Hill, R., 1968, “On the Constitutive Inequalities for Simple Materials—I,” J. Mech. Phys. Solids

[CrossRef], 16 , pp. 229–242.

Seth, B. R., 1964, “Generalized Strain Measure With Applications to Physical Problems,” "*Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics*", M.Reiner and D.Abir, eds., Pergamon, Oxford, pp. 162–172.

Guo, Z. H., and Man, C. S., 1992, “Conjugate Stress and Tensor Equation ∑r=1mUm−rXUr−1=C,” Int. J. Solids Struct., 29 , pp. 2063–2076.

Hoger, A., 1987, “The Stress Conjugate to Logarithmic Strain,” Int. J. Solids Struct., 23 , pp. 1645–1656.

Guo, Z. H., Li, J. B., Xiao, H., and Chen, Y. M., 1994, “Intrinsic Solution to the n-Dimensional Tensor Equation ∑r=1mUm−rXUr−1=C,” Comput. Methods Appl. Mech. Eng., 115 , pp. 359–364.

Xiao, H., 1995, “Unified Explicit Basis-Free Expressions for Time Rate and Conjugate Stress of an Arbitrary Hill’s Strain,” Int. J. Solids Struct., 32 , pp. 3327–3340.

Dui, G. S., and Ren, Q. W., 1999, “Conjugate Stress of Strain E(3)=13(U3−I),” Mech. Res. Commun., 26 , pp. 529–534.

Dui, G. S., Ren, Q. W., and Shen, Z. J., 2000, “Conjugate Stresses to Seth’s Strain Class,” Mech. Res. Commun., 27 , pp. 539–542.

Farahani, K., and Naghdabadi, R., 2000, “Conjugate Stresses of the Seth-Hill Strain Tensors,” Int. J. Solids Struct., 37 , pp. 5247–5255.

Hill, R., 1970, “Constitutive Inequalities for Isotropic Elastic Solids Under Finite Strain,” Proc. R. Soc. London, Ser. A, 314 , pp. 457–472.

Hill, R., 1978, “Aspects of Invariance in Solid Mechanics,” Adv. Appl. Mech., 18 , pp. 1–75.

Farahani, K., and Naghdabadi, R., 2003, “Basis Free Relations for the Conjugate Stresses of the Strains Based on the Right Stretch Tensor,” Int. J. Solids Struct., 40 , pp. 5887–5900.

Dui, G. S., 2005, “Some Basis-Free Formulae for Time Rate and Conjugate Stress of Logarithmic Strain Tensor,” J. Elast.

[CrossRef], 83 , pp. 113–151.

Guo, Z. H., and Dubey, R. N., 1984, “Basic Aspects of Hill’s Method in Solid Mechanics,” SM Arch., 9 , pp. 353–380.

Scheilder, M., 1991, “Time Rates of Generalized Strain Tensors, Part I: Compact Formulas,” Mech. Mater., 11 , pp. 199–210.

Ogden, R. W., 1984, "*Non-Linear Elastic Deformations*", Ellis Horwood Ltd., Chichester.

Ogden, R. W., 1997, "*Non-Linear Elastic Deformations*", Dover, New York.

Lehmann, Th., Guo, Z. H., and Liang, H. Y., 1991, “The Stress Conjugacy Between Cauchy Stress and Logarithm of the Left Stretch Tensor,” Eur. J. Mech. A/Solids, 10 , pp. 395–404.

Lehmann, Th., and Liang, H. Y., 1993, “The Stress Conjugate to the Logarithmic Strain lnV,” Z. Angew. Math. Mech., 73 , pp. 357–363.

Nicholson, D. W., 2003, “On the Stress Conjugate to Eulerian Strains,” Acta Mech., 165 , pp. 87–98.

Gao, Y. C., 1999, "*Foundation of Solid Mechanics*", China Railway Publisher, Beijing, in Chinese.

Gao, Y. C., 2003, “A New Description of the Stress State at a Point With Applications,” Arch. Appl. Mech., 73 , pp. 171–183.

