0
Review Articles

Recent Advances and Emerging Applications of the Boundary Element Method

[+] Author and Article Information
Y. J. Liu

Mechanical Engineering, University of Cincinnati,
598 Rhodes Hall, 2600 Clifton Avenue,
Cincinnati, OH 45221-0072
e-mail: yijun.liu@uc.edu

S. Mukherjee

Sibley School of Mechanical and
Aerospace Engineering, Cornell University,
Ithaca, NY 14853
e-mail: sm85@cornell.edu

N. Nishimura

Department of Applied Analysis and
Complex Dynamical Systems,
Graduate School of Informatics,
Kyoto University,
Kyoto 606-8501, Japan
e-mail: nchml@i.kyoto-u.ac.jp

M. Schanz

Institute of Applied Mechanics,
Graz University of Technology,
Technikerstr. 4, A-8010 Graz, Austria
e-mail: m.schanz@tugraz.at

W. Ye

Department of Mechanical Engineering,
Hong Kong University of Science and
Technology, Clearwater Bay, Kowloon,
Hong Kong, China
e-mail: mewye@ust.hk

A. Sutradhar

Department of Surgery and
Department of Mechanical Engineering,
The Ohio State University,
915 Olentangy River Road, Suite 2100,
Columbus, OH 43212
e-mail: Alok.Sutradhar@osumc.edu

E. Pan

Department of Civil Engineering,
The University of Akron, ASEC Room 534,
Akron, OH 44325-3905
e-mail: pan2@uakron.edu

N. A. Dumont

Pontifical Catholic University of Rio de Janeiro,
22451-900 Brazil
e-mail: dumont@puc-rio.br

A. Frangi

Department of Structural Engineering,
Politecnico of Milano, P.za L. da Vinci 32,
20133 Milano, Italy
e-mail: attilio.frangi@polimi.it

A. Saez

Department of Continuum Mechanics and
Structural Analysis, University of Seville,
Camino de los Descubrimientos s/n,
Seville, E-41092, Spain
e-mail: andres@us.es

1Corresponding author.

Manuscript received May 25, 2011; final manuscript received December 12, 2011; published online March 30, 2012. Transmitted by Editor: J. N. Reddy.

Appl. Mech. Rev 64(3), 030802 (Mar 30, 2012) (38 pages) doi:10.1115/1.4005491 History: Received May 25, 2011; Revised December 12, 2011

Sponsored by the U.S. National Science Foundation, a workshop on the boundary element method (BEM) was held on the campus of the University of Akron during September 1–3, 2010 (NSF, 2010, “Workshop on the Emerging Applications and Future Directions of the Boundary Element Method,” University of Akron, Ohio, September 1–3). This paper was prepared after this workshop by the organizers and participants based on the presentations and discussions at the workshop. The paper aims to review the major research achievements in the last decade, the current status, and the future directions of the BEM in the next decade. The review starts with a brief introduction to the BEM. Then, new developments in Green's functions, symmetric Galerkin formulations, boundary meshfree methods, and variationally based BEM formulations are reviewed. Next, fast solution methods for efficiently solving the BEM systems of equations, namely, the fast multipole method, the pre-corrected fast Fourier transformation method, and the adaptive cross approximation method are presented. Emerging applications of the BEM in solving microelectromechanical systems, composites, functionally graded materials, fracture mechanics, acoustic, elastic and electromagnetic waves, time-domain problems, and coupled methods are reviewed. Finally, future directions of the BEM as envisioned by the authors for the next five to ten years are discussed. This paper is intended for students, researchers, and engineers who are new in BEM research and wish to have an overview of the field. Technical details of the BEM and related approaches discussed in the review can be found in the Reference section with more than 400 papers cited in this review.

