A., and Miller, R. E., 2005, “A Finite Temperature, Dynamic, Coupled Atomistic/Discrete Dislocation Method,” Modell. Simul. Mater. Sci. Eng., 13(7), pp. 1101–1118.

[CrossRef]Holian, B. L., and Ravelo, R., 1995, “Fracture Simulations Using Large-Scale Molecular Dynamics,” Phys. Rev. B, 51(17), pp. 11275–11288.

[CrossRef]Holland, D., and Marder, M., 1999, “Cracks and Atoms,” Adv. Mater., 11, pp. 793–806.

[CrossRef]Shiari, B., Miller, R. E., and Curtin, W. A., 2005, “Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature,” ASME J. Eng. Mater. Technol., 127(4), pp. 358–368.

[CrossRef]Shiari, B., Miller, R. E., and Klug, D. D., 2007, “Multiscale Simulation of Material Removal Processes at the Nanoscale,” J. Mech. Phys. Solids, 55(11), pp. 2384–2405.

[CrossRef]Gill, S., Jia, Z., Leimkuhler, B., and Cocks, A., 2006, “Rapid Thermal Equilibration in Coarse-Grained Molecular Dynamics,” Phys. Rev. B, 73(18), p. 184304.

[CrossRef]Finnis, M. W., Agnew, P., and Foreman, A. J. E., 1991, “Thermal Excitation of Electrons in Energetic Displacement Cascades,” Phys. Rev. B, 44(2), pp. 567–574.

[CrossRef]Li, S., and Sheng, N., 2010, “On Multiscale Non-Equilibrium Molecular Dynamics Simulations,” Int. J. Numer. Methods Eng., 83(8–9), pp. 998–1038.

[CrossRef]Kulkarni, Y., Knap, J., and Ortiz, M., 2008, “A Variational Approach to Coarse Graining of Equilibrium and Non-Equilibrium Atomistic Description at Finite Temperature,” J. Mech. Phys. Solids, 56(4), pp. 1417–1449.

[CrossRef]Fish, J., Chen, W., and Li, R., 2007, “Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures in Three Dimensions,” Comput. Meth. Appl. Mech. Eng., 196(4–6), pp. 908–922.

[CrossRef]Liu, X., and Li, S., 2007, “Nonequilibrium Multiscale Computational Model,” J. Chem. Phys., 126(12), p. 124105.

[CrossRef] [PubMed]Wagner, G. J., Jones, R. E., Templeton, J. A., and Parks, M. L., 2008, “An Atomistic-to-Continuum Coupling Method for Heat Transfer in Solids,” Comput. Meth. Appl. Mech. Eng., 197(41–42), pp. 3351–3365.

[CrossRef]Jolley, K., and Gill, S. P. A., 2009, “Modelling Transient Heat Conduction in Solids at Multiple Length and Time Scales: A Coupled Non-Equilibrium Molecular Dynamics/Continuum Approach,” J. Comput. Phys., 228(19), pp. 7412–7425.

[CrossRef]Luan, B. Q., Hyun, S., Molinari, J. F., Bernstein, N., and Robbins, M. O., 2007, “Multiscale Modeling of Two-Dimensional Contacts,” Phys. Rev. E, 74, p. 046710.

[CrossRef]Rudd, R. E., and Broughton, J. Q., 2000, “Concurrent Coupling of Length Scales in Solid State Systems,” Phys. Status Solidi B, 217, pp. 251–291.

[CrossRef]Rudd, R. E., and Broughton, J. Q., 2005, “Coarse-Grained Molecular Dynamics: Nonlinear Finite Elements and Finite Temperature,” Phys. Rev. B, 72(14), p. 144104.

[CrossRef]Kobayashi, R., Nakamura, T., and Ogata, S., 2010, “A Simple Dynamical Scale-Coupling Method for Concurrent Simulation of Hybridized Atomistic/Coarse-Grained-Particle System,” Int. J. Numer. Methods Eng., 83(2), pp. 249–268.

[CrossRef]Kobayashi, R., Nakamura, T., and Ogata, S., 2011, “A Coupled Molecular Dynamics/Coarse-Grained-Particle Method for Dynamic Simulation of Crack Growth at Finite Temperatures,” Mater. Trans., 52(8), pp. 1603–1610.

[CrossRef]Xiao, S., and Yang, W., 2007, “A Temperature-Related Homogenization Technique and its Implementation in the Meshfree Particle Method for Nanoscale Simulations,” Int. J. Numer. Methods Eng., 69(10), pp. 2099–2125.

[CrossRef]To, A. C., Liu, W. K., and Kopacz, A., 2008, “A Finite Temperature Continuum Theory Based on Interatomic Potential in Crystalline Solids,” Comput. Mech., 42(4), pp. 531–541.

