Review Articles

Nanofluids and Their Properties

[+] Author and Article Information
Gianluca Puliti

e-mail: gpuliti@nd.edu

Samuel Paolucci

e-mail: paolucci@nd.edu

Mihir Sen

e-mail: msen@nd.edu
Department of Aerospace and
Mechanical Engineering,
University of Notre Dame,
Notre Dame, IN 46556

1Corresponding author.

Manuscript received June 21, 2011; final manuscript received November 25, 2011; published online March 30, 2012. Transmitted by Assoc. Editor: Jason Reese.

Appl. Mech. Rev 64(3), 030803 (Mar 30, 2012) (23 pages) doi:10.1115/1.4005492 History: Received June 21, 2011; Revised November 25, 2011

Nanofluids belong to a new class of fluids with enhanced thermophysical properties and heat transfer performance. A broad spectrum of applications in science and engineering could potentially benefit from them. The potential market for nanofluids in heat transfer applications is estimated to be over 2 billion dollars per year, and likely to grow even further in the next few years. The available literature on nanofluids will be thoroughly reviewed in this article. Starting from their definition, and their scientific and engineering significance, the discussion will then turn to the literature. A review of the most noteworthy and recent experiments in thermal conductivity, viscosity, heat convection and specific heat will be mentioned, together with various speculations on the meaning of the results. A comprehensive list of empirical models available in the literature based on these speculations will be discussed next. To complete the literature review, numerical studies on nanofluids will also be discussed. The paper will close with a closer look at the various challenges of nanofluids, both in their production and their application. The vast majority of the experiments in the literature shows enhancement in the thermal conductivity, viscosity, and heat convection of nanofluids. However, the enhancements do not seem to follow classical effective medium theories, and an explanation for this anomalous behavior of nanofluids is still largely unknown.

Copyright © 2011 by ASME
Your Session has timed out. Please sign back in to continue.