Copyright © 2011 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jaswon, M. A., 1963, “Integral Equation Methods in Potential Theory. I,” Proc. R. Soc. London, Ser. A, 275, pp. 23–32. [CrossRef]
Symm, G. T., 1963, “Integral Equation Methods in Potential Theory. II,” Proc. R. Soc. London, Ser. A, 275, pp. 33–46. [CrossRef]
Jaswon, M. A., and Ponter, A. R., 1963, “An Integral Equation Solution of the Torsion Problem,” Proc. R. Soc. London, Ser. A273, pp. 237–246. [CrossRef]
Rizzo, F. J., 1967, “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics,” Quart. Appl. Math., 25, pp. 83–95.
Rizzo, F. J., and Shippy, D. J., 1968, “A Formulation and Solution Procedure for the General Non-Homogeneous Elastic Inclusion Problem,” Int. J. Solids Struct., 4, pp. 1161–1179. [CrossRef]
Cruse, T. A., and Rizzo, F. J., 1968, “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem - I,” J. Math. Anal. Appl., 22, pp. 244–259. [CrossRef]
Cruse, T. A., 1968, “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem - II,” J. Math. Anal. Appl., 22, pp. 341–355. [CrossRef]
Cruse, T. A., 1969, “Numerical Solutions in Three Dimensional Elastostatics,” Int. J. Solids Struct., 5, pp.1259–1274. [CrossRef]
Rizzo, F. J., and Shippy, D. J., 1970, “A Method for Stress Determination in Plane Anisotropic Elastic Bodies,” J. Compos. Mater., 4, pp. 36–61. [CrossRef]
Rizzo, F. J., and Shippy, D. J., 1970, “A Method of Solution for Certain Problems of Transient Heat Conduction,” AIAA J., 8, pp. 2004–2009. [CrossRef]
Rizzo, F. J., and Shippy, D. J., 1971, “An Application of the Correspondence Principle of Linear Viscoelasticity Theory,” SIAM J. Appl. Math., 21, pp. 321–330. [CrossRef]
Cruse, T. A., and Buren, W. V., 1971, “Three-Dimensional Elastic Stress Analysis of a Fracture Specimen with an Edge Crack,” Int. J. Fract. Mech., 7, pp. 1–16. [CrossRef]
Cruse, T. A., and. Swedlow, J. L., 1971, “Formulation of Boundary Integral Equations for Three-Dimensional Elasto-Plastic Flow,” Int. J. Solids Struct., 7, pp. 1673–1683. [CrossRef]
Cruse, T. A., 1973, “Application of the Boundary-Integral Equation Method to Three-Dimensional Stress Analysis,” Comput. Struct., 3, pp. 509–527. [CrossRef]
Cruse, T. A., 1974, “An Improved Boundary-Integral Equation Method for Three Dimensional Elastic Stress Analysis,” Comput. Struct., 4, pp. 741–754. [CrossRef]
Cruse, T. A., and Rizzo, F. J., eds.,1975, Boundary-Integral Equation Method: Computational Applications in Applied Mechanics, AMD-ASME, New York, Vol. 11.
Lachat, J. C., and Watson, J. O., 1976, “Effective Numerical Treatment of Boundary Integral Equations: A Formulation for Three-Dimensional Elastostatics,” Int. J. Numer. Methods Eng., 10, pp. 991–1005. [CrossRef]
Rizzo, F. J., and Shippy, D. J., 1977, “An Advanced Boundary Integral Equation Method for Three-Dimensional Thermoelasticity,” Int. J. Numer. Methods Eng., 11, pp. 1753–1768. [CrossRef]
Stippes, M., and Rizzo, F. J., 1977, “A Note on the Body Force Integral of Classical Elastostatics,” Zeits Ang. Math. Physik (ZAMP), 28, pp. 339–341. [CrossRef]
Wilson, R. B., and Cruse, T. A., 1978, “Efficient Implementation of Anisotropic Three Dimensional Boundary-Integral Equation Stress Analysis,” Int. J. Numer. Methods Eng., 12, pp. 1383–1397. [CrossRef]
Banerjee, P. K., and Butterfield, R., 1976, “Boundary Element Methods in Geomechanics,” Finite Elements in Geomechanics, G.Gudehus, ed., John Wiley and Sons (U.K.), London, Chapter 16, pp.529–570.
Brebbia, C. A., and Dominguez, J., 1977, “Boundary Element Methods for Potential Problems,” Appl. Math. Model.,1, pp. 372–378. [CrossRef]
Brebbia, C. A., 1978, The Boundary Element Method for Engineers, Pentech Press, London.
Rizzo, F. J., 2003, “Springs, Formulas and Flatland: A Path to Boundary Integral Methods in Elasticity,” Electron. J. Boundary Elem., 1, pp. 1–7.
Cruse, T. A., 2003, “Boundary Integral Equations – A Personal View,” Electron. J. Boundary Elem., 1, pp. 19–25.
Watson, J. O., 2003, “Boundary Elements from 1960 to the Present Day,” Electron. J. Boundary Elem., 1, pp. 34–46.
Shippy, D. J., 2003, “Early Development of the BEM at the University of Kentucky,” Electron. J. Boundary Elem., 1, pp. 26–33.
Mukherjee, S., 2003, “Boundary Element Methods in Solid Mechanics - A Tribute to Frank Rizzo,” Electron. J. Boundary Elem., 1, pp. 47–55.
Telles, J. C. F., 2003, “A Report on some Boundary Element Adventures,” Electron. J. Boundary Elem., 1, pp. 56–60.
Yao, Z., and Du, Q., 2003, “Some Aspects of the BEM Research in China,” Electron. J. Boundary Elem., 1, pp. 61–67.
Rudolphi, T. J., and Liu, Y. J., 2003, “BIE/BEM - The Past, Present and Future, a Special Issue in Honor of Professor Frank J. Rizzo,” Electron. J. Boundary Elem., 1, pp. 1-67.
Cheng, A. H.-D., and Cheng, D. T., 2005, “Heritage and Early History of the Boundary Element Method,” Engineering Analysis with Eng. Anal. Boundary Elem., 29, pp. 268–302. [CrossRef]
Tanaka, M., 1983, “Some Recent Advances in Boundary Element Methods,” Appl. Mech. Rev., 36, pp. 627–634.
Tanaka, M., Sladek, V., and Sladek, J., 1994, “Regularization Techniques Applied to Boundary Element Methods,” Appl. Mech. Rev., 47, pp. 457–499. [CrossRef]
Mukherjee, S., 1982, Boundary Element Methods in Creep and Fracture, Applied Science Publishers, New York.
Cruse, T. A., 1988, Boundary Element Analysis in Computational Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Brebbia, C. A. and Dominguez, J., 1989, Boundary Elements - An Introductory Course, McGraw-Hill, New York.
Banerjee, P. K., 1994, The Boundary Element Methods in Engineering, 2nd ed., McGraw-Hill, New York.
Chandra, A. and Mukherjee, S., 1997, Boundary Element Methods in Manufacturing, Oxford University Press, New York.
Paris, F. and Canas, J., 1997, Boundary Element Methods: Fundamentals and Applications, Oxford University Press, Oxford, UK.
Bonnet, M., 1995, Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, Chichester.
Mukherjee, S. and Mukherjee, Y. X., 2005, Boundary Methods: Elements, Contours, and Nodes, CRC Press, Boca Raton, FL.
Sutradhar, A., Paulino, G. H., and Gray, L. J., 2008, Symmetric Galerkin Boundary Element Method, Springer-Verlag, Berlin, Germany.
Liu, Y. J., 2009, Fast Multipole Boundary Element Method - Theory and Applications in Engineering, Cambridge University Press, Cambridge.
Mukherjee, S., 2000, “CPV and HFP Integrals and their Applications in the Boundary Element Method,” Int. J. Solids Struct., 37, pp. 6623–6634. [CrossRef]
Liu, Y. J. and Rudolphi, T. J., 1991, “Some Identities for Fundamental Solutions and their Applications to Weakly-Singular Boundary Element Formulations,” Eng. Anal. Boundary Elem., 8, pp. 301–311. [CrossRef]
Liu, Y. J., 2000, “On the Simple-Solution Method and Non-Singular Nature of the BIE/BEM - A Review and some New Results,” Eng. Anal. Boundary Elem., 24, pp. 787–793. [CrossRef]
Linkov, A. M., 2002, Boundary Integral Equations in Elasticity Theory, Kluwer Academic Publishers, Dordrecht.
Linkov, A. M., and Mogilevskaya, S. G., 1998, “Complex Hypersingular BEM in Plane Elasticity Problems,” Singular Integrals in Boundary Element Method, V.Sladek and J.Sladek,eds., Computational Mechanics Publications, Southampton, pp. 299–364.
Mogilevskaya, S. G., 1996, “The Universal Algorithm based on Complex Hypersingular Integral Equation to Solve Plane Elasticity Problems,” Comput. Mech., 18, pp. 127–138. [CrossRef]
Mogilevskaya, S. G., and Linkov, A. M., 1998, “Complex Fundamental Solutions and Complex Variables Boundary Element Method in Elasticity,” Comput. Mech., 22, pp. 88–92. [CrossRef]
Green, G., 1828, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, T. Wheelhouse, Nottingham.
Seremet, V. D., 2002, Handbook of Green's Functions and Matrices, WIT Press, Southampton.
Stakgold, I., 1997, Green's Functions and Boundary Value Problems, 2nd ed., Wiley-Interscience Publications, New York.
Fairweather, G., and Karageorghis, A., 1998, “The Method of Fundamental Solutions for Elliptic Boundary Value Problems,” Adv. Comput. Math., 9, pp. 69–95. [CrossRef]
Chen, C. S., Goldberg, M. A., and Hon, Y. C., 1998, “The Method of Fundamental Solutions and Quasi-Monte-Carlo Method for Diffusion Equations,” Int. J. Numer. Methods Eng., 43, pp. 1421–1435. [CrossRef]
Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proc. R. Soc. London, A241, pp. 376–396. [CrossRef]
Ding, H. J., Chen, W. Q., and Jiang, A. M., 2004, “Green's Functions and Boundary Element Method for Transversely Isotropic Piezoelectric Materials,” Eng. Anal. Boundary Elem., 28, pp. 975–987. [CrossRef]
Ding, H. J., Wang, G. Q., and Chen, W. Q., 1997, “Fundamental Solutions for Plane Problem of Piezoelectric Materials,” Sci. China, E40, pp. 331–336. [CrossRef]
Dunn, M. L., and Wienecke, H. A., 1999, “Half-Space Green's Functions for Transversely Isotropic Piezoelectric Solids,” J. Appl. Mech., 66, pp. 675–679. [CrossRef]
Ding, H. J., Jiang, A. M., Hou, P. F., and Chen, W. Q., 2005, “Green's Functions for Two-Phase Transversely Isotropic Magneto-Electro-Elastic Media,” Eng. Anal. Boundary Elem., 29, pp. 551–561. [CrossRef]
Bacon, D. J., Barnett, D. M., and Scattergood, R. O., 1980, “Anisotropic Continuum Theory of Lattice Defects,” Prog. Mater. Sci., 23, pp. 51–262. [CrossRef]
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, Oxford.
Qin, Q. H., 2005, “2D Green's Functions of Defective Magnetoelectroelastic Solids under Thermal Loading,” Eng. Anal. Boundary Elem., 29, pp. 577–585. [CrossRef]
Pan, E. and Amadei, B., 1996, “Fracture Mechanics Analysis of 2–D Cracked Anisotropic Media with a New Formulation of the Boundary Element Method,” Int. J. Fract., 77, pp. 161–174. [CrossRef]
Yin, W. L.2005, “Green's Function of Bimaterials Comprising all Cases of Material Degeneracy,” Int. J. Solids Struct., 42, pp. 1–19. [CrossRef]
Lavagnino, A. M., 1995, Selected Static and Dynamic Problems in Anisotropic Linear Elasticity, Stanford University, Stanford, CA.
Buroni, F. C., Ortiz, J. E., and Sáez, A., 2011, “Multiple Pole Residue Approach for 3D BEM Analysis of Mathematical Degenerate and Non-Degenerate Materials,” Int. J. Numer. Methods Eng , 86, pp. 1125–1143. [CrossRef]
Pan, E. and Yuan, F. G., 2000, “Three-Dimensional Green's Functions in Anisotropic Bimaterials,” Int. J. Solids Struct., 37, pp. 5329–5351. [CrossRef]
Pan, E., 2003, “Three-Dimensional Green's Functions in an Anisotropic Half Space with General Boundary Conditions,” J. Appl. Mech., 70, pp. 101–110. [CrossRef]
Pan, E., 2003, “Three-Dimensional Green's Functions in Anisotropic Elastic Bimaterials with Imperfect Interfaces,” J. Appl. Mech, 70, pp. 180–190. [CrossRef]
Pan, E., 2002, “Three-Dimensional Green's Functions in Anisotropic Magneto-Electro-Elastic Bimaterials,” J. Appl. Math. Phys., 53, pp. 815–838. [CrossRef]
Buroni, F. C., and Sáez, A., 2010, “Three-Dimensional Green's Function and its Derivative for Materials with General Anisotropic Magneto-Electro-Elastic Coupling,” Proc. R. Soc. A., 466, pp. 515–537. [CrossRef]
Zhao, M. H., Fan, C. Y., Liu, T., and Yang, F., 2007, “Extended Discontinuity Green's Functions for Three-Dimensional Transversely Isotropic Magneto-Electro-Elastic Media and Applications,” Eng. Anal. Boundary Elem., 31, pp. 547–558. 10.1016/j.enganabound.2006.11.002
Zhao, M. H., Fan, C. Y., Yang, F., and Liu, T., 2007, “Analysis Method of Planar Cracks of Arbitrary Shape in the Isotropic Plane of a Three-Dimensional Transversely Isotropic Magnetoelectroelastic Medium,” Int. J. Solids Struct., 44, pp. 4505–4523. [CrossRef]
Pan, E., and Han, F., 2005, “Green's Functions for Transversely Isotropic Piezoelectric Functionally Graded Multilayered Half Spaces,” Int. J. Solids Struct., 42, pp. 3207–3233. [CrossRef]
Han, F., Pan, E., Roy, A. K., and Yue, Z. Q., 2006, “Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and Multilayered Half Spaces to Uniform Circular Surface Loadings,” Comput. Model. Eng. Sci., 14, pp. 15–30.
Pan, E., 2005, “Anisotropic Green's Functions and BEMs (Editor),” Eng. Anal. Boundary Elem., 29, pp. 161. [CrossRef]
Denda, M., Araki, Y., and Yong, Y. K., 2004, “Time-Harmonic BEM for 2–D Piezoelectricity Applied to Eigenvalue Problems,” Int. J. Solids Struct., 41, pp. 7241–7265. [CrossRef]
Wang, C. Y., and Zhang, C., 2005, “3–D and 2–D Dynamic Green's Functions and Time-Domain BIEs for Piezoelectric Solids,” Eng. Anal. Boundary Elem., 29, pp. 454–465. [CrossRef]
Wu, K. C., and Chen, S. H., 2007, “Two Dimensional Dynamic Green's Functions for Piezoelectric Materials,” Comput. Model. Eng. Sci., 20, pp. 181–196.
Ren, D. L., and Liu, J. X., 2004, “Time-Harmonic Dynamic Fundamental Solutions for Transversely Isotropic Magnetoelectroelastic Media under Anti-Plane Deformation,” Int. J. Nonlinear Sci. Numer. Simul., 5, pp. 387–391. [CrossRef]
Chen, P., Shen, Y., and Tian, X., 2006, “Dynamic Potentials and Green's Functions of a Quasi-Plane Magneto-Electro-Elastic Medium with Inclusion,” Int. J. Eng. Sci., 44, pp. 540–553. [CrossRef]
Rojas-Díaz, R., Sáez, A., García-Sánchez, F., and Zhang, C., 2008, “Time-Harmonic Green's Functions for Anisotropic Magnetoelectroelasticity,” Int. J. Solids Struct., 45, pp. 144–158. [CrossRef]
Bui, H. D., 1977, “An Integral Equation Method for Solving the Problem of a Plane Crack of Arbitrary Shape,” J. Mech. Phys. Solids, 25, pp. 29–39. [CrossRef]
Sirtori, S., 1979, “General Stress Analysis Method by Means of Integral Equations and Boundary Elements,” Meccanica, 14, pp. 210–218. [CrossRef]
Hartmann, F., Katz, C., and Protopsaltis, B., 1985, “Boundary Elements and Symmetry,” Ingenieur-Archiv, 55, pp. 440–449. [CrossRef]
Maier, G., and Polizzotto, C., 1987, “A Galerkin Approach to Boundary Element Elastoplastic Analysis,” Comput. Methods Appl. Mech. Eng., 60, pp. 175–194. [CrossRef]
