Elishakoff, I., 1995, “Random Vibration of Structures: A Personal Perspective,” Appl. Mech. Rev., 48 , pp. 809–825.

Elishakoff, I., 2000, “Stochastic Linearization Technique: A New Interpretation and a Selective Review,” Shock Vib. Dig., 32 , pp. 179–188.

Proppe, C., Pradlwarter, H. J., and Schuëller, G. I., 2003, “Equivalent Linearization and Monte Carlo Simulation in Stochastic Dynamics,” Probab. Eng. Mech., 18 , pp. 1–15.

Soong, T. T., and Grigoriu, M., 1993, "*Random Vibration of Mechanical and Structural Systems*", Prentice Hall, Englewood Cliffs, NJ.

Newland, D. E., 1993, "*An Introduction to Random Vibrations, Spectral and Wavelet Analysis*", 3rd Edition, Longmans, Green, NY.

Lin, Y. K., and Cai, G. Q., 1995, "*Probabilistic Structural Dynamics Advances Theory and Applications*", McGraw-Hill, New York.

Solnes, J., 1997, "*Stochastic Processes and Random Vibrations Theory and Practice*", Wiley, New York.

Lutes, L. D., and Sarkani, S., 1997, "*Stochastic Analysis of Structural and Mechanical Vibrations*", Prentice Hall, Englewood Cliffs, NJ.

Socha, L., 2005, “Linearization in Analysis of Nonlinear Stochastic Systems, Recent Results. Part I. Theory,” Appl. Mech. Rev., 58 , pp. 178–205.

Roberts, J. B., and Spanos, P. D. T., 1990, "*Random Vibration and Statistical Linearization*", Wiley, Chichester.

Socha, L., and Soong, T. T., 1991, “Linearization in Analysis of Nonlinear Stochastic Systems,” Appl. Mech. Rev., 44 , pp. 399–422.

Pradlwarter, H. J., and Li, W., 1991, “On the Computations of the Stochastic Response of Highly Nonlinear Large MDOF-Systems Modeled by Finite Elements,” Probab. Eng. Mech.

[CrossRef], 6 , pp. 109–116.

Locke, J. E., 1994, “Finite-Element Nonlinear Random Response of Beams,” J. Sound Vib.

[CrossRef], 178 , pp. 201–210.

Chen, R. P., Mei, C., and Wolfe, H. F., 1996, “Comparison of Finite Element Non-Linear Beam Random Response With Experimental Results,” J. Sound Vib.

[CrossRef], 195 , pp. 719–737.

Schuëller, G. I., and Pradlwarter, H. J., 1999, “On the Stochastic Response of Nonlinear FE Models,” Arch. Appl. Mech., 69 , pp. 765–784.

Cheng, G. F., Lee, Y. Y., and Mei, C., 2003, “Nonlinear Random Response of Internally Hinged Beams,” Finite Elem. Anal. Design

[CrossRef], 39 , pp. 487–504.

Bouc, R., and Defilippi, M., 1997, “Multimodal Nonlinear Spectral Response of a Beam With Impact Under Random Input,” Probab. Eng. Mech.

[CrossRef], 12 , pp. 163–170.

Bellizzi, S., and Bouc, R., 1999, “Analysis of Multi-Degree-of-Freedom Strongly Non-Linear Mechanical Systems With Random Input. Part II: Equivalent Linear System With Random Matrices and Spectral Density Matrix,” Probab. Eng. Mech.

[CrossRef], 14 , pp. 245–256.

Elishakoff, I., Fang, J., and Caimi, R., 1995, “Random Vibration of a Nonlinearly Deformed Beam by a New Stochastic Linearization Technique,” Int. J. Solids Struct., 32 , pp. 1571–1584.

Fang, J., Elishakoff, I., and Caimi, R., 1995, “Nonlinear Response of a Beam Under Stationary Random Excitation by Improved Stochastic Linearization Method,” Appl. Math. Model., 19 , pp. 106–111.