Keblinski, P., Eastman, J. A., and Cahill, D. G., 2005, “Nanofluids for Thermal Transport,” Mater. Today, 8, pp.36–44. [CrossRef]
Choi, S. U. S., 1995, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” ASME International Mechanical Engineering Congress and Exposition Proceedings, D. A.Siginer and H. P.Wang, eds., Vol.231, pp.99–105.
Saidur, R., Leong, K. Y., and Mohammad, H. A., 2011, “A Review on Applications and Challenges of Nanofluids,” Renewable Sustainable Energy Rev., 15(3), pp.1646–1668. [CrossRef]
Keblinski, P., Prasher, R., and Eapen, J., 2008, “Thermal Conductance of Nanofluids: Is the Controversy Over?” J. Nanopart. Res., 10(7), pp.1089–1097. [CrossRef]
Das, S. K., Choi, S. U. S., Yu, W., and Pradeep, T., 2007, Nanofluids: Science and Technology, Wiley, New York.
Wang, L., and Fan, J., 2010, “Nanofluids Research: Key Issues,” Nanoscale Res. Lett., 5(8), pp.1241–1252. [CrossRef] [PubMed]
Sen, M., and Paolucci, S., 2006, “The Use of Ionic Liquids in Refrigeration,” Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Paper No. IMECE 2006–14712, pp.131–134.
Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N., 2007, “Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System,” Appl. Therm. Eng.27(8–9), pp.1501–1506. [CrossRef]
Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Bürgi, T., Michel, B., and Poulikakos, D., 2011, “On the Cooling of Electronics With Nanofluids,” J. Heat Transfer133(5), p.051401. [CrossRef]
Verma, A., Jiang, W., Abu Safe, H. H., Brown, W. D., and Malshe, A. P., 2008, “Tribological Behavior of Deagglomerated Active Inorganic Nanoparticles for Advanced Lubrication,” Tribol. Trans.51(5), pp.673–678. [CrossRef]
Shen, B., Shih, A. J., and Tung, S. C., 2008, “Application of Nanofluids in Minimum Quantity Lubrication Grinding,” Tribol. Trans.51(6), pp.730–737. [CrossRef]
Lee, J. K., Koo, J., Hong, H., and Kang, Y. T., 2010, “The Effects of Nanoparticles on Absorption Heat and Mass Transfer Performance in NH3/H2O Binary Nanofluids,” Int. J. Refrig., 33(2), pp.269–275. [CrossRef]
Nam, J. S., Lee, P.-H., and Lee, S. W., 2011, “Experimental Characterization of Micro-Drilling Process Using Nanofluid Minimum Quantity Lubrication,” Int. J. Mach. Tool. Manuf., 51(7–8), pp.649–652. [CrossRef]
Wang, B., Wang, X., Lou, W., and Hao, J., 2011, “Gold-Ionic Liquid Nanofluids With Preferably Tribological Properties and Thermal Conductivity,” Nanoscale Res. Lett., 6(1), p.259. [CrossRef] [PubMed]
Nagpal, S., 2008, “Nanofluids to be Used to Make New Types of Cameras, Microdevices, and Displays,” avaiable at http://www.nanotech-now.com/news.cgi?story_id=28101, last accessed February 19, 2008.
Srikant, R. R., Rao, D. N., Subrahmanyam, M. S., and Vamsi Krishna, P., 2009, “Applicability of Cutting Fluids With Nanoparticle Inclusion as Coolants in Machining,” J. Eng. Tribol., 223(2), pp.221–225. [CrossRef]
Wambsganss, M. W., 1999, “Thermal Management Concepts for Higher-Efficiency Heavy Vehicles,” Tech. Report, SAE Technical Paper Series.
Choi, C., Yoo, H. S., and Oh, J. M., 2008, “Preparation and Heat Transfer Properties of Nanoparticle-in-Transformer Oil Dispersions as Advanced Energy-Efficient Coolants,” Curr. Appl. Phys., 8(6), pp.710–712. [CrossRef]
Ollivier, E., Bellettre, J., Tazerout, M., and Roy, G., 2006, “Detection of Knock Occurrence in a Gas SI Engine from a Heat Transfer Analysis,” Energy Convers. Manage., 47(7–8), pp.879–893. [CrossRef]
Tzeng, S. C., Lin, C. W., and Huang, K. D., 2005, “Heat Transfer Enhancement of Nanofluids in Rotary Blade Coupling of Four-Wheel-Drive Vehicles,” Acta Mech. Solid Sinica179(1–2), pp.11–23. [CrossRef]
Bai, M., Xu, Z., and Lv, J., 2008, “Application of Nanofluids in Engine Cooling System,” Tech. Report, SAE Technical Paper.
Timofeeva, E., Smith, D., Yu, W., Routbort, J. L., and Singh, D., 2009, “Nanofluid Development for Engine Cooling Systems,” Tech. Report, Argonne National Laboratory.
Routbort, J. L., Timofeeva, E., Smith, D., France, D., Yu, W., and Singh, D., 2009, “Overview of Thermal Management. Vehicle Technologies—Annual Review,” Tech. Report, Argonne National Laboratory.
Ma, K.-Q., and Liu, J., 2007, “Nano Liquid-Metal Fluid as Ultimate Coolant,” Phys. Lett. A, 361(3), pp.252–256. [CrossRef]
Leong, K. Y., Saidur, R., Kazi, S. N., and Mamun, A. H., 2010, “Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator),” Appl. Therm. Eng., 30(17–18), pp.2685–2692. [CrossRef]
Peyghambarzadeh, S. M., Hashemabadi, S. H., Jamnani, M. S., and Hoseini, S. M., 2011. “Improving the Cooling Performance of Automobile Radiator With Al2O3 /Water Nanofluid,” Appl. Therm. Eng., 31(10), pp.1833–1838. [CrossRef]
Naphon, P., Klangchart, S., and Wongwises, S., 2009, “Numerical Investigation on the Heat Transfer and Flow in the Mini-Fin Heat Sink for CPU,” Int. Comm. Heat Mass Transfer, 36(8), pp.834–840. [CrossRef]
Kulkarni, D. P., Vajjha, R. S., Das, D. K., and Oliva, D., 2008, “Application of Aluminum Oxide Nanofluids in Diesel Electric Generator as Jacket Water Coolant,” Appl. Therm. Eng., 28(14–15), pp.1774–1781. [CrossRef]
Kuo, K. K., Risha, G. A., Evans, B. J., and Boyer, E., 2004, “Potential Usage of Energetic Nano-Sized Powders for Combustion and Rocket Propulsion,” Mater. Res. Soc. Symp. Proc., 800, pp.3–14.
Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., and Schoonman, J., 2004, “Nanomaterials for Heterogeneous Combustion,” Propellants, Explos., Pyrotech., 29(1), pp.39–48. [CrossRef]
Risha, G. A., Boyer, E., Evans, B., Kuo, K. K., and Malek, R., 2004, “Characterization of Nano-sized Particles for Propulsion Applications,” 2003 MRS Fall Meeting, pp.243–254.
DeLuca, L. T., Galfetti, L., Severini, F., Meda, L., Marra, G., Vorozhtsov, A. B., Sedoi, V., S., and Babuk, V. A., 2005, “Burning of Nano-Aluminized Composite Rocket Propellants,” Combust., Explos., Shock Waves, 41(6), pp.680–692. [CrossRef]
Galfetti, L., DeLuca, L. T., Severini, F., Colombo, G., Meda, L., and Marra, G., 2007, “Pre and Post-Burning Analysis of Nano-Aluminized Solid Rocket Propellants,” Aerosp. Sci. Technol., 11(1), pp.26–32. [CrossRef]
Prasher, R., Bhattacharya, P., and Phelan, P. E., 2005, “Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids),” Phys. Rev. Lett., 94(2), p.25901. [CrossRef]
Prasher, R., Bhattacharya, P., and Phelan, P. E., 2006, “Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids,” J. Heat Transfer, 128(6), pp.588–595. [CrossRef]
Prasher, R., Phelan, P. E., and Bhattacharya, P., 2006, “Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid),” Nano Lett., 6(7), pp.1529–1534. [CrossRef] [PubMed]
Krishnamurthy, S., Bhattacharya, P., Phelan, P. E., and Prasher, R. S., 2006, “Enhanced Mass Transport in Nanofluids,” Nano Lett., 6(3), pp.419–423. [CrossRef] [PubMed]
Prasher, R. S., and Phelan, P. E., 2005, “Modeling of Radiative and Optical Behavior of Nanofluids Based on Multiple and Dependent Scattering Theories,” Proceedings of the ASME Heat Transfer Division 2005, Paper No. IMECE2005-80302, Vol. 376, pp.739–743.
Tyagi, H., Phelan, P. E., and Prasher, R. S., 2007, “Predicted Efficiency of a Nanofluid-Based Direct Absorption Solar Receiver,” Proceedings of the Energy Sustainability Conference, Paper No. ES2007-36139, pp.729–736.
Saidur, R., Ahamed, J. U., and Masjuki, H. H., 2010, “Energy, Exergy and Economic Analysis of Industrial Boilers,” Energy Policy38(5), pp.2188–2197. [CrossRef]
Tyagi, H., Phelan, P., and Prasher, R., 2009, “Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector,” J. Sol. Energy Eng., 131(4), p.041004. [CrossRef]
Tyagi, H., 2008, “Radiative and Combustion Properties of Nanoparticle-Laden Liquids,” Ph.D. thesis, Arizona State University, Tempe, AZ.
Natarajan, E., and Sathish, R., 2009, “Role of Nanofluids in Solar Water Heater,” Int. J. Adv. Manuf. Technol., pp.3–7.