Holzer, S. M., 1992, “The Symmetric Galerkin BEM for Plane Elasticity: Scope and Applications,” Numerical Methods in Engineering '92, Elsevier, Amsterdam.
Bonnet, M., and Bui, H. D., 1988, “Regular BIE for three-dimensional cracks in elastodynamics,” Advanced Boundary Element Methods, Springer-Verlag, Berlin and New York, pp. 41–47.
Kane, J., and Balakrishna, C., 1993, “Symmetric Galerkin Boundary Formulations Employing Curved Elements,” Int. J. Numer. Methods Eng., 36, pp. 2157–2187. [CrossRef]
Andra, H., 1998, “Integration of Singular Integrals for the Galerkin-Type Boundary Element Method in 3D Elasticity,” Comp. Mech. Appl. Mech. Eng., 157, pp. 239–249. [CrossRef]
Carini, A., and Salvadori, A., 2002, “Analytical Integrations 3D BEM,” Comput. Mech., 28, pp. 177–185. [CrossRef]
Carini, A., Diligenti, M., Maranesi, P., and Zanella, M., 1999, “Analytical Integrations for Two Dimensional Elastic Analysis by the Symmetric Galerkin Boundary Element Method,” Comput. Mech., 23, pp. 308–323. [CrossRef]
Haas, M. and Kuhn, G., 2002, “A Symmetric Galerkin BEM Implementation for 3D Elastostatic Problems with an Extension to Curved Elements,” Comput Mech., 28, pp. 250–259. [CrossRef]
Frangi, A., and Novati, G., 1996, “Symmetric BE Method in two-Dimensional Elasticity: Evaluation of Double Integrals for Curved Elements,” Comput Mech., 19, pp. 58–68. [CrossRef]
Frangi, A., and Guiggiani, M., 2000, “A Direct Approach for Boundary Integral Equations with High-Order Singularities,” Int. J. Numer. Methods Eng., 49, pp. 871–898. [CrossRef]
Salvadori, A., 2001, “Analytical Integrations of Hypersingular Kernel in 3D BEM Problems,” Comp. Meth. Appl. Mech. Eng., 190, pp. 3957–3975. [CrossRef]
Salvadori, A., 2002, “Analytical Integrations in 2D BEM Elasticity,” Int. J. Numer. Methods Eng., 53, pp. 1695–1719. [CrossRef]
Gray, L. J., 1998, “Evaluation of Singular and Hypersingular Galerkin Boundary Integrals: Direct Limits and Symbolic Computation,” Singular Integrals in the Boundary Element Method, Computational Mechanics Publishers, Southampton, pp. 33–84.
Gray, L. J., Glaeser, J., and Kaplan, T., 2004, “Direct Evaluation of Hypersingular Galerkin Surface Integrals,” SIAM J. Sci. Comput., 25, pp. 1534–1556. [CrossRef]
Sutradhar, A., Paulino, G. H., and Gray, L. J., 2005, “On Hypersingular Surface Integrals in the Symmetric Galerkin Boundary Element Method: Application to Heat Conduction in Exponentially Graded Materials,” Int. J. Numer. Methods Eng., 62, pp. 122–157. [CrossRef]
Gray, L. J., and Paulino, G. H., 1997, “Symmetric Galerkin Boundary Integral Fracture Analysis for Plane Orthotropic Elasticity,” Comput. Mech., 20, pp. 26–33. [CrossRef]
Li, S., Mear, M. E., and Xiao, L., 1998, “Symmetric Weak Form Integral Equation Method for Three-Dimensional Fracture Analysis,” Comp. Meth. Appl. Mech. Eng., 151, pp. 435–459. [CrossRef]
Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M., 2002, “3D Fracture Analysis by the Symmetric Galerkin BEM,” Comput. Mech., 28, pp. 220–232. [CrossRef]
Frangi, A., 2002, “Fracture Propagation in 3D by the Symmetric Galerkin Boundary Element Method,” Int. J. Fract., 116, pp. 313–330. [CrossRef]
Salvadori, A., 1999, “Quasi Brittle Fracture Mechanics by Cohesive Crack Models and Symmetric Galerkin Boundary Element Method,” Ph. D. thesis, Politecnico Milano, Italy .
Sutradhar, A., and Paulino, G. H., 2004, “Symmetric Galerkin Boundary Element Computation of T-Stress and Stress Intensity Factors for Mixed-Mode Cracks by the Interaction Integral Method,” Eng. Anal. Boundary Elem., 28, pp. 1335–1350. [CrossRef]
Xu, K., Lie, S. T., and Cen, Z., 2004, “Crack Propagation Analysis with Galerkin Boundary Element Method,” Int. J. Numer. Analyt. Meth. Geomech., 28, pp. 421–435. [CrossRef]
Kitey, R., Phan, A. V., Tippur, H. V., and Kaplan, T., 2006, “Modeling of Crack Growth Through Particulate Clusters in Brittle Matrix by Symmetric-Galerkin Boundary Element Method,” Int. J. Fract., 141, pp. 11–25. [CrossRef]
Phan, A. V., Napier, J. A. L., Gray, L. J., and Kaplan, T., 2003, “Stress Intensity Factor Analysis of Friction Sliding at Discontinuity Interfaces and Junctions,” Comput. Mech., 32, pp. 392–400. [CrossRef]
Phan, A. V., Napier, J. A. L., Gray, L. J. and Kaplan, T., 2003, “Symmetric-Galerkin BEM Simulation of Fracture with Frictional Contact,” Int. J. Numer. Methods Eng., 57, pp. 835–851. [CrossRef]
Phan, A. V., Gray, L. J., and Kaplan, T., 2007, “On Some Benchmark Results for the Interaction of a Crack with a Circular Inclusion,” Trans. ASME, J. Appl. Mech., 74, pp. 1282–1284. [CrossRef]
Williams, R. C., Phan, A. V., Tippur, H. V., Kaplan, T., and Gray, L. J., 2007, “SGBEM Analysis of Crack-Particle (s) Interactions due to Elastic Constants Mismatch,” Eng. Fract. Mech., 74, pp. 314–331. [CrossRef]
Capuani, D., Bigoni, D., and Brun, M., 2005, “Integral Representations at the Boundary for Stokes Flow and Related Symmetric Galerkin Formulation,” Arch. Mech.57, pp. 363–385. Available at: http://dezoo.ippt.gov.pl/contents_pdf/1210152977.pdf.
Reidinger, B., and Steinbach, O., 2003, “A Symmetric Boundary Element Method for the Stokes Problem in Multiple Connected Domains,” Math. Methods Appl. Sci., 26, pp. 77–93. [CrossRef]
Perez-Gavilan, J. J., and Aliabadi, M. H., 2001, “A Symmetric Galerkin BEM for Harmonic Problems and Multiconnected Bodies,” Meccanica, 36, pp. 449–462. [CrossRef]
Gray, L. J., and Paulino, G. H., 1997, “Symmetric Galerkin Boundary Integral Formulation for Interface and Multi-Zone Problems,” Int. J. Numer. Methods Eng., 40, pp. 3085–3101. [CrossRef]
Zhang, X. F., Liu, Y. H., and Cen, Z. Z., 2001, “A Solution Procedure for Lower Bound Limit and Shakedown Analysis by SGBEM,” Acta Mech. Solida Sinica, 14, pp. 118–129.
Lehmann, L., and Antes, H., 2001, “Dynamic Structure-Soil-Structure Interaction Applying the Symmetric Galerkin Boundary Element Method (SGBEM),” Mech. Res. Commun., 28, pp. 297–304. [CrossRef]
Polizzotto, C., 2000, “A Symmetric Galerkin Boundary/Domain Element Method for Finite Elastic Deformations,” Comput. Meth. Appl. Mech., 189, pp. 481–514. [CrossRef]
Perez-Gavilan, J. J., and Aliabadi, M. H., 2003, “Symmetric Galerkin BEM for Shear Deformable Plates,” Int. J. Numer. Methods Eng., 57, pp. 1661–1693. [CrossRef]
Perez-Gavilan, J. J., and Aliabadi, M. H., 2001, “A Symmetric Galerkin Boundary Element Method for Dynamic Frequency Domain Viscoelastic Problems,” Comput. Struct., 79, pp. 2621–2633. [CrossRef]
Frangi, A., and Bonnet, M., 1998, “A Galerkin Symmetric and Direct BIE Method for Kirchoff Elastic Plates: Formulation and Implementation,” Int. J. Numer. Methods Eng., 41, pp. 337–369. [CrossRef]
Nayroles, B., Touzot, G., and Villon, P., 1992, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Comput. Mech., 10, pp. 307–318. [CrossRef]
Belytschko, T., Lu, Y. Y., and Gu, L., 1994, “Element-Free Galerkin Methods,” Int. J. Numer. Methods Eng., 37, pp. 229–256. [CrossRef]
Mukherjee, Y. X., and Mukherjee, S., 1997, “The Boundary Node Method for Potential Problems,” Int. J. Numer. Methods Eng., 40, pp. 797–815. [CrossRef]
Kothnur, V., Mukherjee, S., and Mukherjee, Y. X., 1999, “Two-Dimensional Linear Elasticity by the Boundary Node Method,” Int. J. Solids Struct., 36, pp. 1129–1147. [CrossRef]
Chati, M. K., Mukherjee, S., and Mukherjee, Y. X., 1999, “The Boundary Node Method for Three-Dimensional Linear Elasticity,” Int. J. Numer. Methods Eng., 46, pp. 1163–1184. [CrossRef]
Chati, M. K., and Mukherjee, S., 2000, “The Boundary Node Method for Three-Dimensional Problems in Potential Theory,” Int. J. Numer. Methods Eng., 47, pp. 1523–1547. [CrossRef]
Chati, M. K., Paulino, G. H., and Mukherjee, S., 2001, “The Meshless Standard and Hypersingular Boundary Node Methods- Applications to Error Estimation and Adaptivity in Three-Dimensional Problems,” Int. J. Numer. Methods Eng., 50, pp. 2233–2269. [CrossRef]
Chati, M. K., Mukherjee, S., and Paulino, G. H., 2001, “The Meshless Hypersingular Boundary Node Method for Three-Dimensional Potential Theory and Linear Elasticity Problems,” Eng. Anal. Boundary Elem., 25, pp. 639–653. [CrossRef]
Gowrishankar, R., and Mukherjee, S., 2002, “The ‘Pure’ Boundary Node Method for Potential Theory,” Commun. Numer. Methods Eng., 18, pp. 411–427. [CrossRef]
Sladek, J., Sladek, V., and Atluri, S. N., 2000, “Local Boundary Integral Equation (LBIE) Method for Solving Problems of Elasticity with Non-Homogeneous Material Properties,” Comput. Mech., 24, pp. 456–462. [CrossRef]
Zhu, T., Zhang, J. D., and Atluri, S. N., 1998, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,” Comput. Mech., 21, pp. 223–235. [CrossRef]
Chen, W., and Tanaka, M., 2002, “A Meshless, Integration-Free, and Boundary-Only RBF Technique,” Comput. Math. Appl., 43, pp. 379–391. [CrossRef]
Li, G., and Aluru, N. R., 2002, “Boundary Cloud Method: A Combined Scattered Point/Boundary Integral Approach for Boundary-Only Analysis,” Comput. Methods Appl. Mech. Eng., 191, pp. 2337–2370. [CrossRef]
Li, G., and Aluru, N. R., 2003, “A Boundary Cloud Method with a Cloud-By-Cloud Polynomial Basis,” Eng. Anal. Boundary Elem., 27, pp. 57–71. [CrossRef]
Liu, G. R., 2002, Mesh-free Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton, FL.
Zhang, J. M., Yao, Z. H., and Li, H., 2002, “A Hybrid Boundary Node Method,” Int. J. Numer. Methods Eng., 53, pp. 751–763. [CrossRef]
Zhang, J. M., Qin, X., Han, X., and Li, G., 2009, “A Boundary Face Method for Potential Problems in Three Dimensions,” Int. J. Numer. Methods Eng., 80, pp. 320–337. [CrossRef]
Liew, K. M., Cheng, Y., and Kitipornchai, S., 2006, “Boundary Element-Free Method (BEFM) and its Application to Two-Dimensional Elasticity Problems,” Int. J. Numer. Methods Eng., 65, pp. 1310–1332. [CrossRef]
Li, X., and Zhu, J., 2009, “A Galerkin Boundary Node Method and its Convergence Analysis,” J. Comput. Appl. Math., 230, pp. 314–328. [CrossRef]
Li, X., and Zhu, J., 2009, “A Galerkin Boundary Node Method for Biharmonic Problems,” Eng. Anal. Boundary Elem., 33, pp. 858–865. [CrossRef]
Li, X., and Zhu, J., 2009, “A Galerkin Boundary Node Method for Two-Dimensional Linear Elasticity,” Comput. Model. Eng. Sci., 45, pp. 1–29. [CrossRef]
Li, X., and Zhu, J., 2009, “A Meshless Galerkin Method for Stokes Problems using Boundary Integral Equations,” Comput. Methods Appl. Mech., 198, pp. 2874–2885. [CrossRef]
Li, X., and Zhu, J., 2010, “Meshless Analysis of Two-Dimensional Stokes Flows with the Galerkin Boundary Node Method,” Eng. Anal. Boundary Elem., 34, pp. 79–91. [CrossRef]
Telukunta, S., and Mukherjee, S., 2004, “An Extended Boundary Node Method for Modeling Normal Derivative Discontinuities in Potential Theory across Edges and Corners,” Eng. Anal. Boundary Elem., 28, pp. 1099–1110. [CrossRef]
Telukunta, S., and Mukherjee, S., 2005, “The Extended Boundary Node Method for Three-Dimensional Potential Theory,” Comput. Struct., 83, pp. 1503–1514. [CrossRef]
Dumont, N. A., 2003, “Variationally-Based, Hybrid Boundary Element Methods,” Comp. Assist. Mech. Eng. Sc., 10, pp. 407–430.
Dumont, N. A., 1989, “The Hybrid Boundary Element Method: An Alliance between Mechanical Consistency and Simplicity,” Appl. Mech. Rev., 42, pp. S54–S63. [CrossRef]
Washizu, K., 1975, Variational Methods in Elasticity and Plasticity, 2nd ed., Pergamon, New York.
Banerjee, P. K., and Butterfield, R., 1981, Boundary Element Methods in Engineering Science, McGraw Hill, London.
Dumont, N. A., 1998, “An Assessment of the Spectral Properties of the Matrix G used in the Boundary Element Methods,” Comput. Mech., 22, pp. 32–41. [CrossRef]
Pian, T. H. H., 1964, “Derivation of Element Stiffness Matrices by Assumed Stress Distribution,” AIAA J., 2, pp. 1333–1336. [CrossRef]
Dumont, N. A., 2006, “Linear Algebra Aspects in the Equilibrium-Based Implementation of Finite/Boundary Element Methods for FGMs,” FGM 2006 – Multiscale and Functionally Graded Materials Conference 2006, Proceedings of the International Conference FGM IX, American Institute of Physics Honolulu – O'ahu, Hawaii, pp. 658–663.
Chaves, R. A. P., 2003, “The Simplified Hybrid Boundary Element Method Applied to Time-Dependent Problems (in Portuguese),” Ph. D. thesis, PUC-Rio, Brazil.
Oliveira, M. F. F., 2004, “Conventional, Hybrid and Simplified Boundary Element Methods (in Portuguese),” Master's thesis, PUC-Rio, Brazil.
Figueiredo, T. G. B., 1991, “A New Boundary Element Formulation in Engineering,” Lecture Notes in Engineering, C. A.Brebbia and S. A.Orszag eds., Springer-Verlag, Berlin, Germany.
Gaul, L., Wagner, M., Wenzel, W., and Dumont, N. A., 2001, “On the Treatment of Acoustical Problems with the Hybrid Boundary Element Method,” iInt. J. Solids Struct., 38, pp. 1871–1888. [CrossRef]
Dumont, N. A., and Cossio, M. U. Q., 2001, “Sensitivity Analysis with the Hybrid Boundary Element Method,” Build. Res. J., 49, pp. 35–58.
Dumont, N. A., and Prazeres, P. G. C., 2005, “Hybrid Dynamic Finite Element Families for the General Analysis of Time-Dependent Problems,” Third International Conference on Structural Stability and Dynamics, Florida, USA, Procs. ICSSD 2005, p. 10.
Dumont, N. A., and Oliveira, R., 2001, “From Frequency-Dependent Mass and Stiffness Matrices to the Dynamic Response of Elastic Systems,” Int. J. Solids Struct., 38, pp. 1813–1830. [CrossRef]
Dumont, N. A., and Lopes, A. A. O., 2003, “On the Explicit Evaluation of Stress Intensity Factors in the Hybrid Boundary Element Method,” Fatigue Fract. Eng. Mater. Struct., 26, pp. 151–165. [CrossRef]
Dumont, N. A., Chaves, R. A. P., and Paulino, G. H., 2004, “The Hybrid Boundary Element Method Applied to Problems of Potential of Functionally Graded Materials,” Int. J. Comput. Eng. Sci., 5, pp. 863–891. [CrossRef]
