0
Review Articles

Some Topics in Recent Advances and Applications of Structural Impact Dynamics

[+] Author and Article Information
X. M. Qiu

Department of Engineering Mechanics,
Tsinghua University,
Beijing 100084, P. R. C.;
State Key Laboratory of Explosion
Science and Technology,
Beijing Institute of Technology,
Beijing 100081, P. R. C.

T. X. Yu

Department of Mechanical Engineering,
Hong Kong University of
Science and Technology,
Clear Water Bay,
Kowloon, Hong Kong, P. R. C.;
School of Engineering,
Ningbo University,
Ningbo 315000, P. R. C.
e-mail: metxyu@ust.hk

1Corresponding author.

Manuscript received February 17, 2011; final manuscript received December 6, 2011; published online March 30, 2012. Transmitted by Assoc. Editor Panos Papadopoulos.

Appl. Mech. Rev 64(3), 030801 (Mar 30, 2012) (12 pages) doi:10.1115/1.4005571 History: Received February 17, 2011; Revised December 06, 2011

This paper reviews some topics related to the advances and applications of structural impact dynamics in recent years. Dynamic behavior of structural members including tubes, beams and plates under axial or transverse loading, and cellular materials and sandwich structures under impact or blast loading are summarized here. The research methodology involves experimental studies, theoretical modeling, as well as numerical simulations. However, as we mainly focus on the longer time dynamic responses of structures and cellular materials, studies of stress wave propagation and the material's strain-rate sensitivity are not included.

FIGURES IN THIS ARTICLE
<>
Copyright © 2011 by ASME
Your Session has timed out. Please sign back in to continue.