Mapa, L. B., and Sana, M., 2005, “Heat Transfer in Mini Heat Exchanger Using Nanofluids,” 2005 IL/IN Sectional Conference of the American Society for Engineering Education, Northern Illinois University.
Pantzali, M. N., Mouza, A. A., and Paras, S. V., 2009, “Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE),” Chem. Eng. Sci., 64(14), pp.3290–3300. [CrossRef]
Vajjha, R. S., Das, D. K., and Namburu, P. K., 2010, “Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator,” Int. J. Heat Fluid Flow, 31(4), pp.613–621. [CrossRef]
Firouzfar, E., Soltanieh, M., Noie, S. H., and Saidi, S. H., 2011, “Energy Saving in HVAC Systems Using Nanofluid,” Appl. Therm. Eng., 31(8–9), pp.1543–1545. [CrossRef]
Wilson, C. A., 2006, “Experimental Investigation of Nanofluid Oscillating Heat Pipes,” Master thesis, University of Missouri, Columbia, MO.
Naphon, P., Assadamongkol, P., and Borirak, T., 2008, “Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency,” Int. Comm. Heat Mass Transfer35(10), pp.1316–1319. [CrossRef]
Yu, W., France, D. M., Choi, S. U. S., and Routbort, J. L., 2007, “Review and Assessment of Nanofluid Technology for Transportation and Other Applications,” Tech. Rep., Energy Systems Division, Argonne National Laboratory.
Sridhara, V., Gowrishankar, B. S., Snehalatha, C., and Satapathy, L. N., 2009, “Nanofluids–A New Promising Fluid for Cooling,” Trans. Indian Ceramic Soc., 68(1), pp.1–17.
Zhang, L., Ding, Y., Povey, M., and York, D., 2008, “ZnO Nanofluids—A Potential Antibacterial Agent,” Prog. Nat. Sci., 18(8), pp.939–944. [CrossRef]
Hirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T., and Sugimoto, H., 2010, “Preparation of Zinc Oxide Ceramics With a Sustainable Antibacterial Activity Under Dark Conditions,” Ceram. Int., 36(2), pp.497–506. [CrossRef]
Buongiorno, J., and Hu, L., 2009, “Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications, Tech. Report, Massachusetts Institute of Technology.
Wang, X.-Q., and Mujumdar, A. S., 2008, “A Review on Nanofluids—Part II: Experiments and Applications,” Braz. J. Chem. Eng., 25(4), pp.631–648. [CrossRef]
Shen, B., 2006, “Minimum Quantity Lubrication Grinding Using Nanofluids,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
Ying, J. Y., and Sun, T., 1997, “Research Needs Assessment on Nanostructured Catalysts,” J. Electroceram., 1(3), pp.219–238. [CrossRef]
Scott, S. L., Crudden, C. M., and Jones, C. W. E., 2003, Nanostructured Catalysts, Springer, New York.
Elcock, D., 2007, “Potential Impacts of Nanotechnology on Energy Transmission Applications and Needs,” Tech. Report, Environmental Science Division, Argonne National Laboratory.
Mokhatab, S., Fresky, M. A., and Islam, M., 2006, “Applications of Nanotechnology in Oil and Gas E&P,” JPT online, 58(4), available at http://www.spe.org/spe-app/spe/jpt/2006/04/eandp_nanotechnology_applications.htm#.
Davidson, J. L., 2009, “Nanofluid for Cooling Enhancement of Electrical Power Equipment,” Tech. Report, Department of Electrical Engineering, Vanderbilt University.
Kim, J., Kang, Y. T., and Choi, C. K., 2007, “Soret and Dufour Effects on Convective Instabilities in Binary Nanofluids for Absorption Application,” Int. J. Refrig., 30(2), pp.323–328. [CrossRef]
Wu, S., Zhu, D., Li, X., Li, H., and Lei, J., 2009, “Thermal Energy Storage Behavior of Al2O3-H2O Nanofluids,” Thermochim. Acta, 483(1–2), pp.73–77. [CrossRef]
Jiang, W., Ding, G., and Peng, H., 2009, “Measurement and Model on Thermal Conductivities of Carbon Nanotube Nanorefrigerants,” Int. J. Therm. Sci., 48(6), pp.1108–1115. [CrossRef]
Wang, R. X., Hao, B., Xie, G. Z., and Li, H. Q., 2003, “A Refrigerating-System Using HFC134A and Mineral Lubricant Appended With N-TiO2 (R) as Working Fluids,” in Proceedings of the 4th International Symposium on HAVC, Tsinghua University Press, Beijing, China, pp.882–892.
Wang, K. J., Ding, G. L., and Jiang, W. T., 2006, “Nano-Scale Thermal Transporting and its Use in Engineering,” in Proceedings of the 4th Symposium on Refrigeration and Air Conditioning Southeast University Press, Nanjing, China, pp.66–75.
Li, P., Wu, X. M., and Li, H., 2006, “Pool Boiling Heat Transfer Experiments of Refrigerants With Nanoparticle TiO2,” in Proceedings of the 12th Symposium on Engineering Thermophysics, Chinese Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, pp.325–328.
Park, K., and Jung, D., 2007, “Boiling Heat Transfer Enhancement With Carbon Nanotubes for Refrigerants Used in Building Air-Conditioning,” Energy Build., 39(9), pp.1061–1064. [CrossRef]
Bi, S., Shi, L., and Zhang, L., 2008, “Application of Nanoparticles in Domestic Refrigerators,” Appl. Therm. Eng., 28(14–15), pp.1834–1843. [CrossRef]
Peng, H., Ding, G., Jiang, W., Hu, H., and Gao, Y., 2009, “Measurement and Correlation of Frictional Pressure Drop of Refrigerant-Based Nanofluid Flow Boiling inside a Horizontal Smooth Tube,” Int. J. Refrig., 32(7), pp.1756–1764. [CrossRef]
Naphon, P., Thongkum, D., and Assadamongkol, P., 2009, “Heat Pipe Efficiency Enhancement With Refrigerant-Nanoparticles Mixtures,” Energy Convers. Manage., 50(3), pp.772–776. [CrossRef]
Liu, D., and Yang, C., 2007, “Effects of Nano-Particles on Pool Boiling Heat Transfer of Refrigerant 141b,” in ASME 5th International Conference on Nanochannels, Microchannels and Minichannels, pp.789–793.
Trisaksri, V., and Wongwises, S., 2009, “Nucleate Pool Boiling Heat Transfer of TiO2-R141b Nanofluids,” Int. J. Heat Mass Transfer, 52(5–6), pp.1582–1588. [CrossRef]
Ding, G., Peng, H., Jiang, W., and Gao, Y., 2009, “The Migration Characteristics of Nanoparticles in the Pool Boiling Process of Nanorefrigerant and Nanorefrigerant-oil Mixture,” Int. J. Refrig., 32(1), pp.114–123. [CrossRef]
Kedzierski, M. A., 2009, “Effect of CuO Nanoparticle Concentration on R134a/Lubricant Pool-Boiling Heat Transfer,” J. Heat Transfer, 131(4), p.043205. [CrossRef]
Saidur, R., Kazi, S. N., Hossain, M. S., Rahman, M. M., and Mohammed, H. A., 2011, “A Review on the Performance of Nanoparticles Suspended With Refrigerants and Lubricating Oils in Refrigeration Systems,” Renewable Sustainable Energy Rev., 15(1), pp.310–323. [CrossRef]
Kulkarni, D. P., Das, D. K., and Vajjha, R. S., 2009, “Application of Nanofluids in Heating Buildings and Reducing Pollution,” Appl. Energy, 86(12), pp.2566–2573. [CrossRef]
Shukla, R. K., and Dhir, V. K., 2005, “Numerical Study of the Effective Thermal Conductivity of Nanofluids,” in Proc. ASME Summer Heat Transfer Conference, pp.1–5.
Sarkar, S., and Selvam, R. P., 2007, “Molecular Dynamic Simulation of Effective Thermal Conductivity and Study of Enhanced Thermal Transport Mechanism in Nanofluids,” J. Appl. Phys., 102, p.74302. [CrossRef]
Li, L., Zhang, W., Ma, H. B., and Yang, M., 2008, “An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation,” Phys. Lett. A, 372(25), pp.4541–4544. [CrossRef]
Sankar, N., Mathew, N., and Sobhan, C. B., 2008, “Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions,” Int. Comm. Heat Mass Transfer, 35(7), pp.867–872. [CrossRef]
Ghosh, M. M., Roy, S., Pabi, S. K., and Ghosh, S., 2011, “A Molecular Dynamics-Stochastic Model for Thermal Conductivity of Nanofluids and its Experimental Validation,” J. Nanosci. Nanotechnol., 11(3), pp.2196–2207. [CrossRef] [PubMed]
Wang, X., Xu, X., and Choi, S. U. S., 1999, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophys. Heat Transfer, 13(4), pp.474–480. [CrossRef]
Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer, 45(4), pp.855–863. [CrossRef]
Yu, W., Hull, J. H., and Choi, S. U. S., “Stable and Highly Conductive Nanofluids: Experimental and Theoretical Studies,” Proc. 6th ASME-JSME Thermal Engineering Joint Conf., Paper No. TED-AJ03–384, ASME, New York.
