Plantema, F. J., 1966, "*Sandwich Construction*", Wiley, New York.

Allen, H. G., 1969, "*Analysis and Design of Structural Sandwich Panels*", Pergamon, Oxford.

Zenkert, D., 1995, "*An Introduction to Sandwich Structures*", Chamelon, Oxford.

Bitzer, T. N., 1997, "*Honeycomb Technology*", Chapman and Hall, London.

Vinson, J. R., 1999, "*The Behavior of Sandwich Structures of Isotropic and Composite Materials*", Technomic, Lancaster, PA.

Marshall, A. C., 1990, "*Core Composite and Sandwich Structures*" (International Encyclopedia of Composites ), Vol. I , S.M.Lee, ed., VCH, New York, pp. 488–607.

Corden, J., 1995, "*Honeycomb Structures*" (ASM Handbook I: Composites ), J.R.Davies, ed., American Society of Metals, Metals Park, OH, pp. 721–728.

Pagano, N. J., 1970, “Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates,” J. Compos. Mater.

[CrossRef], 4 , pp. 20–34.

Dundrova, V., 1966, “Stress and Strain Analysis of Simply Supported Non-Homogenous Rectangular Plates on the Basis of Lamé Equations,” "*Theory of Plates and Shells*", Vydavatesstvo Slovenskej Akademie vied, Bratislava.

Meyer-Piening, H. R., 2004, “Application of the Elasticity Solution to Linear Sandwich Beams, Plates and Shells Analysis,” J. Sandwich Struct. Mater., 6 , pp. 295–312.

Demasi, L., 2007, “Three Dimensional Closed Form Solution and Exact Thin Plate Theories for Isotropic Plates,” Compos. Struct., 80 , pp. 183–195.

Cauchy, A. L., 1828, “Sur l’equilibre et le mouvement d’une plaque solide,” Exercises Math., 3 , pp. 328–355.

Poisson, S. D., 1829, “Memoire sur l’equilibre et le mouvement des corps elastique,” Mem. Acad. Sci. Inst. Fr., 8 , p. 357–570.

Kirchhoff, G., 1850, “Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe,” J. Reine Angew. Math., 40 , pp. 51–88.

Love, A. E. H., 1927, "*The Mathematical Theory of Elasticity*", 4th ed., Cambridge University Press, Cambridge.

Reissner, E., 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech., 12 , pp. 69–76.

Mindlin, R. D., 1951, “Influence of Rotatory Inertia and Shear in Flexural Motions of Isotropic Elastic Plates,” ASME J. Appl. Mech., 18 , pp. 1031–1036.

Carrera, E., 1995, “A Class of Two-Dimensional Theories for Anisotropic Multilayered Plates Analysis,” Atti Accad. Sci. Torino Mem. Sci. Fis., 19–20 , pp. 1–39.

Lekhnitskii, S. G., 1968, "*Anisotropic Plates*", 2nd ed., S. W. Tsai, translator, Gordon and Breach, New York.

Ambartsumian, S. A., 1961, "*Theory of Anisotropic Shells*", translated from Russian, NASA TTF-18, Fizmatzig, Moskwa.

Ambartsumian, S. A., 1969, "*Theory of Anisotropic Plates*", J.E.Ashton, T. Cheron tanslator, Technomic Publishing Company, Moskwa.

Ambartsumian, S. A., 1991, "*Fragments of the Theory of Anisotropic Shells*", World Scientific, Singapore.

Librescu, L., 1975, "*Elasto-Statics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures*", Noordhoff, Leyden, The Netherlands.

Reddy, J. N., 1997, "*Mechanics of Laminated Composite Plates, Theory and Analysis*", CRC, Boca Raton, FL.

Ambartsumian, S. A., 1962, “Contributions to the Theory of Anisotropic Layered Shells,” Appl. Mech. Rev., 15 , pp. 245–249.

