Reed, H. L., Saric, W. S., and Arnal, D., 1996, “Linear Stability Theory Applied to Boundary Layers,” Annu. Rev. Fluid Mech., 28 (1), pp. 389–428.

[CrossRef]Chedevergne, F., Casalis, G., and Féraille, T., 2006, “Biglobal Linear Stability Analysis of the Flow Induced by Wall Injection,” Phys. Fluids, 18 , p. 014103.

[CrossRef]Jacquin, L., Fabre, D., Sipp, D., and Coustols, E., 2005, “Unsteadiness, Instability and Turbulence in Trailing Vortices,” C. R. Phys., 6 (4–5), pp. 399–414.

[CrossRef]Jacquin, L., Molton, P., Deck, S., Maury, B., and Soulevant, D., 2009, “Experimental Study of Shock Oscillation Over a Transonic Supercritical Profile,” AIAA J., 47 (9), pp. 1985–1994.

[CrossRef]Deprés, D., Reijasse, P., and Dussauge, J., 2004, “Analysis of Unsteadiness in Afterbody Transonic Flows,” AIAA J., 42 (12), pp. 2541–2550.

[CrossRef]Chauvet, N., Deck, S., and Jacquin, L., 2007, “Numerical Study of Mixing Enhancement in a Supersonic Round Jet,” AIAA J., 45 (7), pp. 1675–1687.

[CrossRef]Rowley, C., Colonius, T., and Basu, A., 2002, “On Self-Sustained Oscillations in Two-Dimensional Compressible Flow Over Rectangular Cavities,” J. Fluid Mech., 455 , pp. 315–346.

[CrossRef]Khorrami, M. R., Berkman, M. E., and Choudhari, M., 2000, “Unsteady Flow Computations of a Slat With a Blunt Trailing Edge,” AIAA J., 38 (11), pp. 2050–2058.

[CrossRef]Mauffrey, Y., Rahier, G., and Prieur, J., 2009, “Numerical Investigation on Blade/Wake-Interaction Noise Generation,” J. Aircr., 46 (5), pp. 1479–1486.

[CrossRef]Nash, E. C., Lowson, M. V., and McAlpine, A., 1999, “Boundary-Layer Instability Noise on Aerofoils,” J. Fluid Mech., 382 , pp. 27–61.

[CrossRef]Schmid, P. J., 2007, “Nonmodal Stability Theory,” Annu. Rev. Fluid Mech., 39 , pp. 129–162.

[CrossRef]Schmid, P. J., and Henningson, D. S., 2001, "*Stability and Transition in Shear Flows*", Springer-Verlag, New York.

Huerre, P., and Rossi, M., 1998, “Hydrodynamic Instabilities in Open Flows,” "

*Hydrodynamics and Nonlinear Instabilities*", C.Godrèche and P.Manneville, eds., Cambridge University Press, Cambridge, pp. 81–294.

[CrossRef]Ellingsen, T., and Palm, E., 1975, “Stability of Linear Flow,” Phys. Fluids, 18 (4), pp. 487–488.

[CrossRef]Landahl, M. T., 1980, “A Note on an Algebraic Instability of Inviscid Parallel Shear Flows,” J. Fluid Mech., 98 , pp. 243–251.

[CrossRef]Butler, K. M., and Farrell, B. F., 1992, “3-Dimensional Optimal Perturbations in Viscous Shear-Flow,” Phys. Fluids A, 4 (8), pp. 1637–1650.

[CrossRef]Farrell, B. F., and Ioannou, P. J., 1993, “Optimal Excitation of 3-Dimensional Perturbations in Viscous Constant Shear-Flow,” Phys. Fluids A, 5 (6), pp. 1390–1400.

[CrossRef]Reddy, S. C., and Henningson, D. S., 1993, “Energy Growth in Viscous Channel Flows,” J. Fluid Mech., 252 , pp. 209–238.

[CrossRef]Farrell, B. F., 1988, “Optimal Excitation of Perturbations in Viscous Shear Flow,” Phys. Fluids, 31 (8), pp. 2093–2102.

[CrossRef]Luchini, P., and Bottaro, A., 1998, “Gortler Vortices: A Backward-in-Time Approach to the Receptivity Problem,” J. Fluid Mech., 363 , pp. 1–23.

[CrossRef]Andersson, P., Berggren, M., and Henningson, D. S., 1999, “Optimal Disturbances and Bypass Transition in Boundary Layers,” Phys. Fluids, 11 (1), pp. 134–150.