Casciati, F., Faravelli, L., and Venini, P., 1994, “Frequency-Analysis in Stochastic Linearization,” J. Eng. Mech., 120 , pp. 2498–2518.

Köylüoğlu, H. U., Nielsen, S. R. K., and Cakmak, A. S., 1996, “Stochastic Dynamics of Geometrically Non-Linear Structures With Random Properties Subject to Stationary Random Excitation,” J. Sound Vib., 190 , pp. 821–841.

Iwan, W. D., and Whirley, R. G., 1993, “Nonstationary Equivalent Linearization of Nonlinear Continuous Systems,” Probab. Eng. Mech.

[CrossRef], 8 , pp. 273–280.

Grigoriu, M., 1991, “Statistically Equivalent Solutions of Stochastic Mechanics Problems,” J. Eng. Mech., 117 , pp. 1906–1918.

Chen, C. C. T., and Yang, H. T. Y., 1993, “Flexible Thin Shell Elements Under Nonwhite and Nonzero Mean Loads,” J. Eng. Mech., 119 , pp. 1680–1697.

Dogan, V., and Vaicaitis, R., 1999, “Nonlinear Response of Cylindrical Shells to Random Excitation,” Nonlinear Dyn.

[CrossRef], 20 , pp. 33–53.

Sun, J. Q., Bao, W., and Miles, R. N., 1998, “Fatique Life Prediction of Nonlinear Plates Under Random Excitations,” ASME J. Vibr. Acoust., 120 , pp. 353–360.

Chang, T. P., and Ke, J. L., 1996, “Nonlinear Dynamic Response of a Nonuniform Orthotropic Circular Plate Under Random Excitation,” Comput. Struct., 60 , pp. 113–123.

Ghazarian, N., and Locke, J., 1995, “Nonlinear Random Response of Antisymmetric Angle-Ply Laminates Under Thermal-Acoustic Loading,” J. Sound Vib., 186 , pp. 291–309.

Ng, C. F., 2000, “The Nonlinear Acoustic Response of Thermally Buckled Plates,” Appl. Acoust., 59 , pp. 237–251.

Harichandran, R. S., and Naja, M. K., 1997, “Random Vibration of Laminated Composite Plates With Material Non-Linearity,” Int. J. Non-Linear Mech., 32 , pp. 707–720.

Kang, J. W., and Harichandran, R. S., 1999, “Random Vibration of Laminated FRP Plates With Material Nonlinearity Using High-Order Shear Theory,” J. Eng. Mech.

[CrossRef], 125 , pp. 1081–1088.

Schuëller, G. I., Pandey, M., and Pradlwarter, H. J., 1994, “Equivalent Linearization (EQL) in Engineering Practice for Aseismic Design,” Probab. Eng. Mech.

[CrossRef], 9 , pp. 95–102.

Emam, H. H., Pradlwarter, H. J., and Schuëller, G. I., 1999, “On the Computational Implementation of EQL in FE-Analysis,” "*Stochastic Structural Dynamics*", B.F.Spencer and E.A.Johnson, eds., Balkema, Rotterdam, pp. 85–91.

Emam, H. H., Pradlwarter, H. J., and Schuëller, G. I., 2000, “A Computational Procedure for Implementation of Equivalent Linearization in Finite Element Analysis,” Earthquake Eng. Struct. Dyn.

[CrossRef], 29 , pp. 1–17.

Cherng, R. H., and Wen, Y. K., 1994, “Reliability of Uncertain Nonlinear Trusses Under Random-Excitation, 1,” J. Eng. Mech., 120 , pp. 733–747.

Yalla, S. K., and Kareem, A., 2000, “Optimum Absorber Parameters for Tuned Liquid Column Dampers,” J. Struct. Eng.

[CrossRef], 126 , pp. 906–915.