Gao, Y. C., 1990, “Elastostatic Crack Tip Behavior for a Rubber-Like Material,” Theor. Appl. Fract. Mech., 14 , pp. 219–231.

Gao, Y. C., and Shi, Z. F., 1994, “Large Strain Field Near an Interface Crack Tip,” Int. J. Fract., 69 , pp. 269–279.

Gao, Y. C., and Durban, D., 1995, “The Crack Tip Field in a Rubber Sheet,” Eur. J. Mech. A/Solids, 14 , pp. 665–677.

Liu, B., and Gao, Y. C., 1995, “The Stress Field Near the Notch Tip of an Incompressible Rubber-Like Specimen Under the Condition of Plane Strain,” Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci., 38 , pp. 1220–1231.

Gao, Y. C., and Liu, B., 1996, “Stress Singularity Near the Notch Tip of a Rubber-Like Specimen Under Tension,” Eur. J. Mech. A/Solids, 15 , pp. 199–211.

Liu, B., and Gao, Y. C., 1995, “A Rubber Cone Under the Tension of a Concentrated Force,” Int. J. Solids Struct.

[CrossRef], 32 , pp. 1485–1493.

Gao, Y. C., and Gao, T. S., 1996, “Notch-Tip Fields in Rubber-Like Materials Under Tension Shear Mixed Load,” Int. J. Fract., 78 , pp. 283–298.

Gao, Y. C., 1997, “Large Deformation Field Near a Crack Tip in Rubber-Like Material,” Theor. Appl. Fract. Mech.

[CrossRef], 26 , pp. 155–162.

Gao, Y. C., 1998, “Large Strain Analysis of a Rubber Wedge Compressed by a Line Load at Its Tip,” Int. J. Eng. Sci., 36 , pp. 831–842.

Gao, Y. C., and Gao, T. J., 1999, “Analytical Solution to a Notch Tip Field in Rubber-Like Materials Under Tension,” Int. J. Solids Struct., 36 , pp. 5559–5571.

Gao, Y. C., and Chen, S. H., 2000, “Asymptotic Analysis and Finite Element Calculation of a Rubber Cone Under Tension,” Acta Mech., 141 , pp. 149–159.

Gao, Y. C., and Gao, T. J., 2000, “Large Deformation Contact of a Rubber Notch with a Rigid Wedge,” Int. J. Solids Struct., 37 , pp. 4319–4334.

Gao, Y. C., and Zhou, L. M., 2001, “Interface Crack Tip Field of Rubber Materials,” Int. J. Solids Struct., 38 , pp. 6227–6240.

Gao, Y. C., 2001, “Asymptotic Analysis of the Nonlinear Boussinesq Problem for a Kind of Incompressible Rubber Material (Compression Case),” J. Elast., 64 , pp. 111–130.

Gao, Y. C., and Chen, S. H., 2001, “Large Strain Field Near a Crack tip in a Rubber Sheet,” Mech. Res. Commun., 28 (1), pp. 71–78.

Gao, Y. C., and Mai, Y. W., 2002, “The Contact Problem of a Rubber Half-Space Dented by a Rigid Cone Apex,” Arch. Appl. Mech., 72 , pp. 213–228.

Gao, Y. C., and Mai, Y. W., 2002, “Asymptotic Analysis of a Rubber Cone Dented by a Rigid Cone,” Acta Mech.

[CrossRef], 158 , pp. 199–214.

Gao, Y. C., 2002, “Analysis of the Interface Crack for Rubber-Like Materials,” J. Elast., 66 , pp. 1–19.

Gao, Y. C., and Qian, H. S., 2002, “Analysis of the Contact of a Rubber Notch With a Rigid Wedge,” Mech. Res. Commun., 29 , pp. 165–176.

Gao, Y. C., 2006, “Complementary Energy Principle for Large Elastic Deformation,” Sci. China, Ser. G

[CrossRef], 49 (3), pp. 341–356.