Habip, L. M., 1964, “A Review of Recent Russian Work on Sandwich Structures,” Int. J. Mech. Sci., 6 , pp. 483–487.

Habip, L. M., 1965, “A Review of Recent Work on Multilayered Structures,” Int. J. Mech. Sci., 8 , pp. 589–583.

Grigolyuk, E. I., and Kogan, F. A., 1972, “State of Art of the Theory of Multilayer Shells,” Appl. Mech. Rev., 15 , pp. 245–249.

Sun, C. T., and Whitney, J. M., 1973, “On the Theories for the Dynamic Response of Laminated Plates,” Am. Inst. of Aeronaut. Astronaut. J., 11 , pp. 372–398.

Leissa, A. W., 1987, “A Review of Laminated Composite Plate Buckling,” Appl. Mech. Rev., 15 , pp. 245–249.

Librescu, L., and Reddy, J. N., 1987, “A Critical Review and Generalization of Transverse Shear Deformable Anisotropic Plates,” "*Euromech Colloquium, 219, Refined Dynamical Theories of Beams, Plates and Shells and Their Applications*", Kassel, September 1986, I.Elishakoff and H.Irretier, eds., Springer, Berlin, pp. 32–43.

Grigolyuk, E. I., and Kulikov, G. M., 1988, “General Directions of the Development of Theory of Shells,” Mekh. Kompoz. Mater., 24 , pp. 287–298.

Kapania, R. K., and Raciti, S., 1989, “Recent Advances in Analysis of Laminated Beams and Plates,” Am. Inst. of Aeronaut. Astronaut. J., 27 , pp. 923–946.

Kapania, R. K., 1989, “A Review on the Analysis of Laminated Shells,” ASME J. Pressure Vessel Technol., 111 , pp. 88–96.

Vasiliev, V. V., and Lur’e, S. A., 1992, “On Refined Theories of Beams, Plates and Shells,” J. Compos. Mater., 26 , pp. 422–430.

Noor, A. K., and Burton, W. S., 1989, “Assessment of Shear Deformation Theories for Multilayered Composite Plates,” Appl. Mech. Rev., 41 , pp. 1–18.

Noor, A. K., and Burton, W. S., 1990, “Assessment of Computational Models for Multilayered Composite Shells,” Appl. Mech. Rev., 43 , pp. 67–97.

Burton, S., and Noor, A. K., 1995, “Assessment of Computational Model for Sandwich Panels and Shells,” Comput. Methods Appl. Mech. Eng., 124 , pp. 125–151.

Noor, A. K., Burton, S., and Bert, C. W., 1996, “Computational Model for Sandwich Panels and Shells,” Appl. Mech. Rev., 49 , pp. 155–199.

Jemielita, G., 1990, “On Kinematical Assumptions of Refined Theories of Plates: A Survey,” ASME J. Appl. Mech., 57 , pp. 1080–1091.

Reddy, J. N., and Robbins, D. H., 1994, “Theories and Computational Models for Composite Laminates,” Appl. Mech. Rev., 47 , pp. 147–165.

Lur’e, S. A., and Shumova, N. P., 1996, “Kinematic Models of Refined Theories Concerning Composite Beams Plates and Shells,” Int. Appl. Mech., 32 , pp. 422–430.

Grigorenko, Ya. M., 1996, “Approaches to Numerical Solution of Linear and Nonlinear Problems in Shell Theory in Classical and Refined Formulations,” Int. Appl. Mech., 32 , pp. 409–442.

Grigorenko, Ya. M., and Vasilenko, A. T., 1997, “Solution of Problems and Analysis of the Stress Strain State of Non-Uniform Anisotropic Shells (Survey),” Int. Appl. Mech., 33 , pp. 851–880.

Altenbach, H., 1998, “Theories for Laminated and Sandwich Plates: A Review,” Int. Appl. Mech., 34 , pp. 243–252.

Librescu, L., and Hause, T., 2000, “Recent Developments in the Modeling and Behaviors of Advanced Sandwich Constructions: A Survey,” Compos. Struct.