Dumont, N. A., 2006, “On the Inverse of Generalized Lambda Matrices with Singular Leading Term,” Int. J. Numer. Methods Eng., 66, pp. 571–603. [CrossRef]
Dumont, N. A., 2007, “On the Solution of Generalized Non-Linear Complex-Symmetric Eigenvalue Problems,” Int. J. Numer. Methods Eng., 71, pp. 1534–1568. [CrossRef]
Gaul, L., Koegl, M., and Wagner, M., 2003, Boundary Element Methods for Engineers and Scientists, Springer Verlag, Berlin, Germany.
Wagner, M., Gaul, L., and Dumont, N. A., 2004, “The Hybrid Boundary Element Method in Structural Acoustics,” ZAMM, 84, pp. 780–796. [CrossRef]
Rokhlin, V., 1985, “Rapid Solution of Integral Equations of Classical Potential Theory,” J. Comp. Phys., 60, pp. 187–207. [CrossRef]
Greengard, L. F., and Rokhlin, V., 1987, “A Fast Algorithm for Particle Simulations,” J. Comput. Phys., 73, pp. 325–348. [CrossRef]
Greengard, L. F., 1988, The Rapid Evaluation of Potential Fields in Particle Systems, The MIT Press, Cambridge, MA.
Peirce, A. P., and Napier, J. A. L., 1995, “A Spectral Multipole Method for Efficient Solution of Large-Scale Boundary Element Models in Elastostatics,” Int. J. Numer. Methods Eng., 38, pp. 4009–4034. [CrossRef]
Gomez, J. E., and Power, H., 1997, “A Multipole Direct and Indirect BEM for 2D Cavity Flow at Low Reynolds Number,” Eng. Anal. Boundary Elem., 19, pp. 17–31. [CrossRef]
Fu, Y., Klimkowski, K. J., Rodin, G. J., Berger, E., Browne, J. C., Singer, J. K., Geijn, R. A. V. D., and Vemaganti, K. S., 1998, “A Fast Solution Method for Three-Dimensional Many-Particle Problems of Linear Elasticity,” Int. J. Numer. Methods Eng., 42, pp. 1215–1229. [CrossRef]
Nishimura, N., Yoshida, K., and Kobayashi, S., 1999, “A Fast Multipole Boundary Integral Equation Method for Crack Problems in 3D,” Eng. Anal. Boundary Elem., 23, pp. 97–105. [CrossRef]
Mammoli, A. A., and Ingber, M. S., 1999, “Stokes Flow around Cylinders in a Bounded Two-Dimensional Domain using Multipole-Accelerated Boundary Element Methods,” Int. J. Numer. Methods Eng., 44, pp. 897–917. [CrossRef]
Nishimura, N., 2002, “Fast Multipole Accelerated Boundary Integral Equation Methods,” Appl. Mech. Rev., 55, pp. 299–324. [CrossRef]
Liu, Y. J., and Nishimura, N., 2006, “The Fast Multipole Boundary Element Method for Potential Problems: A Tutorial,” Eng. Anal. Boundary Elem., 30, pp. 371–381. [CrossRef]
Saad, Y., and Schultz, M., 1986, “A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear System,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 7, pp. 856–869. [CrossRef]
Cheng, H., Greengard, L., and Rokhlin, V., 1999, “A Fast Adaptive Multipole Algorithm in Three Dimensions,” J. Comput. Phys., 155, pp. 468–498. [CrossRef]
Shen, L., and Liu, Y. J., 2007, “An Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Potential Problems,” Comput. Mech., 39, pp. 681–691. [CrossRef]
Shen, L., and Liu, Y. J., 2007, “An Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Acoustic Wave Problems based on the Burton-Miller Formulation,” Comput. Mech., 40, pp. 461–472. [CrossRef]
Bapat, M. S., Shen, L., and Liu, Y. J., 2009, “Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Half-Space Acoustic Wave Problems,” Eng. Anal. Boundary Elem., 33, pp. 1113–1123. [CrossRef]
Bapat, M. S., and Liu, Y. J., 2010, “A New Adaptive Algorithm for the Fast Multipole Boundary Element Method,” Comput. Model. Eng. Sci., 58, pp. 161–184.
Phillips, J. R., and White, J. K., 1997, “A Pre-Corrected-FFT Method for Electrostatic Analysis of Complicated 3–D Structures,” IEEE Trans. Comput.-Aided Des., 16, pp. 1059–1072. [CrossRef]
Phillips, J. R., 1997, “Rapid Solution of Potential Integral Equations in Complicated 3–Dimensional Geometries,” Ph. D. thesis, MIT, MA.
Fata, S. N., 2008, “Fast Galerkin BEM for 3D-Potential Theory,” Comput. Mech., 42, pp. 417–429. [CrossRef]
Fata, S. N., and Gray, L. J., 2009, “A Fast Spectral Galerkin Method for Hypersingular Boundary Integral Equations in Potential Theory,” Comput. Mech., 44, pp. 263–271. [CrossRef]
Ye, W., Wang, X., Hemmert, W., Freeman, D., and White, J., 2003, “Air Damping in Laterally Oscillating Microresonators: A Numerical and Experimental Study,” J. Microelectromech. Syst., 12, pp. 557–566. [CrossRef]
Ding, J., and Ye, W., 2004, “A Fast Integral Approach for Drag Force Calculation due to Oscillatory Slip Stokes Flows,” Int. J. Numer. Methods Eng., 60, pp. 1535–1567. [CrossRef]
Yan, Z. Y., Zhang, J., Ye, W., and Yu, T. X., 2010, “Numerical Characterization of Porous Solids and Performance Evaluation of Theoretical Models via the Pre-Corrected-FFT Accelerated BEM,” Comput. Model. Eng. Sci., 55, pp. 33–60. [CrossRef]
Masters, N., and Ye, W., 2004, “Fast BEM Solution for Coupled 3D Electrostatic and Linear Elastic Problems,” Eng. Anal. Boundary Elem., 28, pp. 1175–1186. [CrossRef]
Ding, J., Ye, W., and Gray, L. J., 2005, “An Accelerated Surface Discretization-Based BEM Approach for Non-Homogeneous Linear Problems in 3–D Complex Domains,” Int. J. Numer. Methods Eng., 63, pp. 1775–1795. [CrossRef]
Ding, J., and Ye, W., 2006, “A Grid Based Integral Approach for Quasi-Linear Problems,” Comput. Mech., 38, pp. 113–118. [CrossRef]
Nie, X. C., Li, L. W., and Yuan, N., 2002, “Pre-Corrected-FFT Algorithm for Solving Combined Field Integral Equations in Electromagnetic Scattering,” J. Electromagn. Waves Appl., 16, pp. 1171–1187. [CrossRef]
Yan, Z. Y., Zhang, J., and Ye, W., 2010, “Rapid Solution of 3–D Oscillatory Elastodynamics using the pFFT Accelerated BEM,” Eng. Anal. Boundary Elem., 34, pp. 956–962. [CrossRef]
Hackbusch, W., 1999, “A Sparse Matrix Arithmethic based on H-Matrices. Part I: Introduction to H-Matrices,” Composites, Part B, 62, pp. 89–108.
Bebendorf, M., and Kriemann, R., 2005, “Fast Parallel Solution of Boundary Integral Equations and Related Problem,” Comput. Visualization Sci., 8, pp. 121–135. [CrossRef]
Goreinov, S. A., Tyrtyshnikov, E. E., and Zamarashkin, N. L., 1997, “A Theory of Pseudoskeleton Approximations,” Linear Algebra Appl., 261, pp. 1–21. [CrossRef]
Bebendorf, M., 2000, “Approximation of Boundary Element Matrices,” Numerische Mathematik, 86, pp. 565–589. [CrossRef]
Bebendorf, M., 2008, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Springer-Verlag, Berlin, Germany.
Hackbusch, W., 2009, Hierarchische Matrizen: Algorithmen und Analysis, Springer-Verlag, Berlin, Germany.
Bebendorf, M., and Grzhibovskis, R., 2006, “Accelerating Galerkin BEM for Linear Elasticity using Adaptive Cross Approximation,” Math. Models Meth. Appl. Sci., 29, pp. 1721–1747. [CrossRef]
Maerten, F., 2010, “Adaptive Cross-Approximation Applied to the Solution of System of Equations and Post-Processing for 3D Elastostatic Problems using the Boundary Element Method,” Eng. Anal. Boundary Elem., 34, pp. 483–491. [CrossRef]
Benedetti, I., Aliabadi, M. H., and Daví, G., 2008, “A Fast 3D Dual Boundary Element Method based on Hierarchical Matrices,” Int. J. Solids Struct., 45, pp. 2355–2376. [CrossRef]
Kolk, K., Weber, W., and Kuhn, G., 2005, “Investigation of 3D Crack Propagation Problems via fast BEM Formulations,” Comput. Mech., 37, pp. 32–40. [CrossRef]
Kurz, S., Rain, O., and Rjasanow, S., 2007, “Fast Boundary Element Methods in Computational Electromagnetism,” Boundary Element Analysis: Mathematical Aspects and Applications, M.Schanz and O.Steinbach, eds., Springer-Verlag, Berlin Heidelberg, Germany, pp. 249–279.
Rjasanow, S., and Steinbach, O., 2007, The Fast Solution of Boundary Integral Equations, Springer-Verlag, Berlin, Germany.
Messner, M., and Schanz, M., 2010, “An Accelerated Symmetric Time-Domain Boundary Element Formulation for Elasticity,” Eng. Anal. Boundary Elem., 34, pp. 944–955. [CrossRef]
Senturia, S. D., Harris, R. M., Johnson, B. P., Kim, S., Nabors, K., Shulman, M. A., and White, J. K., 1992, “A Computer Aided Design System for Microelectromechanical Systems (MEMCAD),” IEEE J. Microelectromech Syst., 1, pp. 3–13. [CrossRef]
Nabors, K., and White, J., 1991, “FastCap: A Multipole Accelerated 3–D Capacitance Extraction Program,” IEEE Trans. Comput.-Aided Des., 10, pp. 1447–1459. [CrossRef]
Shi, F., Ramesh, P., and Mukherjee, S., 1995, “Simulation Methods for Micro-Electro-Mechanical Structures (MEMS) with Application to a Microtweezer,” Comput. Struct., 56, pp. 769–783. [CrossRef]
Li, G., and Aluru, N. R., 2002, “A Lagrangian Approach for Electrostatic Analysis of Deformable Conductors,” J. Microelectromech. Syst., 11, pp. 245–254. [CrossRef]
Gilbert, J. R., Legtenberg, R., and Senturia, S. D., 1995, “3D Coupled Electromechanics for MEMS: Applications Of Co-Solve-EM,” Proceedings of the IEEE MEMS Conference, pp. 122–127.
Aluru, N. R., and White, J., 1997, “An Efficient Numerical Technique for Electromechanical Simulation of Complicated Microelectromechanical Structures,” Sens. Actuators, A, 58, pp. 1–11. [CrossRef]
Shi, F., Ramesh, P., and Mukherjee, S., 1996, “Dynamic Analysis of Micro-Electro-Mechanical Systems (MEMS),” Int. J. Numer. Methods Eng., 39, pp. 4119–4139. [CrossRef]
Ye, W., Mukherjee, S., and MacDonald, N. C., 1998, “Optimal Shape Design of an Electrostatic Comb Drive in Microelectromechanical Systems,” ASME/IEEE J. Microelectromech. Syst., 7, pp.16–26. [CrossRef]
Ye, W., and Mukherjee, S., 1999, “Optimal Shape Design of Three-Dimensional MEMS with Applications to Electrostatic Comb Drives,” Int. J. Numer. Methods Eng., 45, pp. 175–194. [CrossRef]
Li, G., and Aluru, N. R., 2003, “Efficient Mixed-Domain Analysis of Electrostatic MEMS,” IEEE Trans. Comput.-Aided Des., 22, pp. 1228–1242. [CrossRef]
Shrivastava, V., Aluru, N. R., and Mukherjee, S., 2004, “Numerical Analysis of 3D Electrostatics of Deformable Conductors using a Lagrangian Approach,” Eng. Anal. Boundary Elem., 28, pp. 583–591. [CrossRef]
De, S. K., and Aluru, N. R., 2004, “Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS,” J. Microelectromech. Syst., 13, pp. 737. [CrossRef]
Bao, Z., and Mukherjee, S., 2004, “Electrostatic BEM for MEMS with Thin Conducting Plates and Shells,” Eng. Anal. Boundary Elem., 28, pp. 1427–1435. [CrossRef]
Bao, Z., and Mukherjee, S., 2005, “Electrostatic BEM for MEMS with Thin Beams,” Commun. Numer. Methods Eng., 21, pp. 297–312. [CrossRef]
Telukunta, S., and Mukherjee, S., 2006, “Fully Lagrangian Modeling of MEMS with Thin Plates,” IEEE J. Microelectromech. Syst., 15, pp. 795–810. [CrossRef]
Ghosh, R., and Mukherjee, S., 2009, “Fully Lagrangian Modeling of Dynamics of MEMS with Thin Beams - Part I: Undamped Vibrations,” ASME J. Appl. Mech., 76, pp. 1–10. [CrossRef]
Ghosh, R., and Mukherjee, S., 2009, “Fully Lagrangian Modeling of Dynamics of MEMS with Thin Beams - Part II: Damped Vibrations,” ASME. J. Appl. Mech., 76, pp. 1–9. [CrossRef]
Liu, Y. J., and Shen, L., 2007, “A Dual BIE Approach for Large-Scale Modeling of 3–D Electrostatic Problems with the Fast Multipole Boundary Element Method,” Int. J. Numer. Methods Eng., 71, pp. 837–855. [CrossRef]
Chen, H., and Mukherjee, S., 2006, “Charge Distribution on Thin Conducting Nanotubes - Reduced 3–D Model,” Int. J. Numer. Methods Eng., 68, pp. 503–524. [CrossRef]
Chen, H., Mukherjee, S., and Aluru, N. R., 2008, “Charge Distribution on Thin Semiconducting Silicon Nanowires,” Comput. Methods Appl. Mech. Eng., 197, pp. 3366–3377. [CrossRef]
Pozrikidis, C., 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, New York.
Karniadakis, G. E., and Beskok, A., 2002, Microflows: Fundamentals and Simulation, Springer, New York.
Frangi, A., and Gioia, A. d., 2005, “Multipole BEM for the Evaluation of Damping Forces on MEMS,” Comput. Mech., 37, pp. 24–31. [CrossRef]
Frangi, A., 2005, “A Fast Multipole Implementation of the Qualocation Mixed-Velocity-Traction Approach for Exterior Stokes Flows,” Eng. Anal. Boundary Elem., 29, pp. 1039–1046. [CrossRef]
Frangi, A., Spinola, G., and Vigna, B., 2006, “On the Evaluation of Damping in MEMS in the Slip–Flow Regime,” Int. J. Numer. Methods Eng., 68, pp. 1031–1051. [CrossRef]
Frangi, A., and Bonnet, M., 2010, “On the Fast Multipole Method for the Helmholtz Equation with Complex Frequency,” Comput. Model. Eng. Sci., 58, pp. 271–291.
Wang, X., White, J., Kanapka, J., Ye, W., and Aluru, N., 2006, “Algorithms in FastStokes and its Applications to Micromachined Device Simulation,,” Design Automation Methods and Tools for Microfluidics-Based Biochips, K.Chakrabarty and J.Zeng, eds., Springer, New York, Chapter 4.
Frangi, A., Ye, W., and White, J., 2008, “Evaluating Gas Damping in MEMS using Fast Integral Equation Solvers,” Advances in Multiphysics Simulation and Experimental Testing of MEMSA.Frangi, N.Aluru, C.Cercignani, and S.Mukherjee, eds., Imperial College Press, London.
Liu, Y. J., 2008, “A New Fast Multipole Boundary Element Method for Solving 2–D Stokes Flow Problems based on a Dual BIE Formulation,” Eng. Anal. Boundary Elem., 32, pp. 139–151. [CrossRef]
Tausch, J., 2003, “Sparse BEM for Potential Theory and Stokes Flow using Variable Order Wavelets,” Comput. Mech., 32, pp. 312–318. [CrossRef]
Cercignani, C., 1988, The Boltzmann Equation and Its Applications, Springer, New York.
Frangi, A., Ghisi, A., and Coronato, L., 2009, “On a Deterministic Approach for the Evaluation of Gas Damping in Inertial MEMS in the Free-Molecule Regime,” Sens. Actuators, A, 149, pp. 21–28. [CrossRef]
Frangi, A., 2009, “BEM Technique for Free-Molecule Flows in High Frequency MEMS Resonators,” Eng. Anal. Boundary Elem., 33, pp. 493–498. [CrossRef]
Helsing, J., 1995, “An Integral Equation Method for Elastostatics of Periodic Composites,” J. Mech. Phys. Solids, 43, pp. 815–828. [CrossRef]
Eischen, J. W., and Torquato, S., 1993, “Determining Elastic Behavior of Composites by the Boundary Element Method,” J. Appl. Phys., 74, pp. 159–170. [CrossRef]