Chen, S. H., and Gao, Y. C., 2001, “Asymptotic Analysis and Finite Element Calculation of a Rubber Notch Contacting With a Rigid Wedge,” Acta Mech., 147 , pp. 111–124.

Shi, Z. F., and Gao, Y. C., 1995, “Stress-Strain Field Near the Notch Tip of a Rubber Sheet,” Acta Mech. Sin., 11 , pp. 169–177.

Wang, Z. Q., and Gao, Y. C., 1997, “Large Strain Field Near a Notch-Tip Under Tension,” Theor. Appl. Fract. Mech., 26 , pp. 163–168.

Zhou, Z., and Gao, Y. C., 1998, “Asymptotic Character of Mixed Mode in Plane Deformation of Crack in Rubber-Like Material,” Theor. Appl. Fract. Mech., 30 , pp. 225–233.

Wong, F. S., and Shield, R. T., 1969, “Large Plane Deformations of Thin Elastic Sheets of Neo-Hookean Material,” Z. Angew. Math. Phys.

[CrossRef], 20 , pp. 176–199.

Knowles, J. K., 1978, “On Some Inherently Nonlinear Singular Problems in Finite Elastostatics,” "*Proceedings, Eighth U.S. National Congress of Applied Mechanics*", UCLA, pp. 101–114.

Knowles, J. K., 1979, “Crack Problems in Finite Elastostatics,” "*Proceedings, Symposium on Mathematical Problems in Fracture, SIAM-AMS, Proceedings*", Vol. 12 , pp. 81–96.

Sternberg, E., 1979, “Some Recent Advances in the Application of Nonlinear Elastostatics to Singular Problem,” "*Trends in Solid Mechanics 1979, Proceedings of the Symposium Dedicated to the 65th Birthday of W. T. Koiter*", Delft University Press, Sijthoff and Noordhoof International, pp. 225–234.

Sternberg, E., 1980, “On Singular Problems in Linearized and Finite Elastostatics,” "*Proceedings of the 15th International Congress of Theoretical and Applied Mechanics*", Toronto, Aug., pp. 33–43.

Abeyaratne, R., 1983, “Some Finite Elasticity Problems Involving Crack-Tips,” "*Modeling Problems in Crack-Tip Mechanics CFC10*", University of Waterloo, J.T.Pindera and B.R.Krasnowski, eds., Aug. 24–26, Matinus Nijhoff, pp. 3–24.

Knowles, J. K., and Sternberg, E., 1973, “An Asymptotic Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack,” J. Elast.

[CrossRef], 3 , pp. 67–107.

Knowles, J. K., and Sternberg, E., 1974, “Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack: Reconsideration and Higher-Order Results,” J. Elast., 4 , pp. 201–233.

Lund, R. A., and Westmann, R. A., 1990, “Finite Element Analysis of Hyperelastic Large Deformation Crack Tip Fields,” Int. J. Fract., 43 , pp. 257–270.

Fowler, G. F., 1984, “Finite Plane and Anti-Plane Elastostatic Fields With Discontinuous Deformation Gradients Near the Tip of a Crack,” J. Elast., 14 , pp. 287–328.

Le, K. C., 1992, “On the Singular Elastostatic Field Induced by a Crack in a Hadamard Material,” Q. J. Mech. Appl. Math.

[CrossRef], 45 , pp. 101–117.

Batra, R. C., and Zhang, J. P., 1993, “Analysis of Deformations Near a Crack Tip in a Compressible Nonlinear Elastic Material,” Eng. Fract. Mech., 46 , pp. 413–432.

Knowles, J. K., 1977, “Finite Elastostatic Fields With Unbounded Deformation Gradients,” Finite Elasticity, Applied Mechanics Division, ASME, 27 , pp. 23–40.

Wang, N. M., and Oh, H., 1977, “Finite Element Analysis of Crack Problems in Highly Elastic Materials,” "*Fracture 1977*", Vol. 3 , Waterloo, Canada, ICF4, pp. 467–484.