[CrossRef]Luchini, P., 2000, “Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations,” J. Fluid Mech., 404 , pp. 289–309.

[CrossRef]Corbett, P., and Bottaro, A., 2000, “Optimal Perturbations for Boundary Layers Subject to Stream-Wise Pressure Gradient,” Phys. Fluids, 12 (1), pp. 120–130.

[CrossRef]Corbett, P., and Bottaro, A., 2001, “Optimal Linear Growth in Swept Boundary Layers,” J. Fluid Mech., 435 , pp. 1–23.

[CrossRef]Guégan, A., Huerre, P., and Schmid, P. J., 2007, “Optimal Disturbances in Swept Hiemenz Flow,” J. Fluid Mech., 578 , pp. 223–232.

[CrossRef]Guégan, A., Schmid, P. J., and Huerre, P., 2008, “Spatial Optimal Disturbances in Swept Attachment-Line Boundary Layers,” J. Fluid Mech., 603 , pp. 179–188.

[CrossRef]Zebib, A., 1987, “Stability of a Viscous Flow Past a Circular Cylinder,” J. Eng. Math., 21 (2), pp. 155–165.

[CrossRef]Jackson, C. P., 1987, “A Finite-Element Study of the Onset of Vortex Shedding in Flow Past Variously-Shaped Bodies,” J. Fluid Mech., 182 , pp. 23–45.

[CrossRef]Noack, B. R., and Eckelmann, H., 1994, “A Global Stability Analysis of the Steady and Periodic Cylinder Wake,” J. Fluid Mech., 270 , pp. 297–330.

[CrossRef]Natarajan, R., and Acrivos, A., 1993, “The Instability of the Steady Flow Past Spheres and Disks,” J. Fluid Mech., 254 , pp. 323–344.

[CrossRef]Lin, R. S., and Malik, M. R., 1996, “On the Stability of Attachment-Line Boundary Layers. Part 1. The Incompressible Swept Hiemenz Flow,” J. Fluid Mech., 311 , pp. 239–255.

[CrossRef]Edwards, W. S., Tuckerman, L. S., Friesner, R. A., and Sorensen, D. C., 1994, “Krylov Methods for the Incompressible Navier-Stokes Equations,” J. Comput. Phys., 110 , pp. 82–102.

[CrossRef]Barkley, D., and Henderson, R. D., 1996, “Three-Dimensional Floquet Analysis of the Wake of a Circular Cylinder,” J. Fluid Mech., 322 , pp. 215–241.

[CrossRef]Lehoucq, R. B., and Sorensen, D. C., 1996, “Deflation Techniques for an Implicitly Restarted Arnoldi Iteration,” SIAM J. Matrix Anal. Appl., 17 (4), pp. 789–821.

[CrossRef]Theofilis, V., 2003, “Advances in Global Linear Instability Analysis of Nonparallel and Three-Dimensional Flows,” Prog. Aerosp. Sci., 39 (4), pp. 249–315.

[CrossRef]Barkley, D., Gomes, M. G. M., and Henderson, R. D., 2002, “Three-Dimensional Instability in Flow Over a Backward-Facing Step,” J. Fluid Mech., 473 , pp. 167–190.

[CrossRef]Gallaire, F., Marquillie, M., and Ehrenstein, U., 2007, “Three-Dimensional Transverse Instabilities in Detached Boundary Layers,” J. Fluid Mech., 571 , pp. 221–233.

[CrossRef]Sipp, D., and Lebedev, A., 2007, “Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows,” J. Fluid Mech., 593 , pp. 333–358.

[CrossRef]Åkervik, E., Hoepffner, J., Ehrenstein, U., and Henningson, D. S., 2007, “Optimal Growth, Model Reduction and Control in a Separated Boundary-Layer Flow Using Global Eigenmodes,” J. Fluid Mech., 579 , pp. 305–314.

[CrossRef]Bagheri, S., Schlatter, P., Schmid, P. J., and Henningson, D. S., 2009, “Global Stability of a Jet in Cross-Flow,” J. Fluid Mech., 624 , pp. 33–44.

[CrossRef]Robinet, J. -C., 2007, “Bifurcations in Shock-Wave/Laminar-Boundary-Layer Interaction: Global Instability Approach,” J. Fluid Mech., 579 , pp. 85–112.

[CrossRef]Brès, G. A., and Colonius, T., 2008, “Three-Dimensional Instabilities in Compressible Flow Over Open Cavities,” J. Fluid Mech., 599 , pp. 309–339.