Liu, Y. J., 2005, “A New Fast Multipole Boundary Element Method for Solving Large-Scale Two-Dimensional Elastostatic Problems,” Int. J. Numer. Methods Eng., 65, pp. 863–881. [CrossRef]
Liu, Y. J., 2008, “A Fast Multipole Boundary Element Method for 2–D Multi-Domain Elastostatic Problems Based on a Dual BIE Formulation,” Comput. Mech., 42, pp. 761–773. [CrossRef]
Liu, Y. J., Nishimura, N., and Otani, Y., 2005, “Large-Scale Modeling of Carbon-Nanotube Composites by the Boundary Element Method based on a Rigid-Inclusion Model,” Comput. Mater. Sci., 34, pp. 173–187. [CrossRef]
Liu, Y. J., Nishimura, N., Otani, Y., Takahashi, T., Chen, X. L., and Munakata, H., 2005, “A Fast Boundary Element Method for the Analysis of Fiber-Reinforced Composites based on a Rigid-Inclusion Model,” J. Appl. Mech., 72, pp. 115–128. [CrossRef]
Liu, Y. J., Nishimura, N., Qian, D., Adachi, N., Otani, Y., and Mokashi, V., 2008, “A Boundary Element Method for the Analysis of CNT/Polymer Composites with a Cohesive Interface Model Based on Molecular Dynamics,” Eng. Anal. Boundary Elem., 32, pp. 299–308. [CrossRef]
Popov, V., and Power, H., 2001, “An O(N) Taylor Series Multipole Boundary Element Method for Three-Dimensional Elasticity Problems,” Eng. Anal. Boundary Elem., 25, pp. 7–18. [CrossRef]
Wang, H. T. and Yao, Z. H., 2005, “A New Fast Multipole Boundary Element Method for Large Scale Analysis of Mechanical Properties in 3D Particle-Reinforced Composites,” Comput. Model. Eng. Sci., 7, pp. 85–96. [CrossRef]
Yoshida, K., Nishimura, N., and Kobayashi, S., 2001, “Application of Fast Multipole Galerkin Boundary Integral Equation Method to Crack Problems in 3D,” Int. J. Numer. Methods Eng., 50, pp. 525–547. [CrossRef]
Lai, Y.-S. and Rodin, G. J., 2003, “Fast Boundary Element Method for Three-Dimensional Solids Containing Many Cracks,” Eng. Anal. Boundary Elem., 27, pp. 845–852. [CrossRef]
Gross, D., and Seelig, T., 2006, Fracture Mechanics with an Introduction to Micromechanics, Springer, The Netherlands.
Cheng, A. H. D., 1984, “Darcy Flow with Variable Permeability - A Boundary Integral Solution,” Water Resour. Res., 20, pp. 980–984. [CrossRef]
Ang, W. T., Kusuma, J., and Clements, D. L., 1996, “A Boundary Element Method for a Second Order Elliptic Partial Differential Equation with Variable Coefficients,” Eng. Anal. Boundary Elem., 18, pp. 311–316. [CrossRef]
Shaw, R. P. and Makris, N., 1992, “Green-Functions for Helmholtz and Laplace Equations in Heterogeneous Media,” Eng. Anal. Boundary Elem., 10, pp. 179–183. [CrossRef]
Shaw, R. P., 1994, “Green-Functions for Heterogeneous Media Potential Problems,” Eng. Anal. Boundary Elem., 13, pp. 219–221. [CrossRef]
Harrouni, K., Ouazar, D., Wrobel, L. C., and Cheng, A. H. D., 1995, “Global Interpolation Function based DRBEM Applied to Darcy's Flow in Heterogeneous Media,” Eng. Anal. Boundary Elem., 16, pp. 281–285. [CrossRef]
Divo, E., and Kassab, A. J., 1998, “Generalized Boundary Integral Equation for Heat Conduction in Non-Homogeneous Media: Recent Developments on the Sifting Property,” Eng. Anal Boundary Elem., 22, pp. 221–234. [CrossRef]
Gray, L. J., Kaplan, T., Richardson, J. D., and Paulino, G. H., 2003, “Green's Functions and Boundary Integral Analysis for Exponentially Graded Materials: Heat Conduction,” Trans. ASME J. Appl. Mech., 70, pp. 543–549. [CrossRef]
Sutradhar, A., and Paulino, G. H., 2004, “A Simple Boundary Element Method for Problems of Potential in Non-Homogeneous Media,” Int. J. Numer. Methods Eng., 60, pp. 2203–2230. [CrossRef]
Sutradhar, A., and Paulino, G. H., 2004, “The Simple Boundary Element Method for Transient Heat Conduction in Functionally Graded Materials,” Comput. Methods Appl. Mech. Eng., 193, pp. 4511–4539. [CrossRef]
Crouch, S. L., 1976, “Solution of Plane Elasticity Problems by the Displacement Discontinuity Method,” Int. J. Numer. Methods Eng., 10, pp. 301–343. [CrossRef]
Crouch, S. L., and Starfield, A. M., 1983, Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London.
Krishnasamy, G., Rizzo, F. J., and Liu, Y. J., 1994, “Boundary Integral Equations for Thin Bodies,” Int. J. Numer. Methods Eng., 37, pp. 107–121. [CrossRef]
Krishnasamy, G, Rizzo, F. J., and Rudolphi, T. J., 1991, “Hypersingular Boundary Integral Equations: Their Occurrence, Interpretation, Regularization and Computation,” Developments in Boundary Element Methods, P. K.Banerjee and L.Morino, eds.,, Elsevier Applied Science Publishers, London, Chapter 7.
Krishnasamy, G., Rudolphi, T. J., Schmerr, L. W., and Rizzo, F. J., 1990, “Hypersingular Boundary Integral Equations: Some Applications in Acoustic and Elastic Wave Scattering,” J. Appl. Mech., 57, pp. 404–414. [CrossRef]
HongH.-K., and Chen, J. T., 1988, “Derivations of Integral Equations of Elasticity,” J. Eng. Mech., 114, pp. 1028–1044. [CrossRef]
Portela, A., Aliabadi, M. H., and Rooke, D. P., 1992, “The Dual Boundary Element Method - Effective Implementation for Crack Problems,” Int. J. Numer. Methods Eng., 33, pp. 1269–1287. [CrossRef]
Aliabadi, M. H., 1997, “Boundary Element Formulations in Fracture Mechanics,” Appl. Mech. Rev., 50, pp. 83–96. [CrossRef]
Pan, E., 1999, “A BEM Analysis of Fracture Mechanics in 2D Anisotropic Piezoelectric Solids,” Eng. Anal. Boundary Elem., 23, pp. 67–76. [CrossRef]
Liu, Y. J., and Fan, H., 2001, “On the Conventional Boundary Integral Equation Formulation for Piezoelectric Solids with Defects or of Thin Shapes,” Eng. Anal. Boundary Elem., 25, pp. 77–91. [CrossRef]
Liu, Y. J., and Fan, H., 2002, “Analysis of Thin Piezoelectric Solids by the Boundary Element Method,” Comput. Methods Appl. Mech. Eng., 191, pp. 2297–2315. [CrossRef]
García-Sánchez, F., Sáez, A., and Domínguez, J., 2005, “Anisotropic and Piezoelectric Materials Fracture Analysis by BEM,” Comput. Struct., 83, pp. 804–820. [CrossRef]
García-Sánchez, F., Rojas-Díaz, R., Sáez, A., and Zhang, C., 2007, “Fracture of Magnetoelectroelastic Composite Materials using Boundary Element Method (BEM),” Theor. Appl. Fract. Mech., 47, pp. 192–204. [CrossRef]
Qin, Q.-H., 2007, Green's Function and Boundary Elements of Multifield Materials, Elsevier, Amsterdam.
Lauterbach, B., and Gross, D., 1998, “Crack Growth in Brittle Solids under Compression,” Mech. Mater., 29, pp. 81–92. [CrossRef]
Forth, S. C., and Staroselsky, A., 2005, “A Hybrid FEM/BEM Approach for Designing an Aircraft Engine Structural Health Monitoring,” Comput. Model. Eng. Sci., 9, pp. 287–298. [CrossRef]
Leonel, E. D., and Venturini, W. S., 2010, “Dual Boundary Element Formulation Applied to Analysis of Multi-Fractured Domains,” Eng. Anal. Boundary Elem., 34, pp. 1092–1099. [CrossRef]
Liu, Y. J., and Xu, N., 2000, “Modeling of Interface Cracks in Fiber-Reinforced Composites with the Presence of Interphases using the Boundary Element Method,” Mech. Mater., 32, pp. 769–783. [CrossRef]
Luo, J. F., Liu, Y. J., and Berger, E. J., 2000, “Interfacial Stress Analysis for Multi-Coating Systems using an Advanced Boundary Element Method,” Comput. Mech., 24, pp. 448–455. [CrossRef]
Ohtsu, M., and Uddin, F. A. K. M., 2008, “Mechanisms of Corrosion-Induced Cracks in Concrete at Meso- and Macro-Scales,” J. Adv. Concr. Technol., 6, pp. 419–429. [CrossRef]
Távara, L., Mantiĉ, V., Graciani, E., and Paris, F., 2011, “BEM Analysis of Crack Onset and Propagation along Fibermatrix Interface under Transverse Tension using a Linear Elastic Brittle Interface Model,” Eng. Anal. Boundary Elem., 35, pp. 207–222. [CrossRef]
Hackbusch, W., and Nowak, Z. P., 1989, “On the Fast Matrix Multiplication in the Boundary Element Method by Panel Clustering,” Numerische Mathematik, 54, pp. 463–491. [CrossRef]
Tyrtyshnikov, E., 1996, “Mosaic-Skeleton Approximations,” Calcolo, 33, pp. 46–57. [CrossRef]
Yoshida, K., Nishimura, N., and Kobayashi, S., 2001, “Application of New Fast Multipole Boundary Integral Equation Method to Crack Problems in 3D,” Eng. Anal. Boundary Elem., 25, pp. 239–247. [CrossRef]
Greengard, L. F., and Rokhlin, V., 1997, “A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions,” Acta Numerica, 6, pp. 229–269. [CrossRef]
Helsing, J., 1999, “Fast and Accurate Numerical Solution to an Elastostatic Problem Involving Ten Thousand Randomly Oriented Cracks,” Int. J. Fract., 100, pp. 321–327. [CrossRef]
Wang, H., Yao, Z., and Wang, P., 2005, “On the Pre-Conditioners for Fast Multipole Boundary Element Methods for 2D Multi-Domain Elastostatics,” Eng. Anal. Boundary Elem., 29, pp. 673–688. [CrossRef]
Kolk, K., Weber, W., and Kuhn, G., 2005, “Investigation of 3D Crack Propagation Problems via Fast BEM Formulations,” Comput. Mech., 37, pp. 32–40. [CrossRef]
Weber, W., Kolk, K., and Kuhn, G., 2009, “Acceleration of 3D Crack Propagation Simulation by the Utilization of Fast BEM-Techniques,” Eng. Anal. Boundary Elem., 33, pp. 1005–1015. [CrossRef]
Benedetti, I., Milazzo, A., and Aliabadi, M. H., 2009, “A Fast Dual Boundary Element Method for 3D Anisotropic Crack Problems,” Int. J. Numer. Methods Eng., 80, pp. 1356–1378. [CrossRef]
Benedetti, I., and Aliabadi, M. H., 2010, “A Fast Hierarchical Dual Boundary Element Method for Three-Dimensional Elastodynamic Crack Problems,” Int. J. Numer. Methods Eng., 84, pp. 1038–1067. [CrossRef]
Benedetti, I., Aliabadi, M. H., and Milazzo, A., 2010, “A Fast BEM for the Analysis of Damaged Structures with Bonded Piezoelectric Sensors,” Comput. Methods Appl. Mech. Eng., 199, pp. 490–501. [CrossRef]
Yoshida, K., Nishimura, N., and Kobayashi, S., 2001, “Application of New Fast Multipole Boundary Integral Equation Method to Elastostatic Crack Problems in Three Dimensions,” J. Struct. Eng., 47A, pp. 169–179.
Rokhlin, V., 1990, “Rapid Solution of Integral Equations Of Scattering Theory in Two Dimensions,” J. Comput. Phys., 86, pp. 414–439. [CrossRef]
Rokhlin, V., 1993, “Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions,” Appl. Comput. Harmon. Anal., 1, pp. 82–93. [CrossRef]
Epton, M., and Dembart, B., 1995, “Multipole Translation Theory for the Three Dimensional Laplace and Helmholtz Equations,” SIAM J. Sci. Comput. (USA), 16, pp. 865–897. [CrossRef]
Koc, S., and Chew, W. C., 1998, “Calculation of Acoustical Scattering from a Cluster of Scatterers,” J. Acoust. Soc. Am., 103, pp. 721–734. [CrossRef]
Greengard, L. F., Huang, J., Rokhlin, V., and Wandzura, S., “Accelerating Fast Multipole Methods for the Helmholtz Equation at Low Frequencies,” IEEE Comput. Sci. Eng., 5, pp. 32–38. [CrossRef]
Tournour, M. A., and Atalla, N., 1999, “Efficient Evaluation of the Acoustic Radiation using Multipole Expansion,” Int. J. Numer. Methods Eng., 46, pp. 825–837. [CrossRef]
Gumerov, N. A., and Duraiswami, R., 2003, “Recursions for the Computation of Multipole Translation and Rotation Coefficients for the 3–D Helmholtz Equation,” SIAM J. Sci. Comput., 25, pp. 1344–1381. [CrossRef]
Darve, E., and Havé, P., 2004, “Efficient Fast Multipole Method for Low-Frequency Scattering,” J. Comput. Phys., 197, pp. 341–363. [CrossRef]
Fischer, M., Gauger, U., and Gaul, L., 2004, “A Multipole Galerkin Boundary Element Method for Acoustics,” Eng. Anal. Boundary Elem., 28, pp. 155–162. [CrossRef]
Chen, J. T., and Chen, K. H., 2004, “Applications of the Dual Integral Formulation in Conjunction with Fast Multipole Method in Large-Scale Problems for 2D Exterior Acoustics,” Eng. Anal. Boundary Elem., 28, pp. 685–709. [CrossRef]
Gumerov, N. A., and Duraiswami, R., 2004, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, Amsterdam.
Cheng, H., Crutchfield, W. Y., Gimbutas, Z., Greengard, L. F., Ethridge, J. F., Huang, J., Rokhlin, V., Yarvin, N., and Zhao, J., 2006, “A Wideband Fast Multipole Method for the Helmholtz Equation in Three Dimensions,” J. Comput. Phys., 216, pp. 300–325. [CrossRef]
Liu, Y. J., and Bapat, M., 2009, “Fast Multipole Boundary Element Method for 3–D Full- and Half-Space Acoustic Wave Problems,” Proceedings of ASME 2009 IMECE, Lake Buena Vista, FL, IMECE2009–10165.
Brunner, D., Junge, M., and Gaul, L., 2009, “A Comparison of FE–BE Coupling Schemes for Large-Scale Problems with Fluid–Structure Interaction,” Int. J. Numer. Methods Eng., 77, pp. 664–688. [CrossRef]
Chadwick, J., An, S., and James, D. L., 2009, “Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells,” ACM Transactions on Graphics SIGGRAPH ASIA Conference Proceedings 2009, pp. 119:1–119:10.
Zheng, C., and James, D. L., 2010, “Rigid-Body Fracture Sound with Pre-Computed Soundbanks,” ACM Transactions on Graphics (SIGGRAPH, 2010, pp. 69:1–69:13.
Banjai, L., and Hackbusch, W., 2008, “Hierarchical Matrix Techniques for Low- and High-Frequency Helmholtz Problems,” IMA J. Numer. Anal., 28, pp. 46–79. [CrossRef]
Brancati, A., Aliabadi, M. H., and Benedetti, I., 2009, “Hierarchical Adaptive Cross Approximation GMRES Technique for Solution of Acoustic Problems using the Boundary Element Method,” Comput. Model. Eng. Sci., 43, pp. 149–172.
Brunner, D., Junge, M., Rapp, P., Bebendorf, M., and Gaul, L., 2010, “Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM,” Comput. Model. Eng. Sci., 58, pp. 131–158.
Schenck, H. A., 1968, “Improved Integral Formulation for Acoustic Radiation Problems,” J. Acoust. Soc. Am., 44, pp. 41–58. [CrossRef]
Burton, A. J., and Miller, G. F., 1971, “The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems,” Proc. R. Soc. London, Ser. A, 323, pp. 201–210. [CrossRef]
Kress, R., 1985, “Minimizing the Condition Number of Boundary Integral Operators in Acoustic and Electromagnetic Scattering,” Quart. J. Mech. Appl. Math., 38, pp. 323–341. [CrossRef]
Seybert, A. F., Soenarko, B., Rizzo, F. J., and Shippy, D. J., 1985, “An Advanced Computational Method for Radiation and Scattering of Acoustic Waves in Three Dimensions,” J. Acoust. Soc. Am., 77, pp. 362–368. [CrossRef]