References

Alghamdi, A. A. A., 2001, “Collapsible Impact Energy Absorbers: An Overview,” Thin-Walled Struct., 39(2), pp. 189–213. [CrossRef]
Olabi, A. G., Morris, E., and Hashmi, M. S. J., 2007, “Metallic Tube Type Energy Absorbers: A Synopsis,” Thin-Walled Struct., 45(7–8), pp. 706–726. [CrossRef]
Lu, G. X., and Yu, T. X., 2003, Energy Absorption of Structures and Materials, Woodhead, Cambridge, UK.
Guillow, S. R., Lu, G., and Grzebieta, R. H., 2001, “Quasi–Static Axial Compression of Thin-Walled Circular Aluminium Tubes,” Int. J. Mech. Sci., 43(9), pp. 2103–2123. [CrossRef]
Karagiozova, D., and Alves, M., 2004, “Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact - Part I: Experimental and Numerical Observations,” Int. J. Solids Struct., 41(5–6), pp. 1565–1580. [CrossRef]
Karagiozova, D., and Alves, M., 2004, “Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact - Part II: Theoretical Analysis,” Int. J. Solids Struct., 41(5–6), pp. 1581–1604. [CrossRef]
Ruzzene, M., 2004, “Dynamic buckling of Periodically Stiffened Shells: Application to Supercavitating Vehicles,” Int. J. Solids Struct., 41(3–4), pp. 1039–1059. [CrossRef]
Wang, A. W., and Tian, W. Y., 2003, “Twin-Characteristic-Parameter Solution of Axisymmetric Dynamic Plastic Buckling for Cylindrical Shells Under Axial Compression Waves,” Int. J. Solids Struct., 40(12), pp. 3157–3175. [CrossRef]
Wei, Z. G., Yu, J. L., and Batra, R. C., 2005, “Dynamic Buckling of Thin Cylindrical Shells Under Axial Impact,” Int. J. Impact Eng., 32(1–4), pp. 575–592. [CrossRef]
Al Galib, D., and Limam, A., 2004, “Experimental and Numerical Investigation of Static and Dynamic Axial Crushing of Circular Aluminum Tubes,” Thin-Walled Struct., 42(8), pp. 1103–1137. [CrossRef]
Abdul-Latif, A., and Baleh, R., 2008, “Dynamic Biaxial Plastic Buckling of Circular Shells,” J. Appl. Mech., 75(3), p. 031013. [CrossRef]
Oshiro, R. E., and Alves, M., 2007, “Scaling of Cylindrical Shells Under Axial Impact,” Int. J. Impact Eng., 34(1), pp. 89–103. [CrossRef]
Adachi, T., Tomiyama, A., Araki, W., and Yamaji, A., 2008, “Energy Absorption of a Thin-Walled Cylinder With Ribs Subjected to Axial Impact,” Int. J. Impact Eng., 35(2), pp. 65–79. [CrossRef]
Lu, G. Y., Han, Z. J., Lei, J. P., and Zhang, S. Y., 2009, “A Study on the Impact Response of Liquid-Filled Cylindrical Shells,” Thin–Walled Struct., 47(12), pp. 1557–1566. [CrossRef]
Wang, B., and Lu, G., 2002, “Mushrooming of Circular Tubes Under Dynamic Axial Loading,” Thin-Walled Struct, 40(2), pp. 167–182. [CrossRef]
Cui, S. J., Hao, H., and Cheong, H. K., 2001, “Dynamic Buckling and Post-Buckling of Imperfect Columns Under Fluid-Solid Interaction,” Int. J. Solids Struct., 38(48–49), pp. 8879–8897. [CrossRef]
Hao, H., Cheong, H. K., and Cui, S., 2000, “Analysis of Imperfect Column Buckling Under Intermediate Velocity Impact,” Int. J. Solids Struct., 37(38), pp. 5297–5313. [CrossRef]
Wang, A. W., and Tian, W. Y., 2007, “Mechanism of Buckling Development in Elastic Bars Subjected to Axial Impact,” Int. J. Impact Eng., 34(2), pp. 232–252. [CrossRef]
Zhao, H., and Abdennadher, S., 2004, “On the Strength Enhancement Under Impact Loading of Square Tubes Made From Rate Insensitive Metals,” Int. J. Solids Struct., 41(24–25), pp. 6677–6697. [CrossRef]
Zhao, H., Abdennadher, S., and Othman, R., 2006, “An Experimental Study of Square Tube Crushing Under Impact Loading Using a Modified Large Scale SHPB,” Int. J. Impact Eng., 32(7), pp. 1174–1189. [CrossRef]
Fyllingen, O., Hopperstad, O. S., and Langseth, M., 2007, “Stochastic Simulations of Square Aluminium Tubes Subjected to Axial Loading,” Int. J. Impact Eng., 34(10), pp. 1619–1636. [CrossRef]
Meguid, S. A., Attia, M. S., Stranart, J. C., and Wang, W., 2007, “Solution Stability in the Dynamic Collapse of Square Aluminium Columns,” Int. J. Impact Eng., 34(2), pp. 348–359. [CrossRef]
Shahbeyk, S., Vafai, A., and Petrinic, N., 2005, “Axial Crushing of Metal Foam-Filled Square Columns: Foam Density Distribution and Impactor Inclination Effects,” Thin-Walled Struct., 43(12), pp. 1818–1830. [CrossRef]
Shahbeyk, S., Petrinic, N., and Vafai, A., 2007, “Numerical Modelling of Dynamically Loaded Metal Foam-Filled Square Columns,” Int. J. Impact Eng., 34(3), pp. 573–586. [CrossRef]