[CrossRef]Mack, C. J., Schmid, P. J., and Sesterhenn, J. L., 2008, “Global Stability of Swept Flow Around a Parabolic Body: Connecting Attachment-Line and Crossflow Modes,” J. Fluid Mech., 611 , pp. 205–214.

[CrossRef]Chomaz, J. -M., 2005, “Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity,” Annu. Rev. Fluid Mech., 37 , pp. 357–392.

[CrossRef]Monkewitz, P. A., Huerre, P., and Chomaz, J. -M., 1993, “Global Linear-Stability Analysis of Weakly Nonparallel Shear Flows,” J. Fluid Mech., 251 , pp. 1–20.

[CrossRef]Pier, B., and Huerre, P., 2001, “Nonlinear Self-Sustained Structures and Fronts in Spatially Developing Wake Flows,” J. Fluid Mech., 435 , pp. 145–174.

[CrossRef]Hammond, D. A., and Redekopp, L. G., 1997, “Global Dynamics of Symmetric and Asymmetric Wakes,” J. Fluid Mech., 331 , pp. 231–260.

[CrossRef]Pier, B., 2002, “On the Frequency Selection of Finite-Amplitude Vortex Shedding in the Cylinder Wake,” J. Fluid Mech., 458 , pp. 407–417.

[CrossRef]Barkley, D., 2006, “Linear Analysis of the Cylinder Wake Mean Flow,” Europhys. Lett., 75 (5), pp. 750–756.

[CrossRef]Khor, M., Sheridan, J., Thompson, M. C., and Hourigan, K., 2008, “Global Frequency Selection in the Observed Time-Mean Wakes of Circular Cylinders,” J. Fluid Mech., 601 (1), pp. 425–441.

[CrossRef]Leontini, J. S., Thompson, M. C., and Hourigan, K., 2010, “A Numerical Study of Global Frequency Selection in the Time-Mean Wake of a Circular Cylinder,” J. Fluid Mech., 645 (1), pp. 435–446.

[CrossRef]Williamson, C. H., 1988, “Defining a Universal and Continuous Strouhal-Reynolds Number Relationship for the Laminar Vortex Shedding of a Circular Cylinder,” Phys. Fluids, 31 (10), pp. 2742–2744.

[CrossRef]Trefethen, L. N., Trefethen, A. E., Reddy, S. C., and Driscoll, T. A., 1993, “Hydrodynamic Stability Without Eigenvalues,” Science, 261 (5121), pp. 578–584.

[CrossRef]Ehrenstein, U., and Gallaire, F., 2005, “On Two-Dimensional Temporal Modes in Spatially Evolving Open Flows: The Flat-Plate Boundary Layer,” J. Fluid Mech., 536 , pp. 209–218.

[CrossRef]Alizard, F., and Robinet, J. -C., 2007, “Spatially Convective Global Modes in a Boundary Layer,” Phys. Fluids, 19 (11), p. 114105.

[CrossRef]Akervik, E., Ehrenstein, U., Gallaire, F., and Henningson, D. S., 2008, “Global Two-Dimensional Stability Measures of the Flat Plate Boundary-Layer Flow,” Eur. J. Mech. B/Fluids, 27 (5), pp. 501–513.

[CrossRef]Alizard, F., Cherubini, S., and Robinet, J. -C., 2009, “Sensitivity and Optimal Forcing Response in Separated Boundary Layer Flows,” Phys. Fluids, 21 (6), p. 064108.

[CrossRef]Huerre, P., and Monkewitz, P. A., 1985, “Absolute and Convective Instabilities in Free Shear Layers,” J. Fluid Mech., 159 , pp. 151–168.

[CrossRef]Giannetti, F., and Luchini, P., 2007, “Structural Sensitivity of the First Instability of the Cylinder Wake,” J. Fluid Mech., 581 , pp. 167–197.

[CrossRef]Le Dizès, S., Huerre, P., and Chomaz, J. -M., 1993, “Nonlinear Stability Analysis of Slowly-Varying Medias: Limitations of the Weakly Nonlinear Approach,” "*Proceedings of the IUTAM Symposium on Bluff-body Wakes, Dynamics and Instabilities*", Springer, Berlin, pp. 147–152.

Cossu, C., and Chomaz, J. -M., 1997, “Global Measures of Local Convective Instabilities,” Phys. Rev. Lett., 78 (23), pp. 4387–4390.