Patel, H., Das, S. K., Sundararajan, T., Sreekumaran, N. A., George, B., and Pradeep, T., 2003, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,” Appl. Phys. Lett., 83(14), pp.2931–2933. [CrossRef]
Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” J. Heat Transfer, 125(4), pp.567–574. [CrossRef]
Koo, J., and Kleinstreuer, C., 2004, “A New Thermal Conductivity Model for Nanofluids,” J. Nanopart. Res., 6(6), pp.577–588. [CrossRef]
Bhattacharya, P., Saha, S. K., Yadav, A., Phelan, P. E., and Prasher, R. S., 2004, “Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids,” J. Appl. Phys., 95(11), pp.6492–6494. [CrossRef]
Jang, S. P., and Choi, S. U. S., 2004, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett., 84(21), pp.4316–4318. [CrossRef]
Kumar, D., Patel, H., Kumar, V., Sundararajan, T., Pradeep, T., and Das, S. K., 2004, “Model for Heat Conduction in Nanofluids,” Phys. Rev. Lett., 93(14), p.4316. [CrossRef]
Patel, H. E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S. K., 2005, “A Micro-Convection Model for Thermal Conductivity of Nanofluids,” Pramana, J. Phys., 65(5), pp.863–869. [CrossRef]
Ren, Y., Xie, H., and Cai, A., 2005, “Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles,” J. Phys. D: Appl. Phys., 38(21), pp.3958–3961. [CrossRef]
Evans, W., Fish, J., and Keblinski, P., 2006, “Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity,” Appl. Phys. Lett., 88(9), p.93116. [CrossRef]
Beck, M. P., Sun, T., and Teja, A. S., 2007, “The thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol,” Fluid Phase Equilib., 260(2), pp.275–278. [CrossRef]
Shukla, R. K., and Dhir, V. K., 2008, “Effect of Brownian Motion on Thermal Conductivity of Nanofluids,” J. Heat Transfer, 130(4), p.042406. [CrossRef]
Nie, C., Marlow, W. H., and Hassan, Y. A., 2008, “Discussion of Proposed Mechanisms of Thermal Conductivity Enhancement in Nanofluids,” Int. J. Heat Mass Transfer, 51(5–6), pp.1342–1348. [CrossRef]
Godson, L., Raja, B., Lal, D. M., and Wongwises, S., 2010, “Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid,” Exp. Heat Transfer, 23(4), pp.317–332. [CrossRef]
Kondaraju, S., Jin, E. K., and Lee, J. S., 2010, “Direct Numerical Simulation of Thermal Conductivity of Nanofluids: The Effect of Temperature Two-Way Coupling and Coagulation of Particles,” Int. J. Heat Mass Transfer, 53(5–6), pp.862–869. [CrossRef]
Yu, W., and Choi, S. U. S., 2003, “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model,” J. Nanopart. Res., 5, pp.167–171. [CrossRef]
Yu, W., and Choi, S. U. S., 2004, “The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model,” J. Nanopart. Res., 6, pp.355–361. [CrossRef]
Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., 2004, “Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport,” Int. J. Heat Mass Transfer, 47(19–20), pp.4277–4284. [CrossRef]
Eastman, J. A., Phillpot, S. R., Choi, S. U. S., and Keblinski, P., 2004, “Thermal Transport in Nanofluids,” Annu. Rev. Mater. Res., 34(1), pp.219–246. [CrossRef]
Xie, H. Q., Fujii, M., and Zhang, X., 2005, “Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture,” Int. J. Heat Mass Transfer, 48(14), pp.2926–2932. [CrossRef]
Evans, W., Prasher, R., Fish, J., Meakin, P., Phelan, P., and Keblinski, P., 2008, “Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids,” Int. J. Heat Mass Transfer, 51(5–6), pp.1431–1438. [CrossRef]
Chandrasekar, M., Suresh, S., Srinivasan, R., and Bose, A. C., 2009, “New Analytical Models to Investigate Thermal Conductivity of Nanofluids,” J. Nanosci. Nanotechnol., 9(1), pp.533–538. [CrossRef] [PubMed]
Xuan, Y. M., Li, Q., and Hu, W. F., 2003, “Aggregation Structure and Thermal Conductivity of Nanofluids,” AIChE J., 49(4), pp.1038–1043. [CrossRef]
Wang, B.-X., Zhou, L.-P., and Peng, X.-F., 2003, “A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles,” Int. J. Heat Mass Transfer, 46(14), pp.2665–2672. [CrossRef]
Zhu, H., Zhang, C., Liu, S., Tang, Y., and Yin, Y., 2006, “Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nanofluids,” Appl. Phys. Lett., 89(2), p.23123. [CrossRef]
Prasher, R., Phelan, P. E., and Bhattacharya, P., 2006, “Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids,” Appl. Phys. Lett., 89(14), p.143119. [CrossRef]
Feng, Y., Yu, B., Xu, P., and Zou, M., 2007, “The Effective Thermal Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles,” J. Phys. D: Appl. Phys., 40(10), pp.3164–3171. [CrossRef]
Karthikeyan, N. R., Philip, J., and Raj, B., 2008, “Effect of Clustering on the Thermal Conductivity of Nanofluids,” Mater. Chem. Phys., 109(1), pp.50–55. [CrossRef]
Xu, J., Yu, B.-M., and Yun, M.-J., 2006, “Effect of Clusters on Thermal Conductivity in Nanofluids,” Chin. Phys. Lett., 23(10), pp.2819–2822. [CrossRef]
Li, Y.-H., Qu, W., and Feng, J.-C., 2008, “Temperature Dependence of Thermal Conductivity of Nanofluids,” Chin. Phys. Lett., 25(9), pp.3319–3322. [CrossRef]
Philip, J., Shima, P. D., and Raj, B., 2008, “Evidence for Enhanced Thermal Conduction Through Percolating Structures in Nanofluids,” Nanotechnology, 19(30), p.305706. [CrossRef] [PubMed]
Domingues, G., Volz, S., Joulain, K., and Greffet, J.-J., 2005, “Heat Transfer Between Two Nanoparticles Through Near Field Interaction,” Phys. Rev. Lett., 94(8), p.85901. [CrossRef]
Ben-Abdallah, P., 2006, “Heat Transfer Through Near-Field Interactions in Nanofluids,” Appl. Phys. Lett., 89(11), p.113117. [CrossRef]
Prevenslik, T., 2009, “Nanofluids by Quantum Mechanics,” in ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer, Vol.1, pp.387–387. [CrossRef]
Chandrasekar, M., and Suresh, S., 2009, “A Review on the Mechanisms of Heat Transport in Nanofluids,” Heat Transfer Eng., 30(14), pp.1136–1150. [CrossRef]
Brown, R., 1828, “A Brief Account of Microscopical Observations Made in the Months of June, July and August, 1827, on the Particles Contained in the Pollen of Plants; and on the General Existence of Active Molecules in Organic and Inorganic Bodies,” Philos. Mag., 4, pp.161–173.
Einstein, A., 1906, “The Theory of the Brownian Motion,” Ann. Phys.19(2), pp.371–381. [CrossRef]
Kubo, R., Toda, M., and Hashitsume, N., 2003, Statistical Physics II: Nonequilibrium Statistical Mechanics, 3rd ed., Springer Verlag, New York.
Einstein, A., 1906, “A New Determination of the Molecular Dimensions,” Ann. Phys.19(2), pp.289–306. [CrossRef]
Bastea, S., 2005, “Comment on ‘Model for Heat Conduction in Nanofluids,” Phys. Rev. Lett., 95(1), p.19401. [CrossRef]
Sergis, A., and Hardalupas, Y., 2011, “Anomalous Heat Transfer Modes of Nanofluids: A Review Based on Statistical Analysis,” Nanoscale Res. Lett., 6(1), p.391. [CrossRef] [PubMed]
Jang, S. P., and Choi, S. U. S., 2007, “Effects of Various Parameters on Nanofluid Thermal Conductivity,” J. Heat Transfer, 129(5), p.617. [CrossRef]
Koo, J., and Kleinstreuer, C., 2005, “Laminar Nanofluid Flow in Microheat-Sinks,” Int. J. Heat Mass Transfer, 48(13), pp.2652–2661. [CrossRef]
Keblinski, P., and Cahill, D. G., 2005, “Comment on ‘Model for Heat Conduction in Nanofluids,’” Phys. Rev. Lett., 95(20), p.209401. [CrossRef] [PubMed]
Xue, Q., 2003, “Model for Effective Thermal Conductivity of Nanofluids,” Phys. Lett. A, 307(5–6), pp.313–317. [CrossRef]
Kapitza, P. L., 1941, “The Study of Heat Transfer in Helium II,” J. Phys. (USSR), 4(1–6), pp.181–210.
Swartz, E. T., and Pohl, R. O., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61(3), pp.605–668. [CrossRef]
Nakayama, T., 1985, “New Channels of Energy Transfer Across a Solid Liquid He Interface,” J. Phys. Condens. Matter, 18(22), pp.667–671. [CrossRef]
Puliti, G., Paolucci, S., and Sen, M., 2011, “Thermodynamic Properties of Gold-Water Nanolayer Mixtures Using Molecular Dynamics,” J. Nanopart. Res., 13(9), pp.4277–4293. [CrossRef]