Zhang, X., and Cheng, G. D., 2007, “A Comparative Study of Energy Absorption Characteristics of Foam-Filled and Multi-Cell Square Columns,” Int. J. Impact Eng., 34(11), pp. 1739–1752. [CrossRef]
Gupta, N. K., and Venkatesh, 2007, “Experimental and Numerical Studies of Impact Axial Compression of Thin-Walled Conical Shells,” Int. J. Impact Eng., 34(4), pp. 708–720. [CrossRef]
Gupta, P. K., 2008, “A Study on Mode of Collapse of Varying Wall Thickness Metallic Frusta Subjected to Axial Compression,” Thin-Walled Struct., 46(5), pp. 561–571. [CrossRef]
Singace, A. A., El-Sobky, H., and Petsios, M., 2001, “Influence of End Constraints on the Collapse of Axially Impacted Frusta,” Thin-Walled Struct., 39(5), pp. 415–428. [CrossRef]
Sheriff, N. M., Gupta, N. K., Velmuruganc, R., and Shanmugapriyan, N., 2008, “Optimization of Thin Conical Frusta for Impact Energy Absorption,” Thin-Walled Struct., 46(6), pp. 653–666. [CrossRef]
Dorum, C., Hopperstad, O. S., Lademo, O. G., and Langseth, M., 2006, “An Experimental Study on the Energy Absorption Capacity of Thin-Walled Castings,” Int. J. Impact Eng., 32(5), pp. 702–724. [CrossRef]
Tarigopula, V., Langseth, M., Hopperstad, O. S., and Clausen, A. H., 2006, “Axial Crushing of Thin-Walled High-Strength Steel Sections,” Int. J. Impact Eng., 32(5), pp. 847–882. [CrossRef]
Fyllingen, O., Hopperstad, O. S., and Langseth, M., 2008, “Simulations of a Top-Hat Section Subjected to Axial Crushing Taking Into Account Material and Geometry Variations,” Int. J. Solids Struct., 45(24), pp. 6205–6219. [CrossRef]
Fylingen, O., Hopperstad, O. S., Hanssen, A. G., and Langseth, M., 2010, “Modelling of Tubes Subjected to Axial Crushing,” Thin-Walled Struct., 48(2), pp. 134–142. [CrossRef]
Jones, N., 2010, “Energy-Absorbing Effectiveness Factor,” Int. J. Impact Eng., 37(6), pp. 754–765. [CrossRef]
Petry, D., and Fahlbusch, G., 2000, “Dynamic Buckling of Thin Isotropic Plates Subjected to In-Plane Impact,” Thin-Walled Struct., 38(3), pp. 267–283. [CrossRef]
Wang, C. M., Chen, Y., and Xiang, Y., 2004, “Stability Criteria for Rectangular Plates Subjected to Intermediate and End Inplane Loads,” Thin-Walled Struct., 42(1), pp. 119–136. [CrossRef]
Wang, C. M., Chen, Y., and Xiang, Y., 2004, “Plastic Buckling of Rectangular Plates Subjected to Intermediate and End Inplane Loads,” Int. J. Solids Struct., 41(16–17), pp. 4279–4297. [CrossRef]
Sastranegara, A., Adachi, T., and Yamaji, A., 2005, “Improvement of Energy Absorption of Impacted Column due to Transverse Impact,” Int. J. Impact Eng., 31(4), pp. 483–496. [CrossRef]
Sastranegara, A., Adachi, T., and Yamaji, A., 2006, “Effect of Transverse Impact on Buckling Behavior of Compressed Column,” Thin-Walled Struct., 44(6), pp. 701–707. [CrossRef]
Sastranegara, A., Adachi, T., and Yamaji, A., 2005, “Improving Energy Absorption of Impacted Column due to Transverse Impact: A Finite Element Analysis,” Int. J. Impact Eng., 32(1–4), pp. 444–460. [CrossRef]
Zhang, X. W., Su, H., and Yu, T. X., 2009, “Energy Absorption of an Axially Crushed Square Tube With a Buckling Initiator,” Int. J. Impact Eng., 36(3), pp. 402–417. [CrossRef]
Zhang, X. W., Tian, Q. D., and Yu, T. X., 2009, “Axial Crushing of Circular Tubes With Buckling Initiators,” Thin-Walled Struct., 47(6–7), pp. 788–797. [CrossRef]
Zhang, X. W., and Yu, T. X., 2009, “Energy Absorption of Pressurized Thin-Walled Circular Tubes Under Axial Crushing,” Int. J. Mech. Sci., 51(5), pp. 335–349. [CrossRef]
Jones, N., 1989, Structural Impact, Cambridge University Press, Cambridge, UK.
Stronge, W. J., and Yu, T. X., 1993, Dynamic Models for Structural Plasticity, Springer-Verlag, Berlin.
Yu, T. X., Yang, J. L., and Reid, S. R., 2001, “Dynamic Behavior of Double Cantilever Beams Subjected to Impact,” Int. J. Pressure Vessels Piping, 78(1), pp. 49–57. [CrossRef]
Borvik, T., Olovsson, L., Hanssen, A. G., Dharmasena, K. P., Hansson, H., and Wadley, H. N. G., 2011, “A Discrete Particle Approach to Simulate the Combined Effect of Blast and Sand Impact Loading of Steel Plates,” J. Mech. Phys. Solids, 59(5), pp. 940–958. [CrossRef]
Ruan, H. H., and Yu, T. X., 2003, “Local Deformation Models in Analyzing Beam-On-Beam Collisions,” Int. J. Mech. Sci., 45(3), pp. 397–423. [CrossRef]
Ruan, H. H., Yu, T. X., and Hua, Y. L., 2003, “Plastic Modal Approximations in Analyzing Beam-On-Beam Collisions,” Int. J. Solids. Struct., 40(12), pp. 2937–2956. [CrossRef]