[CrossRef]Gad-el Hak, M., Pollard, A., and Bonnet, J. -P., 1998, "*Flow Control: Fundamentals and Practices*", Springer-Verlag, Berlin.

Collis, S. S., Joslin, R. D., Seifert, A., and Theofilis, V., 2004, “Issues in Active Flow Control: Theory, Control, Simulation, and Experiment,” Prog. Aerosp. Sci., 40 (4–5), pp. 237–289.

[CrossRef]Choi, H., Jeon, W. -P., and Kim, J., 2008, “Control of Flow Over a Bluff Body,” Annu. Rev. Fluid Mech., 40 , pp. 113–139.

[CrossRef]Pier, B., 2003, “Open-Loop Control of Absolutely Unstable Domains,” Proc. R. Soc. London, Ser. A, 459 (2033), pp. 1105–1115.

[CrossRef]Hwang, Y., and Choi, H., 2006, “Control of Absolute Instability by Basic-Flow Modification in a Parallel Wake at Low Reynolds Number,” J. Fluid Mech., 560 , pp. 465–475.

[CrossRef]Strykowski, P. J., and Sreenivasan, K. R., 1990, “On the Formation and Suppression of Vortex Shedding at Low Reynolds-Numbers,” J. Fluid Mech., 218 , pp. 71–107.

[CrossRef]Delaunay, Y., and Kaiktsis, L., 2001, “Control of Circular Cylinder Wakes Using Base Mass Transpiration,” Phys. Fluids, 13 (11), pp. 3285–3302.

[CrossRef]Arcas, D. R., and Redekopp, L. G., 2004, “Aspects of Wake Vortex Control Through Base Blowing/Suction,” Phys. Fluids, 16 (2), pp. 452–456.

[CrossRef]Sevilla, A., and Martinez-Bazan, C., 2004, “Vortex Shedding in High Reynolds Number Axisymmetric Bluff-Body Wakes: Local Linear Instability and Global Bleed Control,” Phys. Fluids, 16 (9), pp. 3460–3469.

[CrossRef]Sanmiguel-Rojas, E., Sevilla, A., Martinez-Bazan, C., and Chomaz, J. -M., 2009, “Global Mode Analysis of Axisymmetric Bluff-Body Wakes: Stabilization by Base Bleed,” Phys. Fluids, 21 (11), p. 114102.

[CrossRef]Luchtenburg, D. M., Gunther, B., Noack, B. R., King, R., and Tadmor, G., 2009, “A Generalized Mean-Field Model of the Natural and High-Frequency Actuated Flow Around a High-Lift Configuration,” J. Fluid Mech., 623 , pp. 283–316.

[CrossRef]Kim, H., and Chang, K., 1995, “Numerical Study on Vortex Shedding From a Circular Cylinder Influenced by a Nearby Control Wire,” Comput. Fluid Dyn. J., 4 , pp. 151–164.

Mittal, S., and Raghuvanshi, A., 2001, “Control of Vortex Shedding Behind Circular Cylinder for Flows at Low Reynolds Numbers,” Int. J. Numer. Methods Fluids, 35 (4), pp. 421–447.

[CrossRef]Morzynski, M., Afanasiev, K., and Thiele, F., 1999, “Solution of the Eigenvalue Problems Resulting From Global Non-Parallel Flow Stability Analysis,” Comput. Methods Appl. Mech. Eng., 169 (1–2), pp. 161–176.

[CrossRef]Gunzburger, M. D., 2003, "*Perspectives in Flow Control and Optimization*", SIAM, United States.

Meliga, P., Sipp, D., and Chomaz, J. -M., 2010, “Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods,” Seventh IUTAM Symposium on Laminar-Turbulent Transition , P.Schlatter and D.S.Henningson, eds., Vol. 18 , pp. 283–288.

Marquet, O., and Sipp, D., 2010, “Active Steady Control of Vortex Shedding: An Adjoint-Based Sensitivity Approach,” Seventh IUTAM Symposium on Laminar-Turbulent Transition , P.Schlatter and D.S.Henningson, eds., Vol. 18 , pp. 259–264.

Burl, J. B., 1999, "*Linear Optimal Control. H2 and H∞ Methods*", Addison-Wesley, Reading, MA.

Zhou, K., Doyle, C., and Glover, E., 1996, "*Robust and Optimal Control*", Prentice-Hall, Englewood Cliffs, NJ.

Joshi, S. S., Speyer, J. L., and Kim, J., 1997, “A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow,” J. Fluid Mech., 332 , pp. 157–184.