Liu, Y. J., and Rizzo, F. J., 1992, “A Weakly-Singular Form of the Hypersingular Boundary Integral Equation Applied to 3–D Acoustic Wave Problems,” Comput. Methods Appl. Mech. Eng., 96, pp. 271–287. [CrossRef]
Liu, Y. J., and Chen, S. H., 1999, “A New Form of the Hypersingular Boundary Integral Equation for 3–D Acoustics and its Implementation with C0 Boundary Elements,” Comput. Methods Appl. Mech. Eng., 173, pp. 375–386. [CrossRef]
Liu, Y. J., and Rudolphi, T. J., 1999, “New Identities for Fundamental Solutions and their Applications to Non-Singular Boundary Element Formulations,” Comput. Mech., 24, pp. 286–292. [CrossRef]
Kupradze, V. D., 1970, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam.
Kobayashi, S., 1987, “Elastodynamics,” Boundary Element Methods in Mechanics, North-Holland, Amsterdam, pp. 192–225.
Chen, Y. H., Chew, W. C., and Zeroug, S., 1997, “Fast Multipole Method as an Efficient Solver for 2D Elastic Wave Surface Integral Equations,” Comput. Mech., 20, pp. 495–506. [CrossRef]
Fukui, T., and Inoue, K., 1998, “Fast Multipole Boundary Element Method in 2D Elastodynamics (in Japanese),” J. Appl. Mech. JSCE, 1, pp. 373–380. Available at: http://library.jsce.or.jp/jsce/open/00561/1998/01-0373.pdf.
Fujiwara, H., 1998, “The Fast Multipole Method for Integral Equations of Seismic Scattering Problems,” Geophys. J. Int., 133, pp. 773–782. [CrossRef]
Fujiwara, H., 2000, “The Fast Multipole Method for Solving Integral Equations of Three-Dimensional Topography and Basin Problems,” Geophys. J. Int., 140, pp. 198–210. [CrossRef]
Yoshida, K., 2001, “Applications of Fast Multipole Method to Boundary Integral Equation Method,” Ph. D. thesis, Department of Global Environment Engineering, Kyoto University, Japan.
Yoshida, K., Nishimura, N., and Kobayashi, S., 2000, “Analysis of Three Dimensional Scattering of Elastic Waves by a Crack with Fast Multipole Boundary Integral Equation Method (in Japanese),” J. Appl. Mech. JSCE, 3, pp. 77–80. Available at: http://library.jsce.or.jp/jsce/open/00561/2000/03-0143.pdf.
Yoshida, K., Nishimura, N., and Kobayashi, S., 2001, “Applications of a Diagonal Form Fast Multipole BIEM to the Analysis of Three Dimensional Scattering of Elastic Waves by Cracks,” Trans. JASCOME, J. BEM, 18, pp. 77–80.
Otani, Y., and Nishimura, N., 2003, “On the Improvement and Pre-Conditioning for FMM for Helmholtz’ Equation in 2D (in Japanese),” J. Appl. Mech. JSCE, 6, pp. 283–292. Available at: http://library.jsce.or.jp/jsce/open/00561/2003/06-0283.pdf.
Chaillat, S., Bonnet, M., and Semblat, J. F., 2007, “A Fast Multipole Method Formulation for 3D Elastodynamics in the Frequency Domain,” C. R. Mecanique, 335, pp. 714–719. [CrossRef]
Chaillat, S., Bonnet, M., and Semblat, J. F., 2008, “A Multi-Level Fast Multipole BEM for 3–D Elastodynamics in the Frequency Domain,” Comput. Methods Appl. Mech. Eng., 49–50, pp. 4233–4249. [CrossRef]
Sanz, J. A., Bonnet, M., and Dominguez, J., 2008, “Fast Multipole Method Applied to 3–D Frequency Domain Elastodynamics,” Comput. Mech., 42, pp. 787–802. [CrossRef]
Tong, M. S., and Chew, W. C., 2009, “Multilevel Fast Multipole Algorithm for Elastic Wave Scattering by Large Three-Dimensional Objects,” J. Comput. Phys., 228, pp. 921–932. [CrossRef]
Chaillat, S., Bonnet, M., and Semblat, J. F., 2009, “A New Fast Multi-Domain BEM to Model Seismic Wave Propagation and Amplification in 3–D Geological Structures,” Geophys. J. Int., 177, pp. 509–531. [CrossRef]
Isakari, H., Yoshikawa, H., and Nishimura, N., 2010, “A Periodic FMM for Elastodynamics in 3D and its Applications to Problems Related to Waves Scattered by a Doubly Periodic Layer of Scatterers (in Japanese),” J. Appl. Mech. JSCE, 13, pp. 169–178.
Isakari, H., Niino, K., Yoshikawa, H., and Nishimura, N., 2011, “Calderon Preconditioning for Periodic FMM for Elastodynamics in 3D,” Int. J. Numer. Methods Eng., (in press).
Takahashi, T., Nishimura, N., and Kobayashi, S., 2003, “A Fast BIEM for Three-Dimensional Elastodynamics in Time Domain,” Eng. Anal. Boundary Elem., 27, pp. 491–506. [CrossRef]
Ergin, A. A., Shanker, B., and Michielssen, E., 1998, “Fast Evaluation of Three-Dimensional Transient Wave Fields using Diagonal Translation Operators,” J. Comput. Phys., 146, pp. 157–180. [CrossRef]
Otani, Y., Takahashi, T., and Nishimura, N., 2007, “A Fast Boundary Integral Equation Method for Elastodynamics in Time Domain and its Parallelisation,” Boundary Element Analysis: Mathematical Aspects and Applications, M.Schanz and O.Steinbach, eds., Springer-Verlag, Berlin-Heidelberg, Germany, pp. 161–185
Yoshikawa, H., Otani, Y., and Nishimura, N., 2007, “A Large Scale Wave Analysis Related to Laser-Ultrasonic NDE with a Fast Multipole BIEM in Time Domain (in Japanese),” Trans. JASCOME, 7, pp. 79–84. Available at: http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/7-1/17-070629.pdf
Saitoh, T., Ishida, T., Fukui, T., and Hirose, S., 2008, “A New Time-Domain Boundary Element Method using the Operational Quadrature Method and the Fast Multiple Method in 2–D Elastodynamics (in Japanese),” J. Appl. Mech. JSCE, 11, pp. 193–200. Available at: http://library.jsce.or.jp/jsce/open/00561/2008/11-0193.pdf.
Soares, D., Jr., and Mansur, W. J., 2007, “An Efficient Stabilized Boundary Element Formulation for 2D Time-Domain Acoustics and Elastodynamics,” Comput. Mech., 40, pp. 355–365. [CrossRef]
Panagiotopoulos, C. G., and Manolis, G. D., 2011, “Three-Dimensional BEM for Transient Elastodynamics based on the Velocity Reciprocal Theorem,” Eng. Anal. Boundary Elem., 35, pp. 507–516. [CrossRef]
Rynne, B. P., and Smith, P. D., 1990, “Stability of Time Marching Algorithms for the Electric Field Integral Equation,” J. Electromagn. Waves Appl., 4, pp. 1181–1205. [CrossRef]
Ha-Duong, T., Ludwig, B., and Terrasse, I., 2003, “A Galerkin BEM for Transient Acoustic Scattering by an Absorbing Obstacle,” Int. J. Numer. Methods Eng., 57, pp. 1845–1882. [CrossRef]
Kielhorn, L., and Schanz, M., 2008, “Convolution Quadrature Method-Based Symmetric Galerkin Boundary Element Method for 3–D Elastodynamics,” Int. J. Numer. Methods Eng., 76, pp. 1724–1746. [CrossRef]
Bonnet, M., Burczynski, T., and Nowakowski, M., 2002, “Sensitivity Analysis for Shape Perturbation of Cavity or Internal Crack using BIE and Adjoint Variable Approach,” Int. J. Solids Struct., 39, pp. 2365–2385. [CrossRef]
Bonnet, M., and Guzina, B. B., 2009, “Elastic-Wave Identification of Penetrable Obstacles using Shape-Material Sensitivity Framework,” J. Comput. Phys., 228, pp. 294–311. [CrossRef]
Bonnet, M., and Guzina, B. B., 2004, “Sounding of Finite Solid Bodies by way of Topological Derivative,” Int. J. Numer. Methods Eng., 61, pp. 2344–2373. [CrossRef]
Fata, S. N., and Guzina, B. B., 2004, “A Linear Sampling Method for Near-Field Inverse Problems in Elastodynamics,” Inverse Probl., 20, pp. 713–736. [CrossRef]
Fata, S. N., and Guzina, B. B., 2007, “Elastic Scatterer Reconstruction via the Adjoint Sampling Method,” SIAM J. Appl. Math., 67, pp. 1330–1352. [CrossRef]
Chew, W. C., Jin, J.-M., Michielssen, E., and Song, J., 2001, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, MA.
Rao, S. M., Wilton, D. R., and Glisson, A. W., 1982, “Electromagnetic Scattering by Surfaces of Arbitrary Shape,” IEEE Trans.Antennas Propag., 30, pp. 409–418. [CrossRef]
Tong, M. S., Chew, W. C., Rubin, B. J., Morsey, J. D., and Jiang, L., 2009, “On the Dual Basis for Solving Electromagnetic Surface Integral Equations,” IEEE Trans.Antennas Propag., 57, pp. 3136–3146. [CrossRef]
Buffa, A., and Christiansen, S. H., 2007, “A Dual Finite Element Complex on the Barycentric Refinement,” Math. Comput., 76, pp. 1743–1769. [CrossRef]
Taboada, J. M., Landesa, L., Obelleiro, F., Rodriguez, J. L., Bertolo, J. M., Araujo, M. G., Mour1no, J. C., and Gomez, A., 2009, “High Scalability FMM-FFT Electromagnetic Solver for Supercomputer Systems,” IEEE Antennas Propag. Mag., 51, pp. 20–28. [CrossRef]
Ergül, Ö., and Gürel, L., 2009, “A Hierarchical Partitioning Strategy for an Efficient Parallelization of the Multilevel Fast Multipole Algorithm,” IEEE Trans. Antennas Propag., 57, pp. 1740–1750. [CrossRef]
Chew, W. C., 2004, “Computational Electromagnetics: The Physics of Smooth Versus Oscillatory Fields,” Philos. Trans. R. Soc. London, Ser. A, 362, pp. 579–602. [CrossRef]
Chew, W. C., Song, J. M., and Cui, T. J., 2004, “Review of Large Scale Computing in Electromagnetics with Fast Integral Equation Solvers,” Comput. Model. Eng. Sci., 5, pp. 361–372. [CrossRef]
Chew, W. C., Chao, H. Y., Cui, T. J., Lu, C. C., Ohnuki, S., Pan, Y. C., Song, J. M., and Zhao, J. S., 2003, “Fast Integral Equation Solvers in Computational Electromagnetics of Complex Structures,” Eng. Anal. Boundary Elem., 27, pp. 803–823. [CrossRef]
Vikram, M., and Shanker, B., 2009, “An Incomplete Review of Fast Multipole Methods-From Static to Wideband-As Applied to Problems in Computational Electromagnetics,” Appl. Comput. Electromagn. Soc. J., 24, pp. 79–108. Available at: https://www.egr.msu.edu/ece/technical_papers/PublicViewPaper.php?SubmissionNumber=MSU-ECE-2008-6.
Joannopoulos, J. D., Meade, R. D., and Winn, J. N., 1995, Photonic Crystals, Princeton University Press, Princeton, NJ.
Pendry, J. B., 2000, “Negative Refraction makes a Perfect Lens,” Phys. Rev. Lett., 85, pp. 3966–3969. [CrossRef] [PubMed]
Otani, Y., and Nishimura, N., 2008, “A Periodic FMM for Maxwell's Equations in 3D and its Applications to Problems Related to Photonic Crystals,” J. Comput. Phys., 227, pp. 4630–4652. [CrossRef]
Otani, Y., and Nishimura, N., 2009, “An FMM for Orthotropic Periodic Boundary Value Problems for Maxwell's Equations,” Waves Random Complex Media, 19, pp. 80–104. [CrossRef]
Otani, Y., and Nishimura, N., 2009, “Extension of the Periodic FMM in Maxwell's Equations to Tall Cell Problems (in Japanese),” Trans. JASCOME, 9, pp. 55–60. Available at: http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/9/JA0911.pdf.
Otani, Y., and Nishimura, N., 2009, “Behaviour of Periodic Fast Multipole Boundary Integral Equation Method for Maxwell's Equations Near Wood's Anomalies,” Imaging Microstructures, Contemporary Mathematics, H.Ammari and H. B.Kang, eds., AMS, Providence,pp. 43–59.
Barnett, A., and Greengard, L. F., 2010, “A New Integral Representation for Quasi-Periodic Fields and its Application to Two-Dimensional Band Structure Calculations,” J. Comput. Phys., 229, pp. 6898–6914. [CrossRef]
Barnett, A., and Greengard, L. F., 2010, “A New Integral Representation for Quasi-Periodic Scattering Problems in Two Dimensions,” BIT Numer. Math., 51, pp . 67–90. [CrossRef]
Houzaki, K., Nishimura, N., and Otani, Y., 2006, “An FMM for Periodic Rigid-Inclusion Problems and its Application to Homogenisation,” Inverse Problems, Multi-Scale Analysis and Effective Medium Theory, Contemporary Mathematics 408, AMS, Providence, pp. 81–98.
Otani, Y., and Nishimura, N., 2006, “A Fast Multipole Boundary Integral Equation Method for Periodic Boundary Value Problems in Three Dimensional Elastostatics and its Application to Homogenisation,” Int. J. Comp. Eng., 4, pp. 487–500. [CrossRef]
Otani, Y., and Nishimura, N., 2008, “An FMM for Periodic Boundary Value Problems for Cracks for Helmholtz’ Equation in 2D,” Int. J. Numer. Methods Eng., 73, pp. 381–406. [CrossRef]
Isakari, H., Niino, K., Yoshikawa, H., and Nishimura, N., 2010, “Preconditioning Based on Calderon's Formulae for the Periodic FMM for Elastodynamics in 3D (in Japanese),” Trans. JASCOME, 10, pp. 45–50. Available at: http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/10/JA109.pdf.
Costabel, M., 2005, “Time-Dependent Problems with the Boundary Integral Equation Method,” Encyclopedia of Computational Mechanics, E.Stein, R.de Borst, and T. J. R.Hughes, eds., John Wiley & Sons, New York; Chichester, Weinheim.
Dominguez, J., 1993, Boundary Elements in Dynamics, Computational Mechanics Publication, Southampton.
Yoshikawa, H., and Nishimura, N., 2003, “An Improved Implementation of Time Domain Elastodynamic BIEM in 3D for Large Scale Problems and its Application to Ultrasonic NDE,” Electron. J. Boundary Elem., 1, pp. 201–217.
Narayanan, G. V., and Beskos, D. E., 1982, “Numerical Operational Methods for Time-Dependent Linear Problems,” Int. J. Numer. Methods Eng., 18, pp. 1829–1854. [CrossRef]
Gaul, L., and Schanz, M., 1999, “A Comparative Study of Three Boundary Element Approaches to Calculate the Transient Response of Viscoelastic Solids with Unbounded Domains,” Comput. Methods Appl. Mech. Eng., 179, pp. 111–123. [CrossRef]
Beskos, D. E., 1987, “Boundary Element Methods in Dynamic Analysis,” Appl. Mech. Rev., 40, pp. 1–23. [CrossRef]
Beskos, D. E., 1997, “Boundary Element Methods in Dynamic Analysis: Part II (1986–1996),” Appl. Mech. Rev., 50, pp. 149–197. [CrossRef]
Mansur, W. J., 1983, “A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method,” Ph. D. Thesis, University of Southampton.
Lubich, C., 1988, “Convolution Quadrature and Discretized Operational Calculus. I/II.,” Numerische Mathematik, 52, pp. 129–145/413–425. [CrossRef]
Schanz, M., and Antes, H., 1997, “Application of ‘Operational Quadrature Methods’ in Time Domain Boundary Element Methods,” Mechanica, 32, pp. 179–186. [CrossRef]
Schanz, M., 2001, “Application of 3–D Boundary Element Formulation to Wave Propagation in Poroelastic Solids,” Eng. Anal. Boundary Elem., 25, pp. 363–376. [CrossRef]
Banjai, L., and Schanz, M., 2011, “Wave Propagation Problems Treated with Convolution Quadrature and BEM,” Fast Boundary Element Methods in Engineering and Industrial Applications, U.Langer, M.Schanz, O.Steinbach, and W. L.Wendland, eds., Springer, New York.