[CrossRef]Dupuy, L. M., Tadmor, E. B., Miller, R. E., and Phillips, R., 2005, “Finite Temperature Quasicontinuum: Molecular Dynamics Without all the Atoms,” Phys. Rev. Lett., 95, p. 060202.

[CrossRef] [PubMed]LeSar, R., Najafabadi, R., and Srolovitz, D., 1989, “Finite-Temperature Defect Properties From Free-Energy Minimization,” Phys. Rev. Lett., 63, pp. 624–627.

[CrossRef] [PubMed]Kirkwood, J. G., 1935, “Statistical Mechanics of Fluid Mixtures,” J. Chem. Phys., 3(5), pp. 300–313.

[CrossRef]Kimmer, C. J., and Jones, R. E., 2007, “Continuum Constitutive Models From Analytical Free Energies,” J. Phys. Condens. Matter, 19(32), p. 326207.

[CrossRef]Khoei, A. R., Ghahrernani, P., Qomi, M. J. A., and Banihashemi, P., 2011, “Stability and Size-Dependency of Temperature-Related Cauchy–Born Hypothesis,” Comput. Mater. Sci., 50(5), pp. 1731–1743.

[CrossRef]Daw, M. S., and Baskes, M. I., 1984, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B, 29, pp. 6443–6453.

[CrossRef]Penrose, O., and Lebowitz, J. L., 1971, “Rigorous Treatment of Metastable States in the van der Walls–Maxwell Theory,” J. Stat. Phys., 3(2), pp. 211–236.

[CrossRef]Lebowitz, J. L., and Penrose, O., 1979, “Towards a Rigorous Molecular Theory of Metastability,” *Fluctuation Phenomena* (Studies in Statistical Mechanics), Vol. 7, E. W.Montroll and J. L.Lebowitz, eds., North-Holland, New York, pp. 293–340.

Penrose, O., 2002, “Statistical Mechanics of Nonlinear Elasticity,” Markov Processes Relat. Fields, 8, pp. 351–364.

Shenoy, V., Shenoy, V., and Phillips, R., 1999, “Finite Temperature Quasicontinuum Methods,” *Multi-Scale Modelling of Materials,* Mater. Res. Soc. Symp. Proc., Vol. 538, T. D.de la Rubia, E.Kaxiras, V.Bulatov, N. M.Ghoniem, and R.Phillips, eds., pp. 465–471.

Leibfried, G., and Ludwig, W., 1961, “Theory of Anharmonic Effects in Crystals,” *Solid State Physics: Advances in Research and Applications*, Vol. 12, F.Seitz and D.Turnbull, eds., Academic Press, New York, pp. 275–459.

Ashcroft, N. W., and Mermin, N. D., 1976, *Solid State Physics*, Saunders College, Philadelphia, PA.

Weiner, J. H., 1983, *Statistical Mechanics of Elasticity*, John Wiley and Sons, New York.

Dove, M. T., 1993, *Introduction to Lattice Dynamics*, Cambridge University Press, Cambridge, UK.

Blanc, X., Le Bris, C., Legoll, F., and Patz, C., 2010, “Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches,” J. Nonlinear Sci., 20(2), pp. 241–275.

[CrossRef]Rickman, J. M., and LeSar, R., 2002, “Free-Energy Calculations in Materials Research,” Ann. Rev. Mater. Res., 32, pp. 195–217.

[CrossRef]Prudhomme, S., Oden, J., and Romkes, A., 2004, “Modeling Error Estimation and Adaptivity for Multi-Scale Problems,” Computational Mechanics, Proceedings of the 6th World Congress on Computational Mechanics and the 2nd Asian-Pacific Congress on Computational Mechanics, Beijing, PRC, Z. H.Yao, M. W.Yuan, and W. X.Zhong, eds., pp. 553–557

Tadmor, E., and Miller, R., 2006, “The Theory and Implementation of the Quasicontinuum Method,” *Handbook of Materials Modeling, Part A, Methods*, S.Yip, ed., Springer Science and Business Media, New York, pp. 663–682.

Oden, J. T., Prudhomme, S., Romkes, A., and Bauman, P. T., 2006, “Multiscale Modeling of Physical Phenomena: Adaptive Control of Models,” SIAM J. Sci. Comput., 28(6), pp. 2359–2389.

[CrossRef]Nuggehally, M. A., Shephard, M. S., Picu, C. R., and Fish, J., 2007, “Adaptive Model Selection Procedure for Concurrent Multiscale Problems,” Int. J. Multiscale Comput. Eng., 5(5), pp. 369–386.

[CrossRef]Ben Dhia, H., Chamoin, L., Oden, J. T., and Prudhomme, S., 2011, “A New Adaptive Modeling Strategy Based on Optimal Control for Atomic-to-Continuum Coupling Simulations,” Comput. Meth. Appl. Mech. Eng., 200(37–40), pp. 2675–2696.