Ruan, H. H., and Yu, T. X., 2005, “Experimental Study of Collision Between a Free-Free Beam and a Simply Supported Beam,” Int. J. Impact Eng., 32(1–4), pp. 416–443. [CrossRef]
Ruan, H. H., and Yu, T. X., 2003, “Collision Between a Ring and a Beam,” Int. J. Mech. Sci., 45(10), pp. 1751–1780. [CrossRef]
Teng, X., and Wierzbicki, T., 2005, “Multiple Impact of Beam-To-Beam,” Int. J. Impact Eng., 31(2), pp. 185–219. [CrossRef]
Li, Q. M., and Jones, N., 2000, “Formation of a Shear Localization in Structural Elements Under Transverse Dynamic Loads,” Int. J. Solids Struct., 37(45), pp. 6683–6704. [CrossRef]
Li, Q. M., and Jones, N., 2002, “Response and Failure of a Double-Shear Beam Subjected to Mass Impact,” Int. J. Solids Struct., 39(7), pp. 1919–1947. [CrossRef]
Lellep, J., and Torn, K., 2005, “Shear and Bending Response of a Rigid-Plastic Beam Subjected to Impulsive Loading,” Int. J. Impact Eng., 31(9), pp. 1081–1105. [CrossRef]
Lellep, J., and Torn, K., 2007, “Dynamic Plastic Behaviour of Annular Plates With Transverse Shear Effects,” Int. J. Impact Eng., 34(6), pp. 1061–1080. [CrossRef]
Zeinoddini, M., Parke, G. A. R., and Harding, J. E., 2002, “Axially Pro-Loaded Steel Tubes Subjected to Lateral Impacts: An Experimental Study,” Int. J. Impact Eng., 27(6), pp. 669–690. [CrossRef]
Zeinoddini, M., Harding, J. E., and Parke, G. A. R., 2008, “Axially Pre-Loaded Steel Tubes Subjected to Lateral Impacts (A Numerical Simulation),” Int. J. Impact Eng., 35(11), pp. 1267–1279. [CrossRef]
Veldman, R. L., Ari-Gur, J., and Cium, C., 2008, “Response of Pre-Pressurized Reinforced Plates Under Blast Loading,” Int. J. Impact Eng., 35(4), pp. 240–250. [CrossRef]
Veldman, R. L., Ari-Gur, J., Clum, C., DeYoung, A., and Folkert, J., 2006, “Effects of Pre-Pressurization on Blast Response of Clamped Aluminum Plates,” Int. J. Impact Eng., 32(10), pp. 1678–1695. [CrossRef]
Liu, Z. S., Lee, H. P., and Lu, C., 2005, “Structural Intensity Study of Plates under Low-Velocity Impact,” Int. J. Impact Eng., 31(8), pp. 957–975. [CrossRef]
Pashah, S., Massenzio, M., and Jacquelin, E., 2008, “Prediction of Structural Response for Low Velocity Impact,” Int. J. Impact Eng., 35(2), pp. 119–132. [CrossRef]
Mannan, M. N., Ansari, R., and Abbas, H., 2008, “Failure of Aluminium Beams Under Low Velocity Impact,” Int. J. Impact Eng., 35(11), pp. 1201–1212. [CrossRef]
Harsoor, R., and Ramachandra, L. S., 2009, “Influence of Notch on the Elastic-Plastic Response of Clamped Beams Subjected to Low Velocity Impact,” Int. J. Impact Eng., 36(8), pp. 1058–1069. [CrossRef]
Zhang, X. H., and Tang, Z. P., 2010, “Experimental Study on the Dynamic Behavior of TiNi Cantilever Beams With Rectangular Cross-Section Under Transversal Impact,” Int. J. Impact Eng., 37(7), pp. 813–827. [CrossRef]
Gibson, L. J., and Ashby, M. F., 1997, Cellular Solids, Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, UK.
Liu, K. S., Zhao, K., Gao, Z. Y., and Yu, T. X., 2005, “Dynamic Behavior of Ring Systems Subjected to Pulse Loading,” Int. J. Impact Eng., 31(10), pp. 1209–1222. [CrossRef]
Gao, Z. Y., Yu, T. X., and Lu, G., 2005, “A Study on Type II Structures. Part 1: A Modified One-Dimensional Mass-Spring Model,” Int. J. Impact Eng., 31(7), pp. 895–910. [CrossRef]
Gao, Z. Y., Yu, T. X., and Lu, G., 2005, “A Study on Type II Structures. Part II: Dynamic Behavior of a Chain of Pre-Bent Plates,” Int. J. Impact Eng., 31(7), pp. 911–926. [CrossRef]
Gao, Z. Y., and Yu, T. X., 2006, “One-Dimensional Analysis on the Dynamic Response of Cellular Chains to Pulse Loading,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.,220(5), pp. 679–689. [CrossRef]
Zou, Z., Tan, P. J., Reid, S. R., Li, S., and Harrigan, J. J., 2007, “Dynamic Crushing of a One-Dimensional Chain of Type II Structures,” Int. J. Impact Eng., 34(2), pp. 303–328. [CrossRef]
Reid, S. R., and Peng, C., 1997, “Dynamic Uniaxial Crushing of Wood,” Int. J. Impact Eng., 19(5–6), pp. 531–570. [CrossRef]
Ashby, M. F., Evan, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., and Wadley, H. N. G., 2000, Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford, UK.
Tan, P. J., Harrigan, J. J., and Reid, S. R., 2002, “Inertia Effects in Uniaxial Dynamic Compression of a Closed Cell Aluminium Alloy Foam,” Mater. Sci. Technol., 18(5), pp. 480–488. [CrossRef]