Lee, D., 2007, “Thermophysical Properties of Interfacial Layer in Nanofluids,” Langmuir, 23(11), pp.6011–6018. [CrossRef] [PubMed]
Tillman, P., and Hill, J., 2007, “Determination of Nanolayer Thickness for a Nanofluid,” Int. Comm. Heat Mass Transfer, 34(4), pp.399–407. [CrossRef]
Yoo, D.-H., Hong, K. S., Hong, T. E., Eastman, J. A., and Yang, H.-S., 2007, “Thermal Conductivity of Al2O3/Water Nanofluids,” J. Korean Phys. Soc., 51(12), pp.S84–S87. [CrossRef]
Hong, K. S., Hong, T.-K., and Yang, H.-S., 2006, “Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles,” Appl. Phys. Lett., 88(3), p.31901. [CrossRef]
McLachlan, D. S., Blaszkiewicz, M., and Newnham, R. E., 1990, “Electrical Resistivity of Composites,” J. Am. Ceram. Soc., 73(8), pp.2187–2203. [CrossRef]
Shih, W.-H., Shih, W. Y., Kim, S.-I., Liu, J., and Aksay, I. A., 1990, “Scaling Behavior of the Elastic Properties of Colloidal Gels,” Phys. Rev. A, 42(8), pp.4772–4779. [CrossRef] [PubMed]
Gharagozloo, P. E., and Goodson, K. E., 2010, “Aggregate Fractal Dimensions and Thermal Conduction in Nanofluids,” J. Appl. Phys., 108(7), p.074309. [CrossRef]
Özerinç, S., Kakaç, S., and Yazcolu, A. G., 2009, “Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review,” Microfluid. Nanofluid., 8(2), pp.145–170. [CrossRef]
Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N., 1993, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles),” Jpn. J. Thermophys. Prop., 7(4), pp.227–233. [CrossRef]
Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., 1999, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” J. Heat Transfer, 121(2), pp.280–289. [CrossRef]
Pak, B. C., and Cho, Y. I., 1998, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles,” Exp. Heat Transfer, 11(2), pp.151–170. [CrossRef]
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., 2001, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett., 78(6), pp.718–720. [CrossRef]
Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, Y. V., Sprunt, S., Lopatina, L. M., and Selinger, J. V., 2007, “Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory,” Phys. Rev. E, 76(6), p.061203. [CrossRef]
Murshed, S. M. S., Leong, K. C., and Yang, C., 2008, “Investigations of Thermal Conductivity and Viscosity of Nanofluids,” Int. J. Therm. Sci., 47(5), pp.560–568. [CrossRef]
Tavman, I., Turgut, A., Chirtoc, M., Hadjov, K., Fudym, O., and Tavman, S., 2010, “Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids,” Heat Transfer Res., 41(3), pp.339–351. [CrossRef]
Mintsa, H., Roy, G., Nguyen, C., and Doucet, D., 2009, “New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids,” Int. J. Therm. Sci., 48(2), pp.363–371. [CrossRef]
Kwak, K., and Kim, C., 2005, “Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol,” Korea-Aust. Rheol. J., 17(2), pp.35–40.
Kang, H. U., Kim, S. H., and Oh, J. M., 2006, “Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume,” Exp. Heat Transfer, 19(3), pp.181–191. [CrossRef]
Hwang, Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., and Lee, J. K., 2006, “Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids,” Curr. Appl. Phys., 6(6), pp.1068–1071. [CrossRef]
Duangthongsuk, W., and Wongwises, S., 2009, “Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-Water Nanofluids,” Exp. Therm. Fluid Sci., 33(4), pp.706–714. [CrossRef]
Hong, T.-K., Yang, H.-S., and Choi, C. J., 2005, “Study of the Enhanced Thermal Conductivity of Fe Nanofluids,” J. Appl. Phys., 97(6), p.064311. [CrossRef]
Chopkar, M., Das, P. K., and Manna, I., 2007, “Nanofluid of ZrO2 in Water and Ethylene Glycol,” Philos. Mag., 87(29), pp.4433–4444. [CrossRef]
Xuan, Y. M., and Li, Q., 2000, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Flow, 21(1), pp.58–64. [CrossRef]
Jana, S., Salehi-Khojin, A., and Zhong, W.-H., 2007, “Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives,” Thermochim. Acta, 462(1–2), pp.45–55. [CrossRef]
Garg, J., Poudel, B., Chiesa, M., Gordon, J. B., Ma, J. J., Wang, J. B., Ren, Z. F., Kang, Y. T., Ohtani, H., Nanda, J., McKinley, G. H., and Chen, G., 2008, “Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid,” J. Appl. Phys., 103(7), p.74301. [CrossRef]
Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., and Li, H., 2008, “Thermal Conductivity Enhancement Dependent pH and Chemical Surfactant for Cu-H2O Nanofluids,” Thermochim. Acta, 469(1–2), pp.98–103. [CrossRef]
Eapen, J., Li, J., and Yip, S., 2004, “Modeling Transport Mechanism in Nanofluids. Nano-to-Micro Transport Processes, Tech. Report MIT. 2.57 Project Report.
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett., 79(14), pp.2252–2254. [CrossRef]
Yang, Y., 2006, “Carbon Nanofluids for Lubricant Application,” Ph.D. thesis, University of Kentucky, Lexington, KY.
Assael, M. J., Chen, C.-F., Metaxa, I., and Wakeham, W. A., 2004, “Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys., 25(4), pp.971–985. [CrossRef]
Vajjha, R. S., and Das, D. K., 2009, “Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations,” Int. J. Heat Mass Transfer, 52(21–22), pp.4675–4682. [CrossRef]
Xie, H., Wang, J., Xi, T., and Liu, Y., 2002, “Thermal Conductivity of Suspensions Containing Nanosized SiC Particles,” Int. J. Thermophys., 23(2), pp.571–580. [CrossRef]
Nieto de Castro, C. A., Lourenco, M. J. V., Ribeiro, A. P. C., Langa, E., Vieira, S. I. C., Goodrich, P., and Hardacre, C., 2010, “Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids,” J. Chem. Eng. Data, 55(2), pp.653–661. [CrossRef]
Putnam, S. A., Cahill, D. G., Braun, P. V., Ge, Z., and Shimmin, R. G., 2006, “Thermal Conductivity of Nanoparticle Suspensions,” J. Appl. Phys., 99(8), p.084308. [CrossRef]
Zhang, X., Gu, H., and Fujii, M., 2006, “Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids,” Int. J. Thermophys.27(2), pp.569–580. [CrossRef]
Zhang, X., Gu, H., and Fujii, M., 2007, “Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles,” Exp. Therm. Fluid Sci., 31(6), pp.593–599. [CrossRef]
Xie, H., Lee, H., Youn, W., and Choi, M., 2003, “Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities,” J. Appl. Phys., 94(8), p.4967. [CrossRef]
Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., and Wu, Q., 2002, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles,” J. Appl. Phys., 91(7), p.4568. [CrossRef]
Venerus, D. C., Kabadi, M. S., Lee, S., and Perez-Luna, V., 2006, “Study of Thermal Transport in Nanoparticle Suspensions Using Forced Rayleigh Scattering,” J. Appl. Phys., 100(9), p.094310. [CrossRef]
Ceylan, A., Jastrzembski, K., and Shah, S. I., 2006, “Enhanced Solubility Ag-Cu Nanoparticles and Their Thermal Transport Properties,” Metall. Mater. Trans. A, 37(7), pp.2033–2038. [CrossRef]
Shaikh, S., Lafdi, K., and Ponnappan, R., 2007, “Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study,” J. Appl. Phys., 101(6), p.064302. [CrossRef]
Cai, W., Sen, M., and Paolucci, S., 2007, “Dynamic Modeling of an Absorption Refrigeration System Using Ionic Liquids,” ASME International Mechanical Engineering Congress and Exposition Proceedings, pp.227–236.
Brennecke, J. F., and Gurkan, B. E., 2010, “Ionic Liquids for CO2 Capture and Emission Reduction,” J. Phys. Chem. Lett., 1(24), pp.3459–3464. [CrossRef]
Oh, W. C., Wang, Y. L., Lee, S. C., Hong, D. S., Kim, D. H., and Chen, M. L., 2011, “Investigation of Thermal Conductivity of NaHCO(3) Modified Activated Carbon Nanofluids,” Asian J. Chem., 23(8), pp.3401–3404.
Yoo, D., Hong, K., and Yang, H., 2007, “Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids,” Thermochim. Acta, 455(1–2), pp.66–69. [CrossRef]
Yang, B., and Han, Z. H., 2006, “Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids,” Appl. Phys. Lett., 89(8), p.083111. [CrossRef]
Manna, I., Chopkar, M., and Das, P. K., 2005, “Nanofluid—A New Concept in Heat Transfer and Thermal Management,” Trans. Indian Inst. Met., 58(6), pp.1045–1055.