[CrossRef]Foiles, S., 1994, “Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids,” Phys. Rev. B, 49, pp. 14930–14938.

[CrossRef]Miller, R. E., and Tadmor, E., 2007, “Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure,” MRS Bull., 32, pp. 920–926.

[CrossRef]Marian, J., Venturini, G., Hansen, B. L., Knap, J., Ortiz, M., and Campbell, G. H., 2010, “Finite-Temperature Extension of the Quasicontinuum Method Using Langevin Dynamics: Entropy Losses and Analysis of Errors,” Modell. Simul. Mater. Sci. Eng., 18(1), p. 015003.

[CrossRef]Cancès, E., Legoll, F., and Stoltz, G., 2007, “Theoretical and Numerical Comparison of Some Sampling Methods for Molecular Dynamics,” Math. Modell. Numer. Anal. (M2AN), 41(2), pp. 351–389.

[CrossRef]Bond, S. D., Leimkuhler, B., and Laird, B. B., 1999, “The Nosé–Poincaré Method for Constant Temperature Molecular Dynamics,” J. Comput. Phys., 151, pp. 114–134.

[CrossRef]Hairer, E., Lubich, C., and Wanner, G., 2003, “Geometric Numerical Integration Illustrated by the Störmer–Verlet Method,” Acta Numer., 12, pp. 399–450.

[CrossRef]Ezra, G. S., 2006, “Reversible Measure-Preserving Integrators for Non-Hamiltonian Systems,” J. Chem. Phys., 125(3), p. 034104.

[CrossRef]Legoll, F., and Monneau, R., 2002, “Designing Reversible Measure Invariant Algorithms With Applications to Molecular Dynamics,” J. Chem. Phys., 117(23), pp. 10452–10464.

[CrossRef]Legoll, F., Luskin, M., and Moeckel, R., 2007, “Non-Ergodicity of the Nosé–Hoover Thermostatted Harmonic Oscillator,” Arch. Ration. Mech. Anal., 184(3), pp. 449–463.

[CrossRef]Legoll, F., Luskin, M., and Moeckel, R., 2009, “Non-Ergodicity of Nosé–Hoover Dynamics,” Nonlinearity, 22(7), pp. 1673–1694.

[CrossRef]Leimkuhler, B. J., and Sweet, C. R., 2005, “A Hamiltonian Formulation for Recursive Multiple Thermostats in a Common Timescale,” SIAM J. Appl. Dyn. Sys., 4(1), pp. 187–216.

[CrossRef]Davidchack, R., 2010, “Discretization Errors in Molecular Dynamics Simulations With Deterministic and Stochastic Thermostats,” J. Comput. Phys., 229, pp. 9323–9346.

[CrossRef]Meyn, S. P., and Tweedie, R. L., 1993, *Markov Chains and Stochastic Stability*, Springer-Verlag, Berlin, Germany.

Mattingly, J. C., Stuart, A. M., and Higham, D. J., 2002, “Ergodicity for SDEs and Approximations: Locally Lipschitz Vector Fields and Degenerate Noise,” Stoch. Proc. Appl., 101(2), pp. 185–232.

[CrossRef]Shardlow, T., 2003, “Splitting for Dissipative Particle Dynamics,” SIAM J. Sci. Comput., 24(4), pp. 1267–1282.

[CrossRef]Angelo, J. E., Moody, N. R., and Baskes, M. I., 1995, “Trapping of Hydrogen to Lattice-Defects in Nickel,” Modell. Simul. Mater. Sci. Eng., 3(3), pp. 289–307.

[CrossRef]Martyna, G. J., Klein, M. L., and Tuckerman, M., 1992, “Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics,” J. Chem. Phys., 97, pp. 2635–2643.

[CrossRef]Kim, W. K., and Tadmor, E. B., 2012, “An Analytical Self-Consistent Solution for the Free Energy of a 1-D Chain of Atoms Including Anharmonic Effects,” J. Stat. Phys., 148(5), pp. 951–971.

[CrossRef]Guthikonda, V. S., and Elliott, R. S., “Modeling Martensitic Phase Transformation in Shape Memory Alloys With the Self-Consistent Lattice Dynamics Approach,” J. Mech. Phys. Solids (in press).

Kelchner, C. L., Plimpton, S. J., and Hamilton, J. C., 1998, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Phys. Rev. B, 58, pp. 11085–11088.

[CrossRef]van Gunsteren, W. F., and Berendsen, H. J. C., 1982, “Algorithms for Brownian Dynamics,” Mol. Phys., 45, pp. 637–647.

[CrossRef]Tomlinson, G. A., 1929, “A Molecular Theory of Friction,” Philos. Mag., 7, pp. 905–939.

Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., and Güntherodt, H.-J., 2000, “Velocity Dependence of Atomic Friction,” Phys. Rev. Lett., 84(6), pp. 1172–1175.

[CrossRef] [PubMed]