[CrossRef], 48 , pp. 1–17.

Vinson, J. R., 2001, “Sandwch Structures, Applied Mechanics Reviews,” Appl. Mech. Rev., 54 , pp. 201–214.

Carrera, E., 2001, “Developments, Ideas and Evaluations Based Upon the Reissner’s Mixed Theorem in the Modeling of Multilayered Plates and Shells,” Appl. Mech. Rev.

[CrossRef], 54 , pp. 301–329.

Qatu, M. S., 2002, “Recent Research Advances in the Dynamic Behavior of Shells: 1989-2000. Part 1: Laminated Composite Shells,” Appl. Mech. Rev.

[CrossRef], 55 , pp. 325–330.

Hohe, J., and Becker, W., 2002, “Effective Stress-Strain Relations for Two-Dimensional Cellular Sandwich Core: Homogenization, Material Models, and Properties,” Appl. Mech. Rev.

[CrossRef], 55 , pp. 61–87.

Hohe, J., and Librescu, L., 2004, “Advances in the Structural Modeling of Elastic Sandwich Panels,” Mech. Adv. Mater. Struct., 11 , pp. 395–424.

Carrera, E., 2003, “A Historical Review of Zig-Zag Theories for Multilayered Plates and Shell,” Appl. Mech. Rev., 56 , pp. 290–309.

Lekhnitskii, S. G., 1935, “Strength Calculation of Composite Beams,” Vestn. Inzh. Tekh.. (9).

Ambartsumian, S. A., 1958, “On a Theory of Bending of Anisotropic Plates,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk. (4).

Ambartsumian, S. A., 1958, “On a General Theory of Anisotropic Shells,” Prikl. Mat. Mekh., 22 (2), pp. 226–237.

Reissner, E., 1984, “On a Certain Mixed Variational Theory and a Proposed Applications,” Int. J. Numer. Methods Eng.

[CrossRef], 20 , pp. 1366–1368.

Frostig, Y., 1999, “Bending of Curved Sandwich Panels With Transversely Flexible Core: Closed Form Higher-Order Theory,” J. Sandwich Struct. Mater., 1 , pp. 4–41.

Frostig, Y., and Rabinovich, O., 2000, “Behavior of Unidirectional Sandwich Panels With a Multi-Skin Construction or a Multilayered Core Layout-Higher-Order Approach,” J. Sandwich Struct. Mater., 2 , pp. 181–213.

Rabinovich, O., and Frostig, Y., 2001, “High-Order Analysis of Unidirectional Sandwich Panels With Flat and Generally Curved Faces and Soft Core,” J. Sandwich Struct. Mater., 3 , pp. 89–116.

Frostig, Y., and Thomsen, O. T., 2005, “Localized Effects in the Nonlinear Behavior of Sandwich Panels With a Transversely Flexible Core,” Journal of Sandwich and Structures and Materials, 7 , pp. 53–77.

Frostig, Y., and Thomsen, O. T., 2006, “Localized Effects Near Non-Vertical Core Junctions In Sandwich Panels: A High-Order Approach,” J. Sandwich Struct. Mater., 8 , pp. 125–156.

Pantano, A., and Averill, R. C., 2000, “A 3D Zig-Zag Sub-Laminate Model for the Analysis of Thermal Stresses in Laminated Composite and Sandwich Plate,” Journal of Sandwich and Structures and Materials, 2 , pp. 288–312.

Swanson, S. R., 2000, “Response of Orthotropic Sandwich Plates to Concentrated Loadings,” J. Sandwich Struct. Mater., 2 , pp. 270–287.

Swanson, S. R., and Kim, J., 2000, “Comparison of Higher Order Theory for Sandwich Beams With Finite Element and Elasticity Analysis,” J. Sandwich Struct. Mater., 2 , pp. 33–49.