Lopatnikov, S. L., Gama, B. A., Haque, M. J., Krauthauser, C., and Gillespie, J. W., 2004, “High-Velocity Plate Impact of Metal Foams,” Int. J. Impact Eng., 30(4), pp. 421–445. [CrossRef]
Tan, P. J., Reid, S. R., Harrigan, J. J., Zou, Z., and Li, S., 2005, “Dynamic Compressive Strength Properties of Aluminium Foams. Part I - Experimental Data and Observations,” J. Mech. Phys. Solids, 53(10), pp. 2174–2205. [CrossRef]
Tan, P. J., Reid, S. R., Harrigan, J. J., Zou, Z., and Li, S., 2005, “Dynamic Compressive Strength Properties of Aluminium Foams. Part II - ‘Shock’ Theory and Comparison With Experimental Data and Numerical Models,” J. Mech. Phys. Solids, 53(10), pp. 2206–2230. [CrossRef]
Li, Q. M., and Reid, S. R., 2006, “About One-Dimensional Shock Propagation in a Cellular Material,” Int. J. Impact Eng., 32(11), pp. 1898–1906. [CrossRef]
Li, Q. M., Magkiriadis, I., and Harrigan, J. J., 2006, “Compressive Strain at the Onset of Densification of Cellular Solids,” J. Cell. Plast., 42(5), pp. 371–392. [CrossRef]
Harrigan, J. J., Reid, S. R., and Yaghoubi, A. S., 2010, “The Correct Analysis of Shocks in a Cellular Material,” Int. J. Impact Eng., 37(8), pp. 918–927. [CrossRef]
Qiu, X. M., Zhang, J., and Yu, T. X., 2009, “Collapse of Periodic Planar Lattices Under Uniaxial Compression, Part II: Dynamic Crushing Based on Finite Element Simulation,” Int. J. Impact Eng., 36(10–11), pp. 1231–1241. [CrossRef]
Elnasri, I., Pattofatto, S., Zhao, H., Tsitsiris, H., Hild, F., and Girard, Y., 2007, “Shock Enhancement of Cellular Structures Under Impact Loading: Part I Experiments,” J. Mech. Phys. Solids, 55(12), pp. 2652–2671. [CrossRef]
Pattofatto, S., Elnasri, I., Zhao, H., Tsitsiris, H., Hild, F., and Girard, Y., 2007, “Shock Enhancement of Cellular Structures Under Impact Loading: Part II Analysis,” J. Mech. Phys. Solids, 55(12), pp. 2672–2686. [CrossRef]
Ruan, D., Lu, G., Wang, B., and Yu, T. X., 2003, “In-Plane Dynamic Crushing of Honeycombs - A Finite Element Study,” Int. J. Impact Eng., 28(2), pp. 161–182. [CrossRef]
Li, K., Gao, X. L., and Wang, J., 2007, “Dynamic Crushing Behavior of Honeycomb Structures With Irregular Cell Shapes and Non-Uniform Cell Wall Thickness,” Int. J. Solids Struct., 44(14–15), pp. 5003–5026. [CrossRef]
Nakamoto, H., Adachi, T., and Araki, W., 2009, “In-Plane Impact Behavior of Honeycomb Structures Filled With Linearly Arranged Inclusions,” Int. J. Impact Eng., 36(8), pp. 1019–1026. [CrossRef]
Qiu, X. M., Zhang, J., and Yu, T. X., 2009, “Collapse of Periodic Planar Lattices Under Uniaxial Compression, Part I: Quasi-Static Strength Predicted by Limit Analysis,” Int. J. Impact Eng., 36(10–11), pp. 1223–1230. [CrossRef]
Gao, Z. Y., Yu, T. X., and Zhao, H., 2008, “Mechanical Behavior of Metallic Hollow Sphere Materials: Experimental Study,” J. Aerosp. Eng., 21(4), pp. 206–216. [CrossRef]
Karagiozova, D., Yu, T. X., and Gao, Z. Y., 2006, “Modelling of MHS Cellular Solid in Large Strains,” Int. J. Mech. Sci., 48(11), pp. 1273–1286. [CrossRef]
Karagiozova, D., Yu, T. X., and Gao, Z. Y., 2007, “Stress-Strain Relationship for Metal Hollow Sphere Materials as a Function of Their Relative Density,” J. Appl. Mech., 74(5), pp. 898–907. [CrossRef]
Dawson, M. A., McKinley, G. H., and Gibson, L. J., 2008, “The Dynamic Compressive Response of Open-Cell Foam Impregnated With a Newtonian Fluid,” J. Appl. Mech., 75(4), p. 041015. [CrossRef]
Dawson, M. A., McKinley, G. H., and Gibson, L. J., 2009, “The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid,” J. Appl. Mech., 76(6), p. 061011. [CrossRef]
Subhash, G., and Liu, Q. L., 2009, “Quasistatic and Dynamic Crushability of Polymeric Foams in Rigid Confinement,” Int. J. Impact Eng., 36(10–11), pp. 1303–1311. [CrossRef]
Vural, M., and Ravichandran, G., 2003, “Dynamic Response and Energy Dissipation Characteristics of Balsa Wood: Experiment and Analysis,” Int. J. Solids Struct., 40(9), pp. 2147–2170. [CrossRef]
Fleck, N. A., and Deshpande, V. S., 2004, “The Resistance of Clamped Sandwich Beams to Shock Loading,” J. Appl. Mech., 71(3), pp. 386–401. [CrossRef]
Qiu, X., Deshpande, V. S., and Fleck, N. A., 2003, “Finite Element Analysis of the Dynamic Response of Clamped Sandwich Beams Subject to Shock Loading,” Eur. J. Mech. A/Solids, 22(6), pp. 801–814. [CrossRef]
Qiu, X., Deshpande, V. S., and Fleck, N. A., 2004, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading,” J. Appl. Mech., 71(5), pp. 637–645. [CrossRef]