Stephenson, R. A., 1982, “The Equilibrium Field Near the Tip of a Crack for Finite Plane Strain of Incompressible Elastic Materials,” J. Elast., 12 , pp. 65–99.

Abeyaratne, R., and Yang, J. S., 1987, “Localized Shear Deformations Near the Tip of a Mode-I Crack,” J. Elast., 17 , pp. 93–112.

Quigley, C. J., and Parks, D. M., 1994, “The Finite Deformation Field Surrounding a Mode I Plane Strain Crack in a Hyperelastic Incompressible Material Under Small-Scale Nonlinearity,” Int. J. Fract., 65 , pp. 75–96.

Hao, T. H., 1990, “Near Field Behavior of In-Plane Crack Extension in Nonlinear Incompressible Material,” Theor. Appl. Fract. Mech., 12 , pp. 241–249.

Herrmann, J. M., 1989, “An Asymptotic Analysis of Finite Deformation Near the Tip of an Interface Crack,” J. Elast., 21 , pp. 227–269.

Herrmann, J. M., 1992, “An Asymptotic Analysis of Finite Deformation Near the Tip of an Interface Crack: Part II,” J. Elast., 29 , pp. 203–241.

Le, K. C., and Stumpf, H., 1993, “The Singular Elastostatic Field Due to a Crack in Rubberlike Materials,” J. Elast., 32 , pp. 483–222.

Tarantino, A. M., 1996, “Thin Hyperelastic Sheets of Compressible Material: Field Equations, Airy Stress Function and an Application in Fracture Mechanics,” J. Elast., 44 , pp. 37–59.

Tarantino, A. M., 1997, “The Singular Equilibrium Field at the Notch-Tip of a Compressible Material Infinite Elastostatics,” ZAMP, 48 , pp. 370–388.

Legrain, G., Moës, N., and Verron, E., 2005, “Stress Analysis Around Crack Tips in Finite Strain Problems Using the Extended Finite Element Method,” Int. J. Numer. Methods Eng., 63 , pp. 290–314.

Geubelle, P. H., and Knauss, W. G., 1994, “Finite Strain at the Tip of a Crack in a Sheet of Hyperelastic Material: I. Homogeneous Case,” J. Elast.

[CrossRef], 35 , pp. 61–98.

Tarantino, A. M., 1998, “On Extreme Thinning at the Notch Tip of a Neo-Hookean Sheet,” Q. J. Mech. Appl. Math., 51 , pp. 179–190.

Knowles, J. K., and Sternberg, E., 1983, “Large Deformations Near a Tip of an Interface-Crack Between Two Neo-Hookean Sheets,” J. Elast.

[CrossRef], 13 , pp. 257–293.

Ravichandran, G., and Knauss, W. G., 1989, “A Finite Elastostatic Analysis of Bimaterial Interface Cracks,” Int. J. Fract., 39 , pp. 235–253.

Geubelle, P. H., and Knauss, W. G., 1994, “Finite Strain at the Tip of a Crack in a Sheet of Hyperelastic Material: II. Special Bimaterial Cases,” J. Elast.

[CrossRef], 35 , pp. 99–137.

Geubelle, P. H., 1995, “Finite Deformation Effects in Homogeneous and Interfacial Fracture,” Int. J. Solids Struct.

[CrossRef], 32 , pp. 1003–1016.

Ru, C. Q., 1997, “Finite Strain Singular Field Near the Tip of a Crack Terminating at a Material Interface,” Math. Mech. Solids, 2 , pp. 49–73.

Ru, C. Q., 2002, “On Complex-Variable Formulation for Finite Plane Elastostatics of Harmonic Materials,” Acta Mech.

[CrossRef], 156 (3–4), pp. 219–234.

Knowles, J. K., 1981, “A Nonlinear Effect in Mode II Crack Problems,” Eng. Fract. Mech., 15 , pp. 469–476.

Ru, C. Q., 1997, “Finite Deformation at the Vertex of a Bi-Material Wedge,” Int. J. Fract.

[CrossRef], 84 , pp. 325–350.