Chopkar, M., Kumar, S., Bhandari, D. R., Das, P. K., and Manna, I., 2007, “Development and Characterization of Al2Cu and Ag2Al Nanoparticle Dispersed Water and Ethylene Glycol Based Nanofluid,” Mater. Sci. Eng. B, 139(2–3), pp.141–148. [CrossRef]
Turanov, A. N., and Tolmachev, Y. V., 2009, “Heat- and Mass-Transport in Aqueous Silica Nanofluids,” Heat Mass Transfer, 45(12), pp.1583–1588. [CrossRef]
Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y. V., Keblinski, P., Hu, L.-W., Alvarado, J. L., Bang, I. C., Bishnoi, S. W., Bonetti, M., Botz, F., Cecere, A., Chang, Y., Chen, G., Chen, H., Chung, S. J., Chyu, M. K., Das, S. K., Di Paola, R., Ding, Y., Dubois, F., Dzido, G., Eapen, J., Escher, W., Funfschilling, D., Galand, Q., Gao, J., Gharagozloo, P. E., Goodson, K. E., Gutierrez, J. G., Hong, H., Horton, M., Hwang, K. S., Iorio, C. S., Jang, S. P., Jarzebski, A. B., Jiang, Y., Jin, L., Kabelac, S., Kamath, A., Kedzierski, M. A., Kieng, L. G., Kim, C., Kim, J.-H., Kim, S., Lee, S. H., Leong, K. C., Manna, I., Michel, B., Ni, R., Patel, H., Philip, J., Poulikakos, D., Reynaud, C., Savino, R., Singh, P. K., Song, P., Sundararajan, T., Timofeeva, E., Tritcak, T., Turanov, A. N., Van Vaerenbergh, S., Wen, D., Witharana, S., Yang, C., Yeh, W. H., Zhao, X.-Z., and Zhou, S.-Q., 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p.94312. [CrossRef]
Shalkevich, N., Escher, W., Bürgi, T., Michel, B., Si-Ahmed, L., and Poulikakos, D., 2010, “On the Thermal Conductivity of Gold Nanoparticle Colloids,” Langmuir, 26(2), pp.663–670. [CrossRef] [PubMed]
Murshed, S. M. S., Leong, K. C., and Yang, C., 2006, “Determination of the Effective Thermal Diffusivity of Nanofluids by the Double Hot-Wire Technique,” J. Phys. D: Appl. Phys., 39(24), pp.5316–5322. [CrossRef]
Liu, M.-S., Lin, M. C.-C., Tsai, C. Y., and Wang, C.-C., 2006, “Enhancement of Thermal Conductivity With Cu for Nanofluids Using Chemical Reduction Method,” Int. J. Heat Mass Transfer, 49(17–18), pp.3028–3033. [CrossRef]
Liu, M.-S., Lin, M. C.-C., Huang, I.-T., and Wang, C.-C., 2006, “Enhancement of Thermal Conductivity With CuO for Nanofluids,” Chem. Eng. Technol., 29(1), pp.72–77. [CrossRef]
Beck, M. P., Yuan, Y. H., Warrier, P., and Teja, A. S., 2009, “The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids,” J. Nanopart. Res., 11(5), pp.1129–1136. [CrossRef]
Wang, Z., 2009, “Thermal Wave in Thermal Properties Measurements and Flow Diagnostics: With Applications of Nanofluids Thermal Conductivity and Wall Shear Stress Measurements,” Ph.D. thesis, Oregon State University, Corvallis, OR.
Healy, J. J., DeGroot, J. J., and Kestin, J., 1976, “The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity,” Physica B+C, 82(2), pp.392–408. [CrossRef]
Putnam, S. A., and Cahill, D. G., 2004, “Micron-Scale Apparatus for Measurements of Thermodiffusion in Liquids,” Rev. Sci. Instrum., 75(7), pp.2368–2372. [CrossRef]
Cahill, D. G., 1990, “Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method,” Rev. Sci. Instrum., 61(2), pp.802–808. [CrossRef]
Borca-Tasciuc, T., Kumar, A. R., and Chen, G., 2001, “Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination,” Rev. Sci. Instrum., 72(4), pp.2139–2147. [CrossRef]
Borca-Tasciuc, D.-A., and Chen, G., 2005, “Anisotropic Thermal Properties of Nanochanneled Alumina Templates,” J. Appl. Phys., 97(8), p.084303. [CrossRef]
Wang, Z. L., Tang, D. W., Liu, S., Zheng, X. H., and Araki, N., 2007, “Thermal-Conductivity and Thermal-Diffusivity Measurements of Nanofluids by 3ω Method and Mechanism Analysis of Heat Transport,” Int. J. Thermophys., 28(4), pp.1255–1268. [CrossRef]
Batchelor, G. K., 1977, “The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles,” J. Fluid Mech., 83(1), pp.97–117. [CrossRef]
Das, S. K., Putra, N., and Roetzel, W., 2003, “Pool Boiling Characteristics of Nano-Fluids,” Int. J. Heat Mass Transfer, 46(5), pp.851–862. [CrossRef]
Ding, Y., Alias, H., Wen, D., and Williams, R., 2006, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids),” Int. J. Heat Mass Transfer, 49(1–2), pp.240–250. [CrossRef]
Prasher, R., Song, D., Wang, J., and Phelan, P., 2006, “Measurements of Nanofluid Viscosity and its Implications for Thermal Applications,” Appl. Phys. Lett., 89(13), p.133108. [CrossRef]
Tseng, W., and Lin, K., 2003, “Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions,” Mater. Sci. Eng. A, 355(1–2), pp.186–192. [CrossRef]
Studart, A. R., Amstad, E., Antoni, M., and Gauckler, L. J., 2006, “Rheology of Concentrated Suspensions Containing Weakly Attractive Alumina Nanoparticles,“ J. Am. Ceram. Soc., 89(8), pp.2418–2425. [CrossRef]
He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., and Lu, H., 2007, “Heat Transfer and Flow Behaviour of Aqueous Suspensions of TiO2 Nanoparticles (nanofluids) Flowing Upward Through a Vertical Pipe,” Int. J. Heat Mass Transfer, 50(11–12), pp.2272–2281. [CrossRef]
Chen, H., Ding, Y., and Tan, C., 2007, “Rheological Behaviour of Nanofluids,” New J. Phys., 9(10), pp.367–367. [CrossRef]
Krieger, I. M., 1959, “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres,” J. Rheol., 3(1), pp.137–152. [CrossRef]
Einstein, A., 1911, “Correction of My Work: A New Determination of the Molecular Dimensions,” Ann. Phys.34(3), pp.591–592. [CrossRef]
Kole, M., and Dey, T. K., 2010, “Viscosity of Alumina Nanoparticles Dispersed in Car Engine Coolant,” Exp. Therm. Fluid Sci., 34(6), pp.677–683. [CrossRef]
Namburu, P. K., Kulkarni, D. P., Misra, D., and Das, D. K., 2007, “Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Glycol and Water Mixture,” Exp. Therm. Fluid Sci., 32(2), pp.397–402. [CrossRef]
Masoumi, N., Sohrabi, N., and Behzadmehr, A., 2009, “A New Model for Calculating the Effective Viscosity of Nanofluids,” J. Phys. D: Appl. Phys., 42(5), p.055501. [CrossRef]
Kole, M., and Dey, T. K., 2011, “Effect of Aggregation on the Viscosity of Copper Oxide-Gear Oil Nanofluids,” Int. J. Therm. Sci., 50(9), pp.1741–1747. [CrossRef]
Andrade, E. N. D., 1934, “A Theory of the Viscosity of Liquids—Part I,” Philos. Mag., 17(112), pp.497–511.
Chen, H., Ding, Y., He, Y., and Tan, C., 2007, “Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids,” Chem. Phys. Lett., 444(4–6), pp.333–337. [CrossRef]
Abu-Nada, E., Masoud, Z., Oztop, H. F., and Campo, A., 2010, “Effect of Nanofluid Variable Properties on Natural Convection in Enclosures,” Int. J. Therm. Sci., 49(3), pp.479–491. [CrossRef]
Xuan, Y., and Li, Q., 2003, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids,” J. Heat Transfer, 125(1), p.151. [CrossRef]
Dittus, W., and Boelter, L. M. K., 1930, “Heat Transfer in Automobile Radiators of the Tubular Type,” Univ. Calif. Publ. Eng., 2(13), pp.443–461. [CrossRef]
Wen, D., and Ding, Y., 2004, “Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions,” Int. J. Heat Mass Transfer, 47(24), pp.5181–5188. [CrossRef]
Yang, Y., Zhang, Z., Grulke, E., Anderson, W., and Wu, G., 2005, “Heat Transfer Properties of Nanoparticle-in-Fluid Dispersions (Nanofluids) in Laminar Flow,” Int. J. Heat Mass Transfer, 48(6), pp.1107–1116. [CrossRef]
Kabelac, S., and Kuhnke, J. F., 2006, “Heat Transfer Mechanisms in Nanofluids,” Int. Heat Transf. Conf. - Keynote Papers, Begell House Inc, Redding, CT.
Heris, S. Z., Etemad, S., and Nasresfahany, M., 2006, “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer,” Int. Comm. Heat Mass Transfer., 33(4), pp.529–535. [CrossRef]
Arefmanesh, A., and Mahmoodi, M., 2011, “Effects of Uncertainties of Viscosity Models for Al2O3-Water Nanofluid on Mixed Convection Numerical Simulations,” Int. J. Therm. Sci., 50(9), pp.1706–1719. [CrossRef]