Bewley, T. R., and Liu, S., 1998, “Optimal and Robust Control and Estimation of Linear Paths to Transition,” J. Fluid Mech., 365 , pp. 305–349.

[CrossRef]Cortelezzi, L., and Speyer, J., 1998, “Robust Reduced-Order Controller of Laminar Boundary Layer Transitions,” Phys. Rev. E, 58 (2), pp. 1906–1910.

[CrossRef]Högberg, M., Bewley, T. R., and Henningson, D. S., 2003, “Linear Feedback Control and Estimation of Transition in Plane Channel Flow,” J. Fluid Mech., 481 , pp. 149–175.

[CrossRef]Hœpffner, J., Chevalier, M., Bewley, T. R., and Henningson, D. S., 2005, “State Estimation in Wall-Bounded Flow Systems. Part 1. Laminar Flows,” J. Fluid Mech., 534 , pp. 263–294.

[CrossRef]Chevalier, M., Hopffner, J., Bewley, T. R., and Henningson, D. S., 2006, “State Estimation in Wall-Bounded Flow Systems. Part 2. Turbulent Flows,” J. Fluid Mech., 552 , pp. 167–187.

[CrossRef]Högberg, M., and Henningson, D. S., 2002, “Linear Optimal Control Applied to Instabilities in Spatially Developing Boundary Layers,” J. Fluid Mech., 470 , pp. 151–179.

[CrossRef]Chevalier, M., Hoepffner, J., Akervik, E., and Henningson, D. S., 2007, “Linear Feedback Control and Estimation Applied to Instabilities in Spatially Developing Boundary Layers,” J. Fluid Mech., 588 , pp. 163–187.

[CrossRef]Cortelezzi, L., Lee, K. H., Kim, J., and Speyer, J. L., 1998, “Skin-Friction Drag Reduction via Robust Reduced-Order Linear Feedback Control,” Int. J. Comput. Fluid Dyn., 11 (1), pp. 79–92.

[CrossRef]Lee, K. H., Cortelezzi, L., Kim, J., and Speyer, J., 2001, “Application of Reduced-Order Controller to Turbulent Flows for Drag Reduction,” Phys. Fluids, 13 (5), pp. 1321–1330.

[CrossRef]Kim, J., 2003, “Control of Turbulent Boundary Layers,” Phys. Fluids, 15 (5), pp. 1093–1105.

[CrossRef]Bewley, T. R., 2001, “Flow Control: New Challenges for a New Renaissance,” Prog. Aerosp. Sci., 37 (1), pp. 21–58.

[CrossRef]Kim, J., and Bewley, T. R., 2007, “A Linear Systems Approach to Flow Control,” Annu. Rev. Fluid Mech., 39 , pp. 383–417.

[CrossRef]Lauga, E., and Bewley, T. R., 2003, “The Decay of Stabilizability With Reynolds Number in a Linear Model of Spatially Developing Flows,” Proc. R. Soc. London, Ser. A, 459 , pp. 2077–2095.

[CrossRef]Antoulas, A. C., 2005, "*Approximation of Large-Scale Dynamical Systems*", SIAM, United States.

Henningson, D. S., and Akervik, E., 2008, “The Use of Global Modes to Understand Transition and Perform Flow Control,” Phys. Fluids, 20 (3), p. 031302.

[CrossRef]Moore, B., 1981, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Trans. Autom. Control, 26 , pp. 17–32.

[CrossRef]Laub, A. J., Heath, M. T., Page, C. C., and Ward, R. C., 1987, “Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms,” IEEE Trans. Autom. Control, 32 (2), pp. 115–122.

[CrossRef]Willcox, K., and Peraire, J., 2002, “Balanced Model Reduction via Proper Orthogonal Decomposition,” AIAA J., 40 , pp. 2323–2330.

[CrossRef]Rowley, C. W., 2005, “Model Reduction for Fluids Using Balanced Proper Orthogonal Decomposition,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 15 , pp. 997–1013.

[CrossRef]Lumley, J. L., 1970, "*Stochastic Tools in Turbulence*", Academic, New York.

Sirovich, L., 1987, “Turbulence and the Dynamics of Coherent Structures,” Q. Appl. Math., 45 (3), pp. 561–590.

Berkooz, G., Holmes, P., and Lumley, J. L., 1993, “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Annu. Rev. Fluid Mech., 25 , pp. 539–575.

[CrossRef]Ilak, M., and Rowley, C. W., 2008, “Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition,” Phys. Fluids, 20 , p. 034103.