Ru, C. Q., 2003, “Non-Elliptic Deformation Field Near the Tip of a Mixed Mode Crack in a Compressible Hyperelastic Material,” Int. J. Non-Linear Mech., 38 , pp. 521–530.

Zhang, Z. M., Wang, Y. S., and Jin, M., 2007, "*Selected Publications of Gao Yuchen*", Beijing Jiaotong University Press, Beijing.

Boussinesq, J., 1885, "*Applications des Potentials à l’Etude de l’Equilibre et du Movement des Solides Elastiques*", Gauthier-Villars, Paris, in French.

Simmonds, J. G., and Warne, P. G., 1994, “Notes on the Nonlinearly Elastic Boussinesq Problem,” J. Elast.

[CrossRef], 34 , pp. 69–82.

Warne, D. A. P., Warne, P. G., and Lee, M. R., 2002, “A Summary of Asymptotic Finite Deformation Results for a Point Load on Hyperelastic Half-Space,” Math. Mech. Solids, 7 , pp. 451–482.

Knowles, J. K., 1977, “The Finite Anti-plane Shear Field Near the Tip of a Crack for a Class of Incompressible Elastic Solids,” Int. J. Fract.

[CrossRef], 13 , pp. 611–639.

Warne, D. A. P., and Warne, P. G., 2001, “An Asymptotic Finite Deformation Analysis for an Isotropic Incompressible Hyperelastic Half-Space Subjected to a Tensile Point Load,” SIAM J. Appl. Math.

[CrossRef], 62 , pp. 107–128.

Warne, D. A. P., and Warne, P. G., 2002, “An Asymptotic Finite Deformation Analysis for an Isotropic Compressible Hyperelastic Half-Space Subjected to a Tensile Point Load,” SIAM J. Appl. Math.

[CrossRef], 63 (1), pp. 169–194.

Antman, S. S., 1983, “Regular and Singular Problems for Large Elastic Deformations of Tubes, Wedges and Cylinders,” Arch. Ration. Mech. Anal.

[CrossRef], 83 , pp. 1–52.

Lee, M. R., Warne, D. A. P., and Warne, P. G., 2004, “On an Incompressible Nonlinearly Elastic Half-Space Under a Compressive Point Load,” Math. Mech. Solids

[CrossRef], 9 (1), pp. 97–117.

Hertz, H., 1881, “Über die Berührung Fester Elasticher Körper,”J. Reine Angew. Math., 92 , pp. 156–171, in German.

Aleksandrov, V. M., and Babeshko, V. A., 1972, “On the Pressure on an Elastic Half-Space by a Wedge-Shaped Stamp,” J. Appl. Math. Mech.

[CrossRef], 36 , 78–83.

Kipnis, L. A., and Cherepanov, G. P., 1982, “Contact Problem of Elasticity Theory for a Wedge,” J. Appl. Math. Mech., 46 (1), pp. 110–115.

Filippova, L. M., 1978, “Three-Dimensional Contact Problem for a Prestressed Elastic Body,” J. Appl. Math. Mech., 42 (6), pp. 1183–1188.

Hellinger, E., 1914, “Die Allgemeinen Ansatze der Mechanik der Kontinua,” Enzyklopädie der Mathematischen Wissenschaften, 4 , pp. 602–694, in German.

Reissner, E., 1953, “On a Variational Theorem for Finite Elastic Deformation,” J. Math. Phys. (Cambridge, Mass.), 32 , pp. 129–135.

Levinson, M., 1965, “The Complementary Energy Theorem in Finite Elasticity,” ASME J. Appl. Mech., 32 , pp. 826–828.

Washizu, K., 1968, "*Variational Methods in Elasticity and Plasticity*", Pergamon, Oxford.

Zubov, L. M., 1970, “The Stationary Principle of Complementary Work in Nonlinear Theory of Elasticity,” J. Appl. Math. Mech., 34 , pp. 228–232; see alsoZubov, L. M., 1970, “The Stationary Principle of Complementary Work in Nonlinear Theory of Elasticity,” Prikl. Mat. Mekh., 34 , pp. 241–245, in Russian.