Won, A. Y. J., Pires, J. A., and Haroun, M. A., 1996, “Stochastic Seismic Performance Evaluation of Tuned Liquid Column Dampers,” Earthquake Eng. Struct. Dyn., 25 , pp. 1259–1274.

Won, A. Y. J., Pires, J. A., and Haroun, M. A., 1997, “Performance Assessment of Tuned Liquid Column Dampers Under Random Seismic Loading,” Int. J. Non-Linear Mech., 32 , pp. 745–758.

Er, G. K., and Iu, V. P., 2000, “Stochastic Response of Base-Excited Coulomb Oscillator,” J. Sound Vib., 233 , pp. 81–92.

Cunha, A., 1994, “The Role of the Stochastic Equivalent Linearization Method in the Analysis of the Nonlinear Seismic Response of Building Structures,” Earthquake Eng. Struct. Dyn., 23 , pp. 837–857.

Wang, J., and Lin, J. H., 2000, “Seismic Random Response Analysis of Hysteretic Systems With Pseudo Excitation Method,” Acta Mech. Sin., 13 , pp. 246–253.

Guo, A. X., Xu, Y. L., and Wu, B., 2002, “Seismic Reliability Analysis of Hysteretic Structure With Viscoelastic Dampers,” Eng. Struct., 24 , pp. 373–383.

Ni, Y. Q., Ko, J. M., and Ying, Z. G., 2001, “Random Seismic Response Analysis of Adjacent Buildings Coupled With Non-Linear Hysteretic Dampers,” J. Sound Vib., 246 , pp. 403–417.

Su, L., and Ahmadi, G., 1992, “Probabilistic Responses of Base-Isolated Structures to El-Centro 1940 and Mexico-City 1958 Earthquakes,” Eng. Struct., 14 , pp. 217–230.

Chen, Y., and Ahmadi, G., 1992, “Stochastic Earthquake Response of Secondary Systems in Base-Isolated Structures,” Earthquake Eng. Struct. Dyn., 21 , pp. 1039–1057.

Chen, Y., and Ahmadi, G., 1994, “Performance of a High Damping Rubber Bearing Base-Isolation System for a Shear Beam Structure,” Earthquake Eng. Struct. Dyn., 23 , pp. 729–744.

Jangid, R. S., and Datta, T. K., 1995, “Performance of Base-Isolation Systems for Asymmetric Building Subject to Random-Excitation,” Eng. Struct.

[CrossRef], 17 , pp. 443–454.

Park, Y. J., Wen, Y. K., and Ang, A. H. S., 1986, “Random Vibration of Hysteretic Systems Under Bi-Directional Ground Motion, Earthquake Engng,” Earthquake Eng. Struct. Dyn., 14 , pp. 543–557.

Fan, F., Ahmadi, G., Mostaghel, N., and Tadjbakhsh, I. G., 1991, “Performance Analysis of Aseismic Base Isolation Systems for Multi-Storey Building,” Soil Dyn. Earthquake Eng., 10 , pp. 152–171.

Jangid, R. S., 1996, “Optimum Damping In a Non-Linear Base Isolation System,” J. Sound Vib., 189 , pp. 477–487.

Jangid, R. S., 2000, “Stochastic Seismic Response of Structures Isolated by Rolling Rods,” Eng. Struct., 22 , pp. 937–946.

Marano, G. C., and Greco, R., 2003, “Efficiency of Base Isolation Systems in Structural Seismic Protection and Energetic Assessment,” Earthquake Eng. Struct. Dyn., 32 , pp. 1505–1531.

Kulkarni, J. A., and Jangid, R. S., 2003, “Effects of Superstructure Flexibility on the Response of Base-Isolated Structures,” Shock Vib. Dig., 10 , pp. 1–13.

Hanawa, Y., and Shimizu, N., 2002, “Statistical Seismic Response Analysis of Piping System With a Teflon Friction Support,” JSME Int. J., Ser. C, 45 , pp. 393–401.