Whitney, J. M., 2001, “A Local Model for Bending of Weak Core Sandwich Plates,” J. Sandwich Struct. Mater., 3 , pp. 269–288.

Pagano, J. N., 1978, “Stress Fields in Composite Laminates,” Int. J. Solids Struct.

[CrossRef], 14 , pp. 385–400.

Liu, Q., and Zhao, Y., 2001, “Prediction of Natural Frequencies of a Sandwich Panel Using Thick Plate Theories,” J. Sandwich Struct. Mater., 3 , pp. 289–319.

Birman, V., and Bert, C. W., 2001, “On the Choice of Shear Correction Factor in Sandwich Structures,” J. Sandwich Struct. Mater., 4 , pp. 83–98.

Matsunaga, H., 2002, “Assessment of a Global Higher-Order Deformation Theory for Laminated Composite and Sandwich Plates,” Comput. Struct., 56 , pp. 279–291.

Topdar, P., Sheikh, A. H., and Dhang, N., 2003, “Finite Element Analysis of Composite and Sandwich Plates Using a Continuous Interlaminar Shear Stress Model,” J. Sandwich Struct. Mater., 5 , pp. 207–229.

Lyckegaard, A., and Thomsen, O. T., 2004, “High Order Analysis of Junction Between Straight and Curved Panels,” J. Sandwich Struct. Mater., 6 , pp. 497–529.

Garg, A. K., Khare, R. K., Kant, T., 2005, “Free Vibration Analysis of Skew Fiber-Reinforced Composite and Sandwich Laminates Using a Shear Deformable Finite Element Model,” J. Sandwich Struct. Mater., 8 , pp. 33–53.

Malekzadeh, K., Khalili, M. R., and Mittal, R. K., 2005, “Local and Global Damped Vibrations of Plates With Viscoelastic Soft Flexible Core,” Journal of Sandwich and Structures and Materials, 7 , pp. 431–456.

Roque, C. M. C., Ferreira, A. J. A., and Jorge, R. M. N., 2006, “Free Vibration Analysis of Composite and Sandwich Plate by Trigonometric Layer-Wise Deformation Theory and Radial Basis Function,” J. Sandwich Struct. Mater., 8 , pp. 497–515.

Hu, H., Beluouettra, S., Daya, E. M., and Potier-Ferry, M., 2006, “Evaluation of Kinematic Formulations for Viscoelastically Damped Sandwich Beam Modeling,” J. Sandwich Struct. Mater., 8 , pp. 477–495.

Carrera, E., 1998, “Layer-Wise Mixed Models for Accurate Vibration Analysis of Multilayered Plates,” ASME J. Appl. Mech.

[CrossRef], 65 , pp. 820–828.

Carrera, E., Demasi, L., and Manganello, M., 2002, “Assessment of Plate Elements on Bending and Vibrations of Composite Structures,” Mech. Adv. Mater. Struct., 9 , pp. 333–357.

Carrera, E., and Demasi, L., 2002, “Multilayered Finite Plate Element Based on Reissner’s Mixed Variational Theorem. Part I: Theory,” Int. J. Numer. Methods Eng.

[CrossRef], 55 , pp. 191–231.

Carrera, E. and Demasi, L., 2002, “Multilayered Finite Plate Element Based on Reissner’s Mixed Variational Theorem. Part II: Numerical Analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 55 , pp. 253–291.

Carrera, E., 2003, “Theories and Finite Elements for Multilayered Plates and Shells: A Unified Compact Formulation With Numerical Assessment and Benchmarking,” Arch. Comput. Methods Eng., 10 , pp. 215–296.

Carrera, E., and Brischetto, S., 2008, “Analysis of Thickness Locking in Classical, Refined and Mixed Multilayered Plate Theories,” Compos. Struct., 82 , pp. 549–562.

Murakami, H., 1986, “Laminated Composite Plate Theory With Improved In-Plane Responses,” ASME J. Appl. Mech., 53 , pp. 661–666.