Qiu, X., Deshpande, V. S., and Fleck, N. A., 2005, “Impulsive Loading of Clamped Monolithic and Sandwich Beams Over a Central Patch,” J. Mech. Phys. Solids, 53(5), pp. 1015–1046. [CrossRef]
Vaziri, A., and Hutchinson, J. W., 2007, “Metal Sandwich Plates Subject to Intense Air Shocks,” Int. J. Solids Struct., 44(6), pp. 2021–2035. [CrossRef]
Zhu, F., Zhao, L. M., Lu, G. X., and Wang, Z. H., 2008, “Deformation and Failure of Blast-Loaded Metallic Sandwich Panels - Experimental Investigations,” Int. J. Impact Eng., 35(8), pp. 937–951. [CrossRef]
Zhu, F., Zhao, L. M., Lu, G. X., and Gad, E., 2009, “A Numerical Simulation of the Blast Impact of Square Metallic Sandwich Panels,” Int. J. Impact Eng., 36(5), pp. 687–699. [CrossRef]
Zhu, F., Wang, Z. H., Lu, G. X., and Nurick, G., 2010, “Some Theoretical Considerations on the Dynamic Response of Sandwich Structures Under Impulsive Loading,” Int. J. Impact Eng., 37(6), pp. 625–637. [CrossRef]
Shen, J. H., Lu, G. X., Wang, Z. H., and Zhao, L. M., 2010, “Experiments on Curved Sandwich Panels Under Blast Loading,” Int. J. Impact Eng., 37(9), pp. 960–970. [CrossRef]
Li, R. F., Kardomateas, G. A., and Simitses, G. J., 2008, “Nonlinear Response of a Shallow Sandwich Shell With Compressible Core to Blast Loading,” J. Appl. Mech., 75(6), p. 061023. [CrossRef]
Main, J. A., and Gazonas, G. A., 2008, “Uniaxial Crushing of Sandwich Plates Under Air Blast: Influence of Mass Distribution,” Int. J. Solids Struct., 45(7–8), pp. 2297–2321. [CrossRef]
Andrews, E. W., and Moussa, N. A., 2009, “Failure Mode Maps for Composite Sandwich Panels Subjected to Air Blast Loading,” Int. J. Impact Eng., 36(3), pp. 418–425. [CrossRef]
Radford, D. D., McShane, G. J., Deshpande, V. S., and Fleck, N. A., 2006, “The Response of Clamped Sandwich Plates With Metallic Foam Cores to Simulated Blast Loading,” Int. J. Solids Struct., 43(7–8), pp. 2243–2259. [CrossRef]
Radford, D. D., Fleck, N. A., and Deshpande, V. S., 2006, “The Response of Clamped Sandwich Beams Subjected to Shock Loading,” Int. J. Impact Eng., 32(6), pp. 968–987. [CrossRef]
Rathbun, H. J., Radford, D. D., Xue, Z., He, M. Y., Yang, J., Deshpande, V., Fleck, N. A., Hutchinson, J. W., Zok, F. W., and Evans, A. G., 2006, “Performance of Metallic Honeycomb-Core Sandwich Beams Under Shock Loading,” Int. J. Solids Struct., 43(6), pp. 1746–1763. [CrossRef]
McShane, G. J., Deshpande, V. S., and Fleck, N. A., 2007, “Dynamic Compressive Response of Stainless-Steel Square Honeycombs,” J. Appl. Mech., 74(4), pp. 658–667. [CrossRef]
Tilbrook, M. T., Radford, D. D., Deshpande, V. S., and Fleck, N. A., 2007, “Dynamic Crushing of Sandwich Panels With Prismatic Lattice Cores,” Int. J. Solids Struct., 44(18–19), pp. 6101–6123. [CrossRef]
Zarei, H. R., and Kroger, M., 2008, “Bending Behavior of Empty and Foam-Filled Beams: Structural Optimization,” Int. J. Impact Eng., 35(6), pp. 521–529. [CrossRef]
Deshpande, V. S., and Fleck, N. A., 2005, “One-Dimensional Response of Sandwich Plates to Underwater Shock Loading,” J. Mech. Phys. Solids, 53(11), pp. 2347–2383. [CrossRef]
Liang, Y. M., Spuskanyuk, A. V., Flores, S. E., Hayhurst, D. R., Hutchinson, J. W., McMeeking, R. M., and Evans, A. G., 2007, “The Response of Metallic Sandwich Panels to Water Blast,” J. Appl. Mech., 74(1), pp. 81–99. [CrossRef]
Tilbrook, M. T., Deshpande, V. S., and Fleck, N. A., 2009, “Underwater Blast Loading of Sandwich Beams: Regimes of Behaviour,” Int. J. Solids Struct., 46(17), pp. 3209–3221. [CrossRef]
McMeeking, R. M., Spuskanyuk, A. V., He, M. Y., Deshpande, V. S., Fleck, N. A., and Evans, A. G., 2008, “An Analytic Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels,” Int. J. Solids Struct., 45(2), pp. 478–496. [CrossRef]
Wei, Z., Deshpande, V. S., Evans, A. G., Dharmasena, K. P., Queheillalt, D. T., Wadley, H. N. G., Murty, Y. V., Elzey, R. K., Dudt, P., Chen, Y., Knight, D., and Kiddy, K., 2008, “The Resistance of Metallic Plates to Localized Impulse,” J. Mech. Phys. Solids, 56(5), pp. 2074–2091. [CrossRef]
Rubino, V., Deshpande, V. S., and Fleck, N. A., 2008, “The Dynamic Response of End-Clamped Sandwich Beams With a Y-Frame or Corrugated Core,” Int. J. Impact Eng., 35(8), pp. 829–844. [CrossRef]
Dharmasena, K. P., Wadley, H. N. G., Xue, Z. Y., and Hutchinson, J. W., 2008, “Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading,” Int. J. Impact Eng., 35(9), pp. 1063–1074. [CrossRef]
Theobald, M. D., and Nurick, G. N., 2007, “Numerical Investigation of the Response of Sandwich-Type Panels Using Thin-Walled Tubes Subject to Blast Loads,” Int. J. Impact Eng., 34(1), pp. 134–156. [CrossRef]
Theobald, M. D., and Nurick, G. N., 2010, “Experimental and Numerical Analysis of Tube-Core Claddings Under Blast Loads,” Int. J. Impact Eng., 37(3), pp. 333–348. [CrossRef]
Yungwirth, C. J., Wadley, H. N. G., O’Connor, J. H., Zakraysek, A. J., and Deshpande, V. S., 2008, “Impact Response of Sandwich Plates With a Pyramidal Lattice Core,” Int. J. Impact Eng., 35(8), pp. 920–936. [CrossRef]
Yu, J. L., Wang, E. H., Li, J. R., and Zheng, Z. J., 2008, “Static and Low-Velocity Impact Behavior of Sandwich Beams With Closed-Cell Aluminum-Foam Core in Three-Point Bending,” Int. J. Impact Eng., 35(8), pp. 885–894. [CrossRef]
Castanie, B., Bouvet, C., Aminanda, Y., Barrau, J. J., and Thevenet, P., 2008, “Modelling of Low-Energy/Low-Velocity Impact on Nomex Honeycomb Sandwich Structures With Metallic Skins,” Int. J. Impact Eng., 35(7), pp. 620–634. [CrossRef]
Zeng, H. B., Pattofatto, S., Zhao, H., Girard, Y., and Fascio, V., 2010, “Perforation of Sandwich Plates With Graded Hollow Sphere Cores Under Impact Loading,” Int. J. Impact Eng., 37(11), pp. 1083–1091. [CrossRef]
Oliveira, D. A., Worswick, M. J., Grantab, R., Williams, B. W., and Mayer, R., 2006, “Effect of Forming Process Variables on the Crashworthiness of Aluminum Alloy Tubes,” Int. J. Impact Eng., 32(5), pp. 826–846. [CrossRef]
Williams, B. W., Simha, C. H. M., Abedrabbo, N., Mayer, R., and Worswick, M. J., 2010, “Effect of Anisotropy, Kinematic Hardening, and Strain-Rate Sensitivity on the Predicted Axial Crush Response of Hydroformed Aluminium Alloy Tubes,” Int. J. Impact Eng., 37(6), pp. 652–661. [CrossRef]
Williams, B. W., Worswick, M. J., D’Amours, G., Rahem, A., and Mayer, R., 2010, “Influence of Forming Effects on the Axial Crush Response of Hydroformed Aluminum Alloy Tubes,” Int. J. Impact Eng., 37(10), pp. 1008–1020. [CrossRef]
Vangi, D., 2009, “Energy Loss in Vehicle to Vehicle Oblique Impact,” Int. J. Impact Eng., 36(3), pp. 512–521. [CrossRef]
Neves, R. R. V., Micheli, G. B., and Alves, M., 2010, “An Experimental and Numerical Investigation on Tyre Impact,” Int. J. Impact Eng., 37(6), pp. 685–693. [CrossRef]
Chen, Y., Tong, Z. P., Hua, H. X., Wang, Y., and Gou, H. Y., 2009, “Experimental Investigation on the Dynamic Response of Scaled Ship Model With Rubber Sandwich Coatings Subjected to Underwater Explosion,” Int. J. Impact Eng., 36(2), pp. 318–328. [CrossRef]
Wang, L. L., Yang, L. M., Huang, D. J., Zhang, Z. W., and Chen, G. Y., 2008, “An Impact Dynamics Analysis on a New Crashworthy Device Against Ship-Bridge Collision,” Int. J. Impact Eng., 35(8), pp. 895–904. [CrossRef]
Hanssen, A. G., Girard, Y., Olovsson, L., Berstad, T., and Langseth, M., 2006, “A Numerical Model for Bird Strike of Aluminium Foam-Based Sandwich Panels,” Int. J. Impact Eng., 32(7), pp. 1127–1144. [CrossRef]
Meguid, S. A., Mao, R. H., and Ng, T. Y., 2008, “FE Analysis of Geometry Effects of an Artificial Bird Striking an Aeroengine Fan Blade,” Int. J. Impact Eng., 35(6), pp. 487–498. [CrossRef]
Hughes, K., Campbell, J., and Vignjevic, R., 2008, “Application of the Finite Element Method to Predict the Crashworthy Response of a Metallic Helicopter Under Floor Structure Onto Water,” Int. J. Impact Eng., 35(5), pp. 347–362. [CrossRef]
Palmer, A., Touhey, M., Holder, S., Anderson, M., and Booth, S., 2006, “Full-Scale Impact Tests on Pipelines,” Int. J. Impact Eng., 32(8), pp. 1267–1283. [CrossRef]
Jones, N., and Birch, R. S., 2010, “Low-Velocity Impact of Pressurised Pipelines,” Int. J. Impact Eng., 37(2), pp. 207–219. [CrossRef]
Yang, J. L., Lu, G. Y., Yu, T. X., and Reid, S. R., 2009, “Experimental Study and Numerical Simulation of Pipe-On-Pipe Impact,” Int. J. Impact Eng., 36(10–11), pp. 1259–1268. [CrossRef]
Karac, A., and Ivankovic, A., 2009, “Investigating the Behaviour of Fluid-Filled Polyethylene Containers Under Base Drop Impact: A Combined Experimental/Numerical Approach,” Int. J. Impact Eng., 36( 4), pp. 621–631. [CrossRef]
Dong, Q., Li, Q. M., and Zheng, J. Y., 2010, “Further Study on Strain Growth in Spherical Containment Vessels Subjected to Internal Blast Loading,” Int. J. Impact Eng., 37(2), pp. 196–206. [CrossRef]
Dong, Q., Li, Q. M., and Zheng, J. Y., 2010, “Interactive Mechanisms Between the Internal Blast Loading and the Dynamic Elastic Response of Spherical Containment Vessels,” Int. J. Impact Eng., 37(4), pp. 349–358. [CrossRef]
Chen, Y. J., Wu, X. D., Zheng, J. Y., Deng, G. D., and Li, Q. M., 2010, “Dynamic Responses of Discrete Multi-Layered Explosion Containment Vessels With the Consideration of Strain-Hardening and Strain-Rate Effects,” Int. J. Impact Eng., 37(7), pp. 842–853. [CrossRef]
Xue, P., Yu, T. X., and Tao, X. M., 2001, “Flat-Topped Conical Shell Under Axial Compression,” Int. J. Mech. Sci., 43(9), pp. 2125 -2145. [CrossRef]
Xue, P., Yu, T. X., and Tao, X. M., 2002, “Tensile Properties and Meso-Scale Mechanism of Weft Knitted Textile Composites for Energy Absorption,” Composites, Part A, 33(1), pp. 113–123. [CrossRef]
Tao, X. M., Xue, P., and Yu, T. X., 2003, “New Development of Cellular Textile Composites for Energy-Absorption Applications,” J. Ind. Text., 33(1), pp. 15–31. [CrossRef]
Mills, N. J., and Gilchrist, A., 2008, “Oblique Impact Testing of Bicycle Helmets,” Int. J. Impact Eng., 35(9), pp. 1075–1086. [CrossRef]
Mills, N. J., and Gilchrist, A., 2008, “Finite-Element Analysis of Bicycle Helmet Oblique Impacts,” Int. J. Impact Eng., 35(9), pp. 1087–1101. [CrossRef]
Mills, N. J., Wilkes, S., Derler, S., and Flisch, A., 2009, “FEA of Oblique Impact Tests on a Motorcycle Helmet,” Int. J. Impact Eng., 36(7), pp. 913–925. [CrossRef]
Pinnoji, P. K., Mahajan, P., Bourdet, N., Deck, C., and Willinger, R., 2010, “Impact Dynamics of Metal Foam Shells for Motorcycle Helmets: Experiments and Numerical Modeling,” Int. J. Impact Eng., 37(3), pp. 274–284. [CrossRef]
Zhou, C. Y., Yu, T. X., and Lee, R. S. W., 2008, “Drop/Impact Tests and Analysis of Typical Portable Electronic Devices,” Int. J. Mech. Sci., 50(5), pp. 905–917. [CrossRef]
Zhou, C. Y., Yu, T. X., and Suhir, E., 2009, “Design of Shock Table Tests to Mimic Real-Life Drop Conditions,” IEEE Trans. Compon. Packag. Technol., 32, pp. 832–837. [CrossRef]
Shi, B. J., Shu, D. W., Wang, S., Luo, J., Meng, H., Ng, Q., Lau, J. H. T., and Zambri, R., 2007, “Drop Test Simulation and Power Spectrum Analysis of a Head Actuator Assembly in a Hard Disk Drive,” Int. J. Impact Eng., 34(1), pp. 120–133. [CrossRef]
Luo, J., Shu, D. W., Shi, B. J., and Gu, B., 2007, “The Pulse Width Effect on the Shock Response of the Hard Disk Drive,” Int. J. Impact Eng., 34(8), pp. 1342–1349. [CrossRef]
Jenq, S. T., Sheu, H. S., Yeh, C. L., Lai, Y. S., and Wu, J. D., 2007, “High-G Drop Impact Response and Failure Analysis of a Chip Packaged Printed Circuit Board,” Int. J. Impact Eng., 34(10), pp. 1655–1667. [CrossRef]
Chakka, V., Trabia, M. B., O’Toole, B., Sridharala, S., Ladkany, S., and Chowdhury, M., 2008, “Modeling and Reduction of Shocks on Electronic Components Within a Projectile,” Int. J. Impact Eng., 35(11), pp. 1326–1338. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Collapses of tubes under axial loading: (a) ring mode, (b) diamond mode, and (c) mixed mode [4]

Grahic Jump Location
Fig. 2

Deformed configurations of tube specimens after quasi-static test: (a) original tube, and (b) a tube with buckling initiator [41]

Grahic Jump Location
Fig. 3

The energy dissipation partitioning for beam-on-beam collisions [50]

Grahic Jump Location
Fig. 4

Schematic of deformation and fracture of the beams in a double impact case [52]

Grahic Jump Location
Fig. 5

Examples of two types of structures [71]

Grahic Jump Location
Fig. 6

Engineering stress-strain curve of a cellular material [78]

Grahic Jump Location
Fig. 7

Design chart for a sandwich beam with a pyramidal core [95]

Grahic Jump Location
Fig. 8

(a) The configuration used for the paddle wheel test and (b) the triangular honeycomb sandwich panel used for the measurements [117]

Grahic Jump Location
Fig. 9

Sketches of the sandwich core topologies: (a) pyramidal core, (b) diamond-celled core, (c) corrugated core, (d) hexagonal-honeycomb core, and (e) square-honeycomb core [95]

Grahic Jump Location
Fig. 10

Partial schematics (left) and the photo of the SWRC flexible crashworthy device [132]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In