Igusa, T., and Sinha, R., 1991, “Response Analysis of Secondary Systems With Nonlinear Supports,” ASME J. Pressure Vessel Technol., 113 , pp. 524–531.

Colangelo, F., Giannini, R., and Pinto, P. E., 1996, “Seismic Reliability Analysis of Reinforced Concrete Structures With Stochastic Properties,” Struct. Safety, 18 , pp. 151–168.

Koliopulos, P. K., Nichol, E. A., and Stefanou, G. D., 1994, “Comparative Performance of Equivalent Linearization Techniques for Inelastic Seismic Design,” Eng. Struct., 16 , pp. 5–10.

Koliopulos, P. K., and Chandler, A. M., 1995, “Stochastic Linearization of Inelastic Seismic Torsional Response-Formulation And Case-Studies,” Eng. Struct., 17 , pp. 494–504.

Koliopulos, P. K., 1988, “Quasi-Static and Dynamic Response Statistics of Linear SDOF Systems Under Morison-Type Wave Forces,” Eng. Struct., 10 , pp. 24–36.

Koliopulos, P. K., 1990, “Application of the Separability Assumption on The Statistics of Linear SDOF Systems Under Square-Gaussian Excitation,” Appl. Math. Model., 14 , pp. 184–198.

Basu, B., and Gupta, V. K., 1996, “A Note on Damage-Based Inelastic Spectra,” Earthquake Eng. Struct. Dyn., 25 , pp. 421–433.

Gupta, V. K., and Trifunac, M., 1988, “Order Statistics of Peaks Earthquake Response,” J. Eng. Mech., 114 , pp. 1605–1627.

Chen, Y. Q. Q., 1993, “Modification of Floor Response Spectrum Based on Stochastic Sensitivity Analysis,” Eng. Struct., 15 , pp. 40–46.

Pires, J. A., 1996, “Stochastic Seismic Response Analysis of Soft Soil Sites,” Nucl. Eng. Des., 160 , pp. 363–377.

Pagnini, L. C., and Solari, G., 1999, “Stochastic Analysis of the Linear Equivalent Response of Bridge Piers With Aseismic Devices,” Earthquake Eng. Struct. Dyn.

[CrossRef], 28 , pp. 543–560.

Zhu, W. Q., Huang, C. D., and Soong, T. T., 1994, “Response and Reliability of Secodary Systems in Yielding Structures,” Probab. Eng. Mech., 9 , pp. 145–155.

Huang, C. D., Zhu, W. Q., and Soong, T. T., 1994, “Nonlinear Stochastic Response and Reliability of Secondary Systems,” J. Eng. Mech., 120 , pp. 177–196.

Takewaki, I., 2001, “Probabilistic Critical Excitation for MDOF Elastic-Plastic Structures on Compliand Ground,” Earthquake Eng. Struct. Dyn.

[CrossRef], 30 , pp. 1345–1360.

Aoki, S., 2002, “Simplified Estimation Method for First Excursion Probability of Secondary System With Gap,” Nucl. Eng. Des., 212 , pp. 193–199.

Hurtado, J. E., and Barbat, A. H., 1996, “Improved Stochastic Linearization Method Using Mixed Distributions,” Struct. Safety, 18 , pp. 49–62.

Hurtado, J. E., and Barbat, A. H., 2000, “Equivalent Linearization of the Bouc-Wen Hysteretic Model,” Eng. Struct., 22 , pp. 1121–1132.

Duval, L., , 1999, “Zero and Non-Zero Mean Analysis of MDOF Hysteretic Systems Via Direct Linearization,” "*Stochastic Structural Dynamics*", B.F.Spencer and E.A.Johnson eds., Balkema, Rotterdam, pp. 77–84.

Vasta, M., and Schuëller, G. I., 2000, “Phase Space Reduction In Stochastic Dynamics,