Gherasim, I., Roy, G., Nguyen, C. T., and Vo-Ngoc, D., 2011, “Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids),” Int. J. Therm. Sci., 50(3), pp.369–377. [CrossRef]
Daungthongsuk, W., and Wongwises, S., 2007, “A Critical Review of Convective Heat Transfer of Nanofluids,” Renewable Sustainable Energy Rev., 11(5), pp.797–817. [CrossRef]
Kakaç, S., and Pramuanjaroenkij, A., 2009, “Review of Convective Heat Transfer Enhancement With Nanofluids,” Int. J. Heat Mass Transfer, 52(13–14), pp.3187–3196. [CrossRef]
Corcione, M., 2011, “Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions,” Int. J. Heat Fluid Flow, 32(1), pp.65–77. [CrossRef]
Putra, N., Roetzel, W., and Das, S. K., 2003, “Natural Convection of Nano-Fluids,” Heat Mass Transfer, 39(8–9), pp.775–784. [CrossRef]
Wen, D., and Ding, Y., 2005, “Formulation of Nanofluids for Natural Convective Heat Transfer Applications,” Int. J. Heat Fluid Flow, 26(6), pp.855–864. [CrossRef]
Abu-Nada, E., Masoud, Z., and Hijazi, A., 2008, “Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids,” Int. Comm. Heat Mass Transfer, 35(5), pp.657–665. [CrossRef]
Abu-Nada, E., 2009, “Effects of Variable Viscosity and Thermal Conductivity of Al2O3-Water Nanofluid on Heat Transfer Enhancement in Natural Convection,” Int. J. Heat Fluid Flow, 30(4), pp.679–690. [CrossRef]
Cianfrini, M., Corcione, M., and Quintino, A., 2011, “Natural Convection Heat Transfer of Nanofluids in Annular Spaces Between Horizontal Concentric Cylinders,” Appl. Therm. Eng., 31(17–18), pp.4055–4063. [CrossRef]
Ghasemi, B., Aminossadati, S. M., and Raisi, A., 2011, “Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure,” Int. J. Therm. Sci., 50(9), pp.1748–1756. [CrossRef]
Hamad, M. A. A., 2011, “Analytical Solution of Natural Convection Flow of a Nanofluid Over a Linearly Stretching Sheet in the Presence of Magnetic Field,” Int. Comm. Heat Mass Transf., 38(4), pp.487–492. [CrossRef]
Moghaddami, M., Mohammadzade, A., and Esfehani, S. A. V., 2011, “Second Law Analysis of Nanofluid Flow,” Energy Convers. Manage., 52(2), pp.1397–1405. [CrossRef]
Yacob, N. A., Ishak, A., and Pop, I., 2011, “Falkner-Skan Problem for a Static or Moving Wedge in Nanofluids,” Int. J. Therm. Sci., 50(2), pp.133–139. [CrossRef]
Nield, D. A., and Kuznetsov, A. V., 2011, “The Cheng-Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid,” Int. J. Heat Mass Transfer, 54(1–3), pp.374–378. [CrossRef]
Godson, L., Raja, B., Mohan Lal, D., and Wongwises, S., 2010, “Enhancement of Heat Transfer Using Nanofluids—An Overview,” Renewable Sustainable Energy Rev., 14(2), pp.629–641. [CrossRef]
Namburu, P. K., Das, D. K., Tanguturi, K. M., and Vajjha, R. S., 2009, “Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties,” Int. J. Therm. Sci., 48(2), pp.290–302. [CrossRef]
Bergman, T., 2009, “Effect of Reduced Specific Heats of Nanofluids on Single Phase, Laminar Internal Forced Convection,” Int. J. Heat Mass Transfer, 52(5–6), pp.1240–1244. [CrossRef]
Vajjha, R. S., and Das, D. K., 2009, “Specific Heat Measurement of Three Nanofluids and Development of New Correlations,” J. Heat Transf., 131(7), p.071601. [CrossRef]
Nelson, I. C., Banerjee, D., and Ponnappan, R., 2009, “Flow Loop Experiments Using Polyalphaolefin Nanofluids,” J. Thermophys. Heat Transfer, 23(4), pp.752–761. [CrossRef]
Shin, D., and Banerjee, D., 2011, “Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications,” Int. J. Heat Mass Transfer, 54(5–6), pp.1064–1070. [CrossRef]
Zhou, S.-Q., and Ni, R., 2008, “Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid,” Appl. Phys. Lett., 92(9), p.093123. [CrossRef]
Shin, D., and Banerjee, D., 2011, “Enhanced Specific Heat of Silica Nanofluid,” J. Heat Transfer, 133(2), p.024501. [CrossRef]
Eapen, J., Rusconi, R., Piazza, R., and Yip, S., 2010, “The Classical Nature of Thermal Conduction in Nanofluids,” J. Heat Transfer, 132(10), p.102402. [CrossRef]
Maxwell, J. C., 1881, A Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford, UK, Vol.1.
Hamilton, R. L., and Crosser, O. K., 1962, “Thermal Conductivity of Heteregenous Two Component Systems,” Indian Eng. Chem. Fund., 1(3), pp.187–191. [CrossRef]
Maxwell-Garnett, J. C., 1904, “Colours in Metal Glasses, in Metallic Films and in Metallic Solutions,” Philos. Trans. R. Soc. London, Ser. A, 203, pp.385–420. [CrossRef]
Nan, C.-W., Birringer, R., Clarke, D. R., and Gleiter, H., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp.6692–6699. [CrossRef]
Russel, W. B., Saville, D. A., and Schowalter, W. R., 1989, Colloidal Dispersions, Cambridge University Press, New York.
Duangthongsuk, W., and Wongwises, S., 2008, “Effect of Thermophysical Properties Models on the Predicting of the Convective Heat Transfer Coefficient for Low Concentration Nanofluid,” Int. Comm. Heat Mass Transfer, 35(10), pp.1320–1326. [CrossRef]
Chen, H., and Ding, Y., 2009, Advances in transport phenomena. Heat Transfer and Rheological Behaviour of Nanofluids - A Review, Springer, New York, Vol.1.
Bruggeman, D. A. G., 1935, “Calculation of Various Physics Constants in Heterogenous Substances I Dielectricity Constants and Conductivity of Mixed Bodies from Isotropic Substances,” Ann. Phys., 24(7), pp.636–664. [CrossRef]
Jeffrey, D. J., 1973, “Conduction Through a Random Suspension of Spheres,” Proc. R. Soc. London Ser. A, 335(1602), pp.355–367. [CrossRef]
Davis, R. H., 1986, “The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions,” Int. J. Thermophys., 7(3), pp.609–620. [CrossRef]
Lu, S.-Y., and Lin, H.-C., 1996, “Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity,” J. Appl. Phys., 79(9), p.6761. [CrossRef]
Xue, Q., and Xu, W.-M., 2005, “A Model of Thermal Conductivity of Nanofluids With Interfacial Shells,” Mater. Chem. Phys., 90(2–3), pp.298–301. [CrossRef]
Chon, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S., 2005, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement,” Appl. Phys. Lett., 87(15), p.153107. [CrossRef]
Mehta, S., Chauhan, K. P., and Kanagaraj, S., 2010, “Modeling of Thermal Conductivity of Nanofluids by Modifying Maxwell's Equation Using Cell Model Approach,” J. Nanopart. Res., 13(7), pp.2791–2798. [CrossRef]
Wang, X.-Q., and Mujumdar, A. S., 2008, “A Review of Nanofluids - Part I: Theoretical and Numerical Investigations,” Braz. J. Chem. Eng., 25(4), pp.613–630. [CrossRef]
Brenner, H., 1974, “Transport Mechanics in Systems of Orientable Particles. IV. Convective Transport,” J. Colloid Interface Sci., 47(1), pp.199–264. [CrossRef]
Maiga, S., 2004, “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube,” Superlattice. Microstruct., 35(3–6), pp.543–557. [CrossRef]
Kulkarni, D. P., Das, D. K., and Chukwu, G. A., 2006, “Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid),” J. Nanosci. Nanotechnol., 6(4), pp.1150–1154. [CrossRef] [PubMed]
Simha, R., 1940, “The Influence of Brownian Movement on the Viscosity of Solutions,” J. Phys. Chem., 44(1), pp.25–34. [CrossRef]
Simha, R., 1952, “A Treatment of the Viscosity of Concentrated Suspensions,” J. Appl. Phys., 23(9), p.1020. [CrossRef]
Eilers, v. H., 1941, “Die Viskocitat von Emulsionen Hochviskoser Stoffe als Funktion der Konzentration,” Kolloid-Z., 97, pp.313–321. [CrossRef]
de Bruijn, H., 1942, “The Viscosity of Suspensions of Spherical Particles. (The Fundamental η-c and φ Relations),” Recl. Trav. Chim. Pays-Bas, 61(12), pp.863–874. [CrossRef]
Kuhn, W., and Kuhn, H., 1945, “Abhangigkeit der Viskositat vom Stromungsgefalle bei Hochverdunnten Suspensionen und Losungen,” Helvetica Chimica Acta, 28(1), pp.97–127. [CrossRef]
Vand, V., 1948, “Viscosity of Solutions and Suspensions. I. Theory,” J. Phys. Colloid Chem., 52(2), pp.277–299. [CrossRef] [PubMed]
Robinson, J. V., 1949, “The Viscosity of Suspensions of Spheres,” J. Phys. Colloid Chem., 53(7), pp.1042–1056. [CrossRef]