Fraeijs de Veubeke, B. M., 1972, “A New Variational Principle for Finite Elastic Displacements,” Int. J. Eng. Sci.

[CrossRef], 10 , pp. 745–763.

Koiter, W. T., 1973, “On the Principle of Stationary Complementary Energy in the Nonlinear Theory of Elasticity,” SIAM J. Appl. Math.

[CrossRef], 25 , pp. 424–434.

Ogden, R. W., 1975, “A Note on Variational Theorems in Non-Linear Elastostatics,” Math. Proc. Cambridge Philos. Soc., 77 , pp. 609–615.

Ogden, R. W., 1977, “Inequalities Associated With the Inversion of Elastic Stress Deformation Relation and Their Implications,” Math. Proc. Cambridge Philos. Soc., 81 , pp. 313–324.

Guo, Z. H., 1980, “The Unified Theory of Variational Principles in Non-Linear Elasticity,” Arch. Mech., 32 , pp. 577–596.

Atluri, S. N., 1980, “On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain Classical Elasticity,” J. Struct. Mech., 8 , pp. 62–91.

Gao, D. Y., and Strang, G., 1989, “Geometric Nonlinearity: Potential Energy, Complementary Energy and the Gap Function,” Q. Appl. Math., 47 , pp. 487–504.

Gao, D. Y., 1999, “Pure Complementary Energy Principle and Triality Theory in Finite Elasticity,” Mech. Res. Commun., 26 , pp. 31–37.

Gao, D. Y., 1999, “General Analytical Solutions and Complementtary Variational Principles for Large Deformation Nonsmooth Mechanics,” Meccanica, 34 , pp. 169–198.

Gao, D. Y., 1997, “Dual Extremum Principles in Finite Deformation Theory With Applications to Post-Buckling Analysis of Extended Nonlinear Beam Model,” Appl. Mech. Rev., 50 (11), pp. S64–S71.

Gao, D. Y., 1998, “Duality, Triality and Complementary Extremum Principles in Non-Convex Parametric Variational Problems With Applications,” IMA J. Appl. Math., 61 , pp. 199–235.

Doyle, T. C., and Ericksen, J. L., 1956, “Nonlinear Elasticity,” Adv. Appl. Mech., 4 , pp. 53–115.

Biot, M. A., 1965, "*Mechanics of Incremental Deformations*", Wiley, New York.

Truesdell, C. A., and Noll, W., 1965, in "*The Nonlinear Field Theories of Mechanics: Handbuch der Physik*", S.Flügge, ed., Springer, Berlin, Vol. III∕3 .

Green, A. E., and Adkins, J. E., 1970, "*Large Elastic Deformations*", 2nd ed., Oxford University Press, New York.

Flügge, S., 1972, "*Tensor Analysis and Continuum Mechanics*", Springer-Verlag, New York.

Wang, C. C., and Truesdell, C. A., 1973, "*Introduction to Rational Elasticity*", Noordhoff, Leyden.

Guo, Z. H., 1980, "*Nonlinear Theory of Elasticity*", Science Publisher of China, Beijing, in Chinese.

Ciarlet, P. G., 1988, “Three-Dimensional Elasticity,” "*Mathematical Elasticity*", North-Holland, Amsterdam, Vol. 1 .

Green, A. E., and Zerna, W., 1992, "*Theoretical Elasticity*", Dover Publications, New York.

Marsden, J. E., and Hughes, T. J. R., 1994, "*Mathematical Foundation of Elasticity*", Dover, New York.

Antman, S. S., 1995, "*Problems of Nonlinear Elasticity*", Springer, New York.

Chadwick, P., 1999, "*Continuum Mechanics*", Dover, New York.

Holzapfel, G. A., 2000, "*Nonlinear Solid Mechanics*", Wiley, Chichester.

Jin, M., 2005, "*A Course of Nonlinear Continuum Mechanics*", Tsinghua University Press and Beijing Jiaotong University Press, Beijing, in Chinese.