[CrossRef]Bagheri, S., Henningson, D. S., Hoepffner, J., and Schmid, P. J., 2009, “Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows,” Appl. Mech. Rev., 62 (2), p. 020803.

[CrossRef]Bagheri, S., Brandt, L., and Henningson, D. S., 2009, “Input-Output Analysis, Model Reduction and Control of the Flat-Plate Boundary Layer,” J. Fluid Mech., 620 , pp. 263–298.

[CrossRef]Ahuja, S., and Rowley, C. W., 2008, “Low-Dimensional Models for Feedback Stabilization of Unstable Steady States,” AIAA Paper No. 2008-553.

Aubry, N., Holmes, P., Lumley, J. L., and Stone, E., 1988, “The Dynamics of Coherent Structures in Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech., 192 , pp. 115–175.

[CrossRef]Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J., and Myatt, J., 2007, “Feedback Control of Subsonic Cavity Flows Using Reduced-Order Models,” J. Fluid Mech., 579 , pp. 315–346.

[CrossRef]Juang, J. N., and Pappa, R. S., 1985, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control Dyn., 8 (5), pp. 620–627.

[CrossRef]Ma, Z., Ahuja, S., and Rowley, C., 2010, “Reduced-Order Models for Control of Fluids Using the Eigensystem Realization Algorithm,” Theor. Comput. Fluid Dyn., in press.

[CrossRef]Huang, S. -C., and Kim, J., 2008, “Control and System Identification of a Separated Flow,” Phys. Fluids, 20 , p. 101509.

[CrossRef]Watson, J., 1960, “On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows. Part 2: The Development of a Solution for Plane Poiseuille Flow and for Plane Couette Flow,” J. Fluid Mech., 9 (3), pp. 371–389.

[CrossRef]Stuart, J., 1971, “Nonlinear Stability Theory,” Annu. Rev. Fluid Mech., 3 , pp. 347–370.

[CrossRef]Hill, D. C., 1995, “Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers,” J. Fluid Mech., 292 , pp. 183–204.

[CrossRef]Corbett, P., and Bottaro, A., 2001, “Optimal Control of Nonmodal Disturbances in Boundary Layers,” Theor. Comput. Fluid Dyn., 15 (2), pp. 65–81.

[CrossRef]Bottaro, A., Corbett, P., and Luchini, P., 2003, “The Effect of Base Flow Variation on Flow Stability,” J. Fluid Mech., 476 , pp. 293–302.

[CrossRef]Pironneau, O., 1984, "*Optimal Shape Design for Elliptic Systems*", Springer, New York.

Jameson, A., Martinelli, L., and Pierce, N. A., 1998, “Fluid Dynamics Optimum Aerodynamic Design Using the Navier–Stokes Equations,” Theor. Comput. Fluid Dyn., 10 , pp. 213–237.

[CrossRef]Mohammadi, B., and Pironneau, O., 2004, “Shape Optimization in Fluid Mechanics,” Annu. Rev. Fluid Mech., 36 , pp. 255–279.

[CrossRef]Hill, D. C., 1992, “A Theoretical Approach for Analyzing the Restabilization of Wakes,” AIAA Paper No. 1992-0067.

Marquet, O., Lombardi, M., Chomaz, J. -M., Sipp, D., and Jacquin, L., 2009, “Direct and Adjoint Global Modes of a Recirculation Bubble: Lift-Up and Convective Non-Normalities,” J. Fluid Mech., 622 , pp. 1–21.

[CrossRef]Meliga, P., Chomaz, J. -M., and Sipp, D., 2009, “Unsteadiness in the Wake of Disks and Spheres: Instability, Receptivity and Control Using Direct and Adjoint Global Stability Analyses,” J. Fluids Struct., 25 , pp. 601–616.

[CrossRef]Theofilis, V., Hein, S., and Dallmann, U., 2000, “On the Origins of Unsteadiness and Three-Dimensionality in a Laminar Separation Bubble,” Philos. Trans. R. Soc. London, Ser. A, 358 (1777), pp. 3229–3246.

[CrossRef]Manneville, P., 1991, "*Structures Dissipatives, Chaos et Turbulence*", Aléa-Saclay, CEA, France.

Provansal, M., Mathis, C., and Boyer, L., 1987, “Benard-von Karman Instability—Transient and Forced Regimes,” J. Fluid Mech., 182 , pp. 1–22.

[CrossRef]Dušek, J., Le Gal, P., and Fraunié, P., 1994, “A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake,” J. Fluid Mech., 264 , pp. 59–80.