Schanz, M., and Antes, H., 1997, “A New Visco- and Elastodynamic Time Domain Boundary Element Formulation,” Comput. Mech., 20, pp. 452–459. [CrossRef]
Schanz, M., 2001, Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, Springer-Verlag, Berlin, Heidelberg, Germany.
Birgisson, B., Siebrits, E., and Peirce, A. P., 1999, “Elastodynamic Direct Boundary Element Methods with Enhanced Numerical Stability Properties,” Int. J. Numer. Methods Eng., 46, pp. 871–888. [CrossRef]
Frangi, A., 1999, “Elastodynamics by BEM: a New Direct Formulation,” Int. J. Numer. Methods Eng., 45, pp. 721–740. [CrossRef]
Frangi, A., and Novati, G., 1999, “On the Numerical Stability of Time-Domain Elastodynamic Analyses by BEM,” Comput. Methods Appl. Mech. Eng., 173, pp. 403–417. [CrossRef]
Frangi, A., 2000, “‘Causal’ Shape Functions in the Time Domain Boundary Element Method,” Comput. Mech., 25, pp. 533–541. [CrossRef]
Ha Duong, T., 1990, “On the Transient Acoustic Scattering by a Flat Object,” Jpn. J. Appl. Math., 7, pp. 489–513. [CrossRef]
Aimi, A., Diligenti, M., and Guardasoni, C., 2011, “On the Energetic Galerkin Boundary Element Method Applied to Interior Wave Propagation Problems,” J. Comp. Appl. Math., 235, pp. 1746–1754. [CrossRef]
Aimi, A., Diligenti, M., Guardasoni, C., Mazzieri, I., and Panizzi, S., 2009, “An Energy Approach to Space-Time Galerkin BEM for Wave Propagation Problems,” Int. J. Numer. Methods Eng., 80, pp. 1196–1240. [CrossRef]
Hackbusch, W., Kress, W., and Sauter, S. A., 2007, “Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering,” Boundary Element Analysis: Mathematical Aspects and Applications, M.Schanz and O.Steinbach, eds.,, Springer-Verlag, Berlin-Heidelberg, Germany, pp. 113–134.
Kress, W., and Sauter, S., 2008, “Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering,” IMA J. Numer. Anal., 28, pp. 162–185. [CrossRef]
Tausch, J., 2007, “A Fast Method for Solving the Heat Equation by Layer Potentials,” J. Comput. Phys., 224, pp. 956–969. [CrossRef]
Zhu, X. Y., Chen, W. Q., Huang, Z. Y., and Liu, Y. J., 2011, “A Fast Multipole Boundary Element Method for 2D Viscoelastic Problems,” Eng. Anal. Boundary Elem., 35, pp. 170–178. [CrossRef]
Banjai, L., and Sauter, S., 2009, “Rapid Solution of the Wave Equation in Unbounded Domains,” SIAM J. Numer. Anal., 47, pp. 227–249. [CrossRef]
Schanz, M., 2010, “On a Reformulated Convolution Quadrature based Boundary Element Method,” Comput. Model. Eng. Sci., 58, pp. 109–128.
Saitoh, T., Hirose, S., Fukui, T., and Ishida, T., 2007, “Development of a Time-Domain Fast Multipole BEM based on the Operational Quadrature Method in a Wave Propagation Problem,” Advances in Boundary Element Techniques VIII, V.Minutolo and M. H.Aliabadi, eds., EC Ltd. Eastleigh, pp. 355–360.
Feng, H., Kaganovskiy, L., and Krasny, R., 2009, “Azimuthal Instability of a Vortex Ring Computed by a Vortex Sheet Panel Method,” Fluid Dyn. Res., 41, 051405. [CrossRef]
Rahimian, A., Lashuk, I., Veerapaneni, S. K., Aparna, C., Malhotra, D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, C., and Biros, G., 2010, “Petascale Direct Numerical Simulation of Blood Flow on 200 K Cores and Heterogeneous Architectures,” ACM/IEEE SC Conference Series, pp. 1–11.
Zienkiewicz, O. C., Kelly, D. W., and Bettes, P., 1977, “The Coupling of the Finite Elements and Boundary Solution Procedures,” Int. J. Numer. Methods Eng., 11, pp. 355–375. [CrossRef]
Costabel, M., and Stephan, E. P., 1990, “Coupling of Finite and Boundary Element Methods for an Elastoplastic Interface Problem,” SIAM J. Numer. Anal., 27, pp. 1212–1226. [CrossRef]
Polizzotto, C., and Zito, M., 1994, “Variational Formulations for Coupled BE/FE Methods in Elastostatics,” ZAMM, 74, pp. 533–543. [CrossRef]
Haas, M., and Kuhn, G., 2003, “Mixed-Dimensional, Symmetric Coupling of FEM and BEM,” Eng. Anal. Boundary Elem., 27, pp. 575–582. [CrossRef]
Ganguly, S., Layton, J. B., and Balakrishna, C., 2000, “Symmetric Coupling of Multi-Zone Curved Galerkin Boundary Elements with Finite Elements in Elasticity,” Int. J. Numer. Methods Eng., 48, pp. 633–654. [CrossRef]
Ganguly, S., Layton, J. B., and Balakrishna, C., 2004, “A Coupling of Multi-Zone Curved Galerkin BEM with Finite Elements for Independently Modelled Sub-Domains with Non-Matching Nodes In Elasticity,” Int. J. Numer. Methods Eng., 59, pp. 1021–1038. [CrossRef]
Keat, W. D., Annigeri, B. S., and Cleary, M. P., 1988, “Surface Integral and Finite Element Hybrid Method for Two and Three Dimensional Fracture Mechanics Analysis,” Int. J. Fract., 36, pp. 35–53.
Han, Z. D., and Atluri, S. N., 2002, “SGBEM (for Cracked Local Subdomain) - FEM (for Uncracked Global Structure) Alternating Method for Analyzing 3D Surface Cracks and their Fatigue-Growth,” Comput. Model. Eng. Sci., 3, pp. 699–716.
Springhetti, R., Novati, G., and Margonari, M., 2006, “Weak Coupling of the Symmetric Galerkin BEM with FEM for Potential and Elastostatic Problems,” Comput. Model. Eng. Sci., 13, pp. 67–80.
von Estorff, O., and Hagen, C., 2005, “Iterative Coupling of FEM and BEM in 3D Transient Elastodynamics,” Eng. Anal. Boundary Elem., 29, pp. 775–787. [CrossRef]
El-Gebeily, M., Elleithy, W. M., and Al-Gahtani, H. J., 2002, “Convergence of the Domain Decomposition Finite Element-Boundary Element Coupling Methods,” Comput. Methods Appl. Mech. Eng., 191, pp. 4851–4868. [CrossRef]
Elleithy, W. M., and Tanaka, M., 2003, “Interface Relaxation Algorithms for BEM-BEM Coupling and FEM-BEM Coupling,” Comput. Methods Appl. Mech. Eng., 192, pp. 2977–2992. [CrossRef]
Elleithy, W. M., Tanaka, M., and Guzik, A., 2004, “Interface Relaxation FEM-BEM Coupling Method for Elasto-Plastic Analysis,” Eng. Anal. Boundary Elem., 28, pp. 849–857. [CrossRef]
Soares, D., Jr., von Estorff, O., and Mansur, W. J., 2004, “Iterative Coupling of BEM and FEM for Nonlinear Dynamic Analyses,” Comput. Mech., 34, pp. 67–73. [CrossRef]
Langer, U., and Steinbach, O., 2003, “Boundary Element Tearing and Interconnecting Methods,” Comput. Visualization Sci., 71, pp. 205–228. [CrossRef]
Rüberg, T., and Schanz, M., 2008, “Coupling Finite and Boundary Element Methods for Static and Dynamic Elastic Problems with Non-Conforming Interfaces,” Comput. Methods Appl. Mech. Eng., 198, pp. 449–458. [CrossRef]
Langer, U., and Pechstein, C., 2006, “Coupled Finite and Boundary Element Tearing and Interconnecting Solvers for Nonlinear Problems,” ZAMM, 86, pp. 915–931. [CrossRef]
Fischer, M., and Gaul, L., 2005, “Fast BEM-FEM Mortar Coupling for Acoustic-Structure Interaction,” Int. J. Numer. Methods Eng., 62, pp. 1677–1690. [CrossRef]
Frangi, A., and Novati, G., 2003, “BEM-FEM Coupling for 3D Fracture Mechanics Applications,” Comput. Mech., 32, pp. 415–422. [CrossRef]
Aour, B., Rahmani, O., and Nait-Abdelaziz, M., 2007, “A Coupled FEM/BEM Approach and its Accuracy for Solving Crack Problems in Fracture Mechanics,” Int. J. Solids Struct., 44, pp. 2523–2539. [CrossRef]
Lucht, T., 2009, “Finite Element Analysis of Three Dimensional Crack Growth by the use of a Boundary Element Sub Model,” Eng. Fract. Mech., 76, pp. 2148–2162. [CrossRef]
Elleithy, W. M., 2008, “Analysis of Problems in Elasto-Plasticity via an Adaptive FEM-BEM Coupling Method,” Comput. Methods Appl. Mech. Eng.197, pp. 3687–370. [CrossRef]
Elleithy, W. M., and Grzhibovskis, R., 2009, “An Adaptive Domain Decomposition Coupled Finite Element-Boundary Element Method for Solving Problems in Elasto-Plasticity,” Int. J. Numer. Methods Eng., 79, pp. 1019–1040. [CrossRef]
von Estorff, O., and Firuziaan, M., 2000, “Coupled BEM/FEM Approach for Nonlinear Soil/Structure Interaction,” Eng. Anal. Boundary Elem., 24, pp. 715–725. [CrossRef]
Rizos, D. C., and Wang, Z., 2002, “Coupled BEM-FEM Solutions for Direct Time Domain Soil-Structure Interaction Analysis,” Eng. Anal. Boundary Elem., 26, pp. 877–888. [CrossRef]
Almeida, V. S., and De Paiva, J. B., 2004, “A Mixed BEM-FEM Formulation for Layered Soil-Superstructure Interaction,” Eng. Anal. Boundary Elem., 28, pp. 1111–1121. [CrossRef]
Padrón, L. A., Aznárez, J. J., and Maeso, O., 2008, “Dynamic Analysis of Piled Foundations in Stratified Soils by a BEM-FEM Model,” Soil Dyn. Earthquake Eng., 28, pp. 333–346. [CrossRef]
Padrón, L. A., Aznárez, J. J., and Maeso, O., 2009, “Dynamic Structure-Soil-Structure Interaction between Nearby Piled Buildings under Seismic Excitation by BEM-FEM Model,” Soil Dyn. Earthquake Eng., 29, pp. 1084–1096. [CrossRef]
Millán, M. A., and Domínguez, J., 2009, “Simplified BEM/FEM Model for Dynamic Analysis of Structures on Piles and Pile Groups in Viscoelastic and Poroelastic Soils,” Eng. Anal. Boundary Elem., 33, pp. 25–34. [CrossRef]
O'Brien, J., and Rizos, D. C., 2005, “A 3D BEM-FEM Methodology for Simulation of High Speed Train Induced Vibrations,” Soil Dyn. Earthquake Eng., 25, pp. 289–301. [CrossRef]
Galvín, P., and Domínguez, J., 2009, “Experimental and Numerical Analyses of Vibrations Induced by High-Speed Trains on the Córdoba-Málaga Line,” Soil Dyn. Earthquake Eng., 29, pp. 641–657. [CrossRef]
Galvín, P., François, S., Schevenels, M., Bongini, E., Degrande, G., and Lombaert, A., 2010, “A 2.5D Coupled FE-BE Model for the Prediction of Railway Induced Vibrations,” Soil Dyn. Earthquake Eng., 30, pp. 1500–1512. [CrossRef]
Kuhn, M., 1998, “The Application of Coupled BE/FE Formulations in Technical Magnetic Field Computations,” Comput. Methods Appl. Mech. Eng., 157, pp. 193–204. [CrossRef]
Balac, S., and Caloz, G., 2002, “Magnetostatic Field Computations based on the Coupling of Finite Element and Integral Representation Methods,” IEEE Trans. Magn., 38, pp. 393–396. [CrossRef]
Kuhn, M., and Steinbach, O., 2002, “Symmetric Coupling of Finite and Boundary Elements for Exterior Magnetic Field Problems,” Math. Models Meth. Appl. Sci., 25, pp. 357–371. [CrossRef]
Frangi, A., Faure-Ragani, P., and Ghezzi, L., 2005, “Magneto-Mechanical Simulations by a Coupled Fast Multipole Method - Finite Element Method and Multigrid Solvers,” Comput. Struct., 83, pp. 718–726. [CrossRef]
Frangi, A., Ghezzi, L., and Faure-Ragani, P., 2006, “Accurate Force Evaluation for Industrial Magnetostatics Applications with Fast BEM-FEM Approaches,” Comput. Model. Eng. Sci., 15, pp. 41–48.
Salgado, P., and Selgas, V., 2008, “A Symmetric BEM-FEM Coupling for the Three-Dimensional Magnetostatic Problem using Scalar Potentials,” Eng. Anal. Boundary Elem., 32, pp. 633–644. [CrossRef]
Pusch, D., and Ostrowski, J., 2010, “Robust FEM/BEM Coupling for Magnetostatics on Multiconnected Domains,” IEEE Trans. Magn., 46, pp. 3177. [CrossRef]
Kurz, S., Fetzer, J., and Lehner, G., 1998, “A Novel Formulation for 3D Eddy Current Problems with Moving Bodies Sing a Lagrangian Description and BEM-FEM Coupling,” IEEE Trans. Magn., 34, pp. 3068–3073. [CrossRef]
Chen, Z. S., Hofstetter, G., and Mang, H. A., 1998, “A Galerkin-Type BE-FE Formulation for Elasto-Acoustic Coupling,” Comput. Methods Appl. Mech. Eng., 152, pp. 147–155. [CrossRef]
Czygan, O., and von Estorff, O., 2002, “Fluid-Structure Interaction by Coupling BEM and Nonlinear FEM,” Eng. Anal. Boundary Elem., 26, pp. 773–779. [CrossRef]
Gaul, L., and Wenzel, W., 2002, “A Coupled Symmetric BE-FE Method for Acoustic Fluid-Structure Interaction,” Eng. Anal. Boundary Elem., 26, pp. 629–636. [CrossRef]
Langer, S., and Antes, H., 2003, “Analyses of Sound Transmission through Windows by Coupled Finite and Boundary Element Methods,” Acta Acoustica, 89, pp. 78–85.
Soares, D., Jr., 2009, “Acoustic Modelling by BEM-FEM Coupling Procedures: Taking into Account Explicit and Implicit Multi-Domain Decomposition Techniques,” Int. J. Numer. Methods Eng., 78, pp. 1076–1093. [CrossRef]
Wang, S. Y., Chen, P. Q., Lim, K. M., and Khoo, B. C., 2010, “A BEM/FEM Coupling Approach for Fluid-Structure Interaction Simulation of Cell Motion,” Commun. Comput. Phys., 7, pp. 994–1026.
Seghir, A., Tahakourt, A., and Bonnet, G., 2009, “Coupling FEM and Symmetric BEM for Dynamic Interaction of Dam-Reservoir Systems,” Eng. Anal. Boundary Elem., 33, pp. 201–210. [CrossRef]
Elisee, J. P., Gibson, A., and Arridge, S., 2010, “Combination of Boundary Element Method and Finite Element Method in Diffuse Optical Tomography,” IEEE Trans. Biomed. Eng., 57, pp. 2737. [CrossRef]
Jerez-Hanckes, C., Durán, M., and Guarini, M., 2010, “Hybrid FEM/BEM Modeling of Finite-Sized Photonic Crystals for Semiconductor Laser Beams,” Int. J. Numer. Methods Eng., 82, pp. 1308–1340.
Ye, T. Q., and Liu, Y. J., 1985, “Finite Deflection Analysis of Elastic Plate by the Boundary Element Method,” Appl. Math. Model., 9, pp. 183–188. [CrossRef]
Wen, P. H., Aliabadi, M. H., and Young, A., 2005, “Large Deflection Analysis of Reissner Plate by Boundary Element Method,” Comput. Struct., 83, pp. 870–879. [CrossRef]
Noblesse, F., Delhommeau, G., and Yang, C., 2010, “Ship Bow Wave and Green Function Method,” 12es Journées de l'Hydrodynamique, Nantes, France, pp. 1–12.
Xiao, J. X., and Tausch, J., 2010, “A Fast Wavelet-Multipole Method for Direct BEM,” Eng. Anal. Boundary Elem., 34, pp. 673–679. [CrossRef]
Xiao, J. Y., Wen, L. H., and Tausch, J., 2009, “On Fast Matrix-Vector Multiplication in Wavelet Galerkin BEM,” Eng. Anal. Boundary Elem., 33, pp. 159–167. [CrossRef]
Fong, W., and Darve, E., 2009, “The Black-Box Fast Multipole Method,” J. Comput. Phys., 228, pp. 8712–8725. [CrossRef]
Chen, X. L., Zhang, H., and Wu, M., 2010, “Modeling Brain Electrical Activity by an Image-Based Boundary Element Method,” Eng. Anal. Boundary Elem., 34, pp. 995–1002. [CrossRef]
Peng, Z. L., Asaro, R. J., and Zhu, Q., 2010, “Multiscale Simulation of Erythrocyte Membranes,” Phys. Rev. E, 81, pp. 031904(1-11) [CrossRef].
The University of Mississippi, 2003–2011,“Boundary Element Resources Network (BENET),” http://www.olemiss.edu/sciencenet/benet/