Saitô, N., 1950, “Concentration Dependence of the Viscosity of High Polymer Solutions. I,” J. Phys. Soc. Jpn., 5(1), pp.4–8. [CrossRef]
Mooney, M., 1951, “The Viscosity of a Concentrated Suspension of Spherical Particles,” J. Colloid. Sci., 6(2), pp.162–170. [CrossRef]
Brinkman, H. C., 1952, “The Viscosity of Concentrated Suspensions and Solutions,” J. Chem. Phys., 20(4), p.571. [CrossRef]
Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. Math., Physic. Eng. Sci., 241(1226), pp.376–396. [CrossRef]
Frankel, N., and Acrivos, A., 1967, “On the Viscosity of a Concentrated Suspension of Solid Spheres,” Chem. Eng. Sci., 22(6), pp.847–853. [CrossRef]
Krieger, I. M., 1972, “Rheology of Monodisperse Lattices,” Adv. Colloid Interface Sci., 3(2), pp.111–136. [CrossRef]
Kitano, T., Kataoka, T., and Shirota, T., 1981, “An Empirical Equation of the Relative Viscosity of Polymer Melts Filled With Various Inorganic Fillers,” Rheol. Acta, 20(2), pp.207–209. [CrossRef]
Lundgren, T. S., 1972, “Slow Flow Through Stationary Random Beds and Suspensions of Spheres,” J. Fluid Mech., 51(2), p.273. [CrossRef]
Graham, A. L., 1981, “On the Viscosity of Suspensions of Solid Spheres,” Appl. Sci. Res., 37(3–4), pp.275–286. [CrossRef]
Phan-Thien, N., and Graham, A. L., 1991, “A New Constitutive Model for Fibre Suspensions: Flow Past a Sphere,” Rheol. Acta, 30(1), pp.44–57. [CrossRef]
Liu, S., and Masliyah, J. H., “Suspensions: Fundamentals and Applications in the Petroleum Industry,” Advances in Chemistry ( American Chemical Society, Washington, DC, 1996), Vol.251.
Gnielinski, V., 1976, “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow,” Int. Chem. Eng., 16(2), pp.359–368.
Buongiorno, J., 2006, “Convective Transport in Nanofluids,” J. Heat Transfer., 128(3), pp.240–250. [CrossRef]
Polidori, G., Fohanno, S., and Nguyen, C., 2007, “A Note on Heat Transfer Modelling of Newtonian nNanofluids in Laminar Free Convection,” Int. J. Therm. Sci., 46(8), pp.739–744. [CrossRef]
Xuan, Y., and Roetzel, W., 2000, “Conceptions for Heat Transfer Correlation of Nanofluids,” Int. J. Heat Mass Transf., 43(19), pp.3701–3707. [CrossRef]
Rudyak, V. Y., Belkin, A. A., and Tomilina, E. A., 2010, “On the Thermal Conductivity of Nanofluids,” Tech. Phys. Lett., 36(7), pp.660–662. [CrossRef]
Wang, T., Wang, X., Luo, Z., Ni, M., and Cen, K., 2011, “Mechanisms of Viscosity Increase for Nanocolloidal Dispersions,” J. Nanosci. Nanotechnol., 11(4), pp.3141–3150. [CrossRef] [PubMed]
Kang, H., Zhang, Y., and Yang, M., 2011, “Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM Potential for Cu-Cu Interactions,” Appl. Phys. A., 103(4), pp.1001–1008. [CrossRef]
Allen, M. P., and Tildesley, D. J., 1997, Computer Simulation of Liquids, Oxford University Press, Oxford.
Egorova, A. V., Brodskaya, E. N., and Laaksonen, A., 2006, “Molecular Dynamics Simulations of Solid-Liquid Phase Transition in Small Water Aggregates,” Comput. Mater. Sci., 36(1–2), pp.166–170. [CrossRef]
Koga, K., 2002, “Solvation Forces and Liquid-Solid Phase Equilibria for Water Confined Between Hydrophobic Surfaces,” J. Chem. Phys., 116(24), pp.10882–10889. [CrossRef]
Kumar, P., Buldyrev, S. V., Starr, F. W., Giovambattista, N., and Stanley, H. E., 2005, “Thermodynamics, Structure, and Dynamics of Water Confined Between Hydrophobic Plates,” Phys. Rev. E, 72(5), p.51503. [CrossRef]
Stanley, H. E., 1999, “Liquid Water: A Very Complex Fluid,” Pramana, J. Phys., 53(1), pp.53–83. [CrossRef]
Xu, S. Y., Scherer, G. W., Mahadevan, T. S., and Garofalini, S. H., 2009, “Thermal Expansion of Confined Water,” Langmuir, 25(9), pp.5076–5083. [CrossRef] [PubMed]
Bonnaud, P. A., Coasne, B., and Pellenq, R. J.-M., 2010, “Molecular Simulation of Water Confined in Nanoporous Silica,” J. Phys. Condens. Mater, 22(28), p.284110. [CrossRef]
Demontis, P., Gulín-González, J., Masia, M., and Suffritti, G. B., 2010, “The Behaviour of Water Confined in Zeolites: Molecular Dynamics Simulations Versus Experiment,” J. Phys. Condens. Mater, 22(28), p.284106. [CrossRef]
Soler, J. M., Fabricius, G., and Artacho, E., 2001, “Surface Layering and Local Structure in Liquid Surfaces,” Surf. Sci., 482–485(2), pp.1314–1318. [CrossRef]
Mittal, J., and Hummer, G., 2010, “Interfacial Thermodynamics of Confined Water Near Molecularly Rough Surfaces,” Faraday Discuss., 146, p.341. [CrossRef] [PubMed]
Daw, M. S., and Baskes, M. I., 1984, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B, 29(12), pp.6443–6453. [CrossRef]
Kimura, Y., Qi, Y., Çağin, T. and Goddard, W. A., 1998, “The Quantum Sutton-Chen Many-Body Potential for Properties of Fcc Metals,” (Unpublished).
Qi, Y., Çağin, T., Kimura, Y., and Goddard, W. A., 1999, “Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: Cu-Ag and Cu-Ni,” Phys. Rev. B, 59(5), pp.3527–3533. [CrossRef]
Meineke, M. A., Vardeman, C. F., Lin, T., Fennell, C. J., and Gezelter, J. D., 2005, “OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics,” J. Comput. Chem., 26(3), pp.252–271. [CrossRef] [PubMed]
Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P., 1987, “The Missing Term in Effective Pair Potentials,” J. Phys. Chem., 91(24), pp.6269–6271. [CrossRef]
Kusalik, P. G., and Svishchev, I. M., 1994, “The Spatial Structure in Liquid Water,” Science, 265(5176), pp.1219–1221. [CrossRef] [PubMed]
Alejandre, J., Tildesley, D. J., and Chapela, G. A., 1995, “Molecular Dynamics Simulation of the Orthobaric Densities and Surface Tension of Water,” J. Chem. Phys., 102(11), pp.4574–4583. [CrossRef]
Spohr, E., 1989, “Computer Simulation of the Water/Platinum Interface,” J. Phys. Chem., 93(16), pp.6171–6180. [CrossRef]
Dou, Y., Zhigilei, L. V., Winograd, N., and Garrison, B. J., 2001, “Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description,” J. Phys. Chem. A, 105(12), pp.2748–2755. [CrossRef]
Lee, J., and Mudawar, I., 2007, “Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels,” Int. J. Heat Mass Transfer, 50(3–4), pp.452–463. [CrossRef]
Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T., 2007, Nanoparticle Technology Handbook, Elsevier, Amsterdam, The Netherlands.
Wen, D., Lin, G., Vafaei, S., and Zhang, K., 2009, “Review of Nanofluids for Heat Transfer Applications,” Particuology, 7(2), pp.141–150. [CrossRef]
Kondaraju, S., Jin, E. K., and Lee, J. S., 2011, “Effect of the Multi-Sized Nanoparticle Distribution on the Thermal Conductivity of Nanofluids,” Microfluid. Nanofluid., 10(1), pp.133–144. [CrossRef]
Chakraborty, S., Saha, S. K., Pandey, J. C., and Das, S., 2011, “Experimental Characterization of Concentration of Nanofluid by Ultrasonic Technique,” Powder Technol., 210(3), pp.304–307. [CrossRef]
Lee, J. H., 2009, “Convection Performance of Nanofluids for Electronics Cooling,” Ph.D. thesis, Stanford University, Palo Alto, CA.
Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., and Choi, C. J., 2008, “Effective Viscosities and Thermal Conductivities of Aqueous Nanofluids Containing Low Volume Concentrations of Al2O3 Nanoparticles,” Int. J. Heat Mass Transfer, 51(11–12), pp.2651–2656. [CrossRef]
Vasu, V., Rama Krishna, K., and Kumar, A., 2009, “Heat Transfer With Nanofluids for Electronic Cooling,” Int. J. Mater. Prod. Technol., 34(1/2), p.158. [CrossRef]
Routbort, J. L., Singh, D., Timofeeva, E. V., Yu, W., and France, D. M., 2011, “Pumping Power of Nanofluids in a Flowing System,” J. Nanopart. Res., 13(3), pp.931–937. [CrossRef]


Grahic Jump Location
Fig. 1

Growth of publications on nanofluids. (Data: ISI Web of Knowledge).

Grahic Jump Location
Fig. 2

Experimental results of thermal conductivity enhancement of water-based nanofluids

Grahic Jump Location
Fig. 3

Experimental results of thermal conductivity enhancement of ethylene-glycol-based nanofluids




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In