[CrossRef]Zielinska, B. J. A., Goujon-Durand, S., Dusek, J., and Wesfreid, J. E., 1997, “Strongly Nonlinear Effect in Unstable Wakes,” Phys. Rev. Lett., 79 (20), pp. 3893–3896.

[CrossRef]Piot, E., Casalis, G., Muller, F., and Bailly, C., 2006, “Investigation of the PSE Approach for Subsonic and Supersonic Hot Jets. Detailed Comparisons With LES and Linearized Euler Equations Results,” Int. J. Aeroacoust., 5 (4), pp. 361–393.

[CrossRef]Gondret, P., Ern, P., Meignin, L., and Rabaud, M., 1999, “Experimental Evidence of a Nonlinear Transition From Convective to Absolute Instability,” Phys. Rev. Lett., 82 (7), pp. 1442–1445.

[CrossRef]Viaud, B., Serre, E., and Chomaz, J. -M., 2008, “The Elephant Mode Between Two Rotating Disks,” J. Fluid Mech., 598 , pp. 451–464.

[CrossRef]Meliga, P., Chomaz, J. -M., and Sipp, D., 2009, “Global Mode Interaction and Pattern Selection in the Wake of a Disk: A Weakly Nonlinear Expansion,” J. Fluid Mech., 633 , pp. 159–189.

[CrossRef]Fabre, D., Auguste, F., and Magnaudet, J., 2008, “Bifurcations and Symmetry Breaking in the Wake of Axisymmetric Bodies,” Phys. Fluids, 20 (5), p. 051702.

[CrossRef]Brion, V., Sipp, D., and Jacquin, L., 2007, “Optimal Amplification of the Crow Instability,” Phys. Fluids, 19 (11), p. 111703.

[CrossRef]Marquet, O., Sipp, D., and Jacquin, L., 2008, “Sensitivity Analysis and Passive Control of Cylinder Flow,” J. Fluid Mech., 615 , pp. 221–252.

[CrossRef]Meliga, P., Sipp, D., and Chomaz, J.-M., 2010, “Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods,” Phys. Fluids, in press.

Chomaz, J., Huerre, P., and Redekopp, L., 1991, “A Frequency Selection Criterion in Spatially Developing Flows,” Stud. Appl. Math., 84 (2), pp. 119–144.

Luchini, P., Giannetti, F., and Pralits, J., 2009, “Structural Sensitivity of the Finite-Amplitude Vortex Shedding Behind a Circular Cylinder,” IUTAM Symposium on Unsteady Separated Flows and Their Control , Corfu, Greece, Jun. 18–22, M.Braza and K.Hourigan, eds., Vol. 14 , p. 151.

Huerre, P., and Monkewitz, P. A., 1990, “Local and Global Instabilities in Spatially Developing Flows,” Annu. Rev. Fluid Mech., 22 , pp. 473–537.

[CrossRef]Marquet, O., Sipp, D., Jacquin, L., and Chomaz, J. -M., 2008, “Multiple Time Scale Analysis and Sensitivity Analysis for the Passive Control of the Cylinder Flow,” AIAA Paper No. 2008-4228.

Barbagallo, A., Sipp, D., and Schmid, P. J., 2009, “Closed-Loop Control of an Open Cavity Flow Using Reduced-Order Models,” J. Fluid Mech., 641 , pp. 1–50.

[CrossRef]Trefethen, L. N., and Embree, M., 2005, "*Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators*", Princeton University Press, Princeton, NJ.

Marquet, O., Sipp, D., and Jacquin, L., 2006, “Global Optimal Perturbations in a Separated Flow Over a Backward-Rounded-Step,” AIAA Paper No. 2006-2879.

Marquet, O., Sipp, D., Chomaz, J. -M., and Jacquin, L., 2008, “Amplifier and Resonator Dynamics of a Low-Reynolds-Number Recirculation Bubble in a Global Framework,” J. Fluid Mech., 605 , pp. 429–443.

[CrossRef]Blackburn, H. M., Barkley, D., and Sherwin, S. J., 2008, “Convective Instability and Transient Growth in Flow Over a Backward-Facing Step,” J. Fluid Mech., 603 , pp. 271–304.

[CrossRef]Blackburn, H. M., Sherwin, S. J., and Barkley, D., 2008, “Convective Instability and Transient Growth in Steady and Pulsatile Stenotic Flows,” J. Fluid Mech., 607 , pp. 267–277.