Figures

Grahic Jump Location
Fig. 1

A 3D domain V with boundary S

Grahic Jump Location
Fig. 2

Illustration of the Galerkin weight functions for 2D BEM

Grahic Jump Location
Fig. 3

Domain of dependence and range of influence. (a) The nodes 1, 2 and 3 lie within the DOD of the evaluation point E. The ROIs of nodes 1, 2, 3, 4 and 5 are shown as gray regions. In the standard BNM, the ROI of a node near an edge, e.g., node 4, is truncated at the edges of a panel. In the EBNM, the ROI can reach over to neighboring panels and contain edges and/or corners - see, e.g., node 5 (b) Gaussian weight function defined on the ROI of a node (from Ref. [149]).

Grahic Jump Location
Fig. 4

ONE-step multilevel BNM cell refinement for the “sinsinh cube” problem: (a) initial configuration with 96 surface cells; (b) final adapted configuration (obtained in one step) with 1764 surface cells (from Ref. [131])

Grahic Jump Location
Fig. 5

A hierarchical cell structure covering all the boundary elements

Grahic Jump Location
Fig. 6

A hierarchical quad-tree structure for the 2D boundary element mesh

Grahic Jump Location
Fig. 7

(a) 2D view of a parallelepiped superimposed onto a discretized sphere. The black dots indicate grid points and the cubes are represented by the solid lines; (b) Illustration of the four steps in the pFFT scheme; the gray region denotes the near-field region of the yellow element.

Grahic Jump Location
Fig. 8

H-matrix with 3279 entries and rank numbers of ACA

Grahic Jump Location
Fig. 9

Two parallel conducting beams

Grahic Jump Location
Fig. 10

SEM pictures of (a) a laterally oscillating beam resonator, and (b) a biaxial accelerometer

Grahic Jump Location
Fig. 11

Matrix domain V0 and n inclusions

Grahic Jump Location
Fig. 12

2D models of fiber composites: (a) circular-shaped fibers, (b) star-shaped fibers (Ref. [44])

Grahic Jump Location
Fig. 13

A 3D RVE with 5832 fibers and with the total DOFs = 10,532,592 [249]

Grahic Jump Location
Fig. 14

Analysis of an FGM rotor part using the BEM [263]

Grahic Jump Location
Fig. 15

Arrays of 12 × 12 × 12 penny-shaped cracks in an elastic domain solved by using the fast multipole BEM (total number of DOFs = 1,285,632) [297]

Grahic Jump Location
Fig. 16

A BEM model of the Skipjack submarine impinged upon by an incident wave

Grahic Jump Location
Fig. 17

Sound field from five wind turbines evaluated using the ACA and fast multipole BEM

Grahic Jump Location
Fig. 18

BEM model of 1152 spherical cavities in an infinite elastic solid [343]. The spatial DOF is 1,105,290 and the number of time steps is 200. The CPU time is 10 h 47 min and the memory requirement is 152.8 GB.

Grahic Jump Location
Fig. 19

Skin of worm: (a) model; (b) energy transmittance

Grahic Jump Location
Fig. 20

Sound pressure Level (dB) at the boundary of the amphitheatre

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In