Multiparticle Effective Field and Related Methods in Micromechanics of Composite Materials

[+] Author and Article Information
V. A. Buryachenko

Air Force Research Laboratory, Materials Directorate, AFRL/MLBC, Wright-Patterson AFB, OH 45433-7750

Appl. Mech. Rev 54(1), 1-47 (Jan 01, 2001) (47 pages) doi:10.1115/1.3097287 History: Online April 07, 2009


The numerous approaches used in micromechanics can be classified into four broad categories: perturbation methods, self-consistent methods of truncation of a hierarchy, variational methods, and the model methods. In detail we will consider the self-consistent methods applied to linear elastic problems, based on some approximate and closing assumptions for truncating of an infinite system of integral equations involved and their approximate solution. We consider multiparticle effective field methods, effective medium methods, the Mori-Tanaka method, differential methods and some others. This review article tends to concentrate on methods and concepts, their possible generalizations, and connections of different methods, rather than explicit results. In the framework of a unique scheme, we undertake an attempt to analyze the wide class of statical and dynamical, local and nonlocal, linear and nonlinear micromechanical problems of composite materials with deterministic (periodic and non-periodic) and random (statistically homogeneous and inhomogeneous, so-called graded) structures, containing coated or uncoated inclusions of any shape and orientation and subjected to coupled or uncoupled, homogeneous or inhomogeneous, external fields of different physical natures. The last section contains a discussion of prospects for future work. The article includes 540 references.

Copyright © 2001 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In