[CrossRef]Marquet, O., 2007, “Stabilité globale et contrôle d’écoulements de recirculation,” Ph.D. thesis, Université de Poitiers, Poitiers, France.

Monokrousos, A., Åkervik, E., Brandt, L., and Henningson, D. S., 2010, “Global Three-Dimensional Optimal Disturbances in the Blasius Boundary-Layer Flow Using Time-Steppers,” J. Fluid Mech., in press.

Levin, O., and Henningson, D. S., 2003, “Exponential vs Algebraic Growth and Transition Prediction in Boundary Layer Flow,” Flow, Turbul. Combust., 70 , pp. 182–210.

Crouch, J. D., 1992, “Localized Receptivity of Boundary Layers,” Phys. Fluids A, 4 (7), pp. 1408–1414.

[CrossRef]Pralits, J. O., Hanifi, A., and Henningson, D. S., 2002, “Adjoint-Based Optimization of Steady Suction for Disturbance Control in Incompressible Flows,” J. Fluid Mech., 467 , pp. 129–161.

[CrossRef]Airiau, C., Bottaro, A., Walther, S., and Legendre, D., 2003, “A Methodology for Optimal Laminar Flow Control: Application to the Damping of Tollmien-Schlichting Waves in a Boundary Layer,” Phys. Fluids, 15 (5), pp. 1131–1145.

[CrossRef]Amestoy, P. R., Duff, I. S., Koster, J., and L’Excellent, J. -Y., 2001, “A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,” SIAM J. Matrix Anal. Appl., 23 (1), pp. 15–41.

[CrossRef]Mamun, C. K., and Tuckerman, L. S., 1995, “Asymmetry and Hopf Bifurcation in Spherical Couette Flow,” Phys. Fluids, 7 (1), pp. 80–91.

[CrossRef]Tuckerman, L., and Barkley, D., 2000, “Bifurcation Analysis for Timesteppers,” "*Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems*" (IMA Volumes in Mathematics and Its Applications Vol. 119 ), E.Doedel and L.S.Tuckerman, eds., Springer, New York, pp. 453–466.

Bagheri, S., Akervik, E., Brandt, L., and Henningson, D. S., 2009, “Matrix-Free Methods for the Stability and Control of Boundary Layers,” AIAA J., 47 (5), pp. 1057–1068.

[CrossRef]Mack, C. J., and Schmid, P. J., 2010, “A Preconditioned Krylov Technique for Global Hydrodynamic Stability Analysis of Large-Scale Compressible Flows,” J. Comput. Phys., 229 (3), pp. 541–560.

[CrossRef]Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O., and Schlatter, P., 2006, “Steady Solutions of the Navier-Stokes Equations by Selective Frequency Damping,” Phys. Fluids, 18 (6), p. 068102.

[CrossRef]Chomaz, J. -M., 2004, “Transition to Turbulence in Open Flows: What Linear and Fully Nonlinear Local and Global Theories Tell Us,” Eur. J. Mech. B/Fluids, 23 , pp. 385–399.

[CrossRef]Nagata, M., 1990, “Three Dimensional Finite Amplitude Solutions in Plane Couette Flow: Bifurcation From Infinity,” J. Fluid Mech., 217 , pp. 519–527.

[CrossRef]Waleffe, F., 1997, “On the Self-Sustaining Process in Shear Flows,” Phys. Fluids, 9 , pp. 883–900.

[CrossRef]Faisst, H., and Eckhardt, B., 2003, “Travelling Waves in Pipe Flow,” Phys. Rev. Lett., 91 , p. 224502.

[CrossRef]Duguet, Y., Willis, A. P., and Kerswell, R., 2008, “Transition in Pipe Flow: The Saddle Structure on the Boundary of Turbulence,” J. Fluid Mech., 613 , pp. 255–274.

[CrossRef]Cossu, C., Chevalier, M., and Henningson, D. S., 2007, “Optimal Secondary Energy Growth in a Plane Channel Flow,” Phys. Fluids, 19 (5), p. 058107.

[CrossRef]Crouch, J. D., Garbaruk, A., and Magidov, D., 2007, “Predicting the Onset of Flow Unsteadiness Based on Global Instability,” J. Comput. Phys., 224 (2), pp. 924–940.

[CrossRef]Cossu, C., Pujals, G., and Depardon, S., 2009, “Optimal Transient Growth and Very Large-Scale Structures in Turbulent Boundary Layers,” J. Fluid Mech., 619 , pp. 79–94.

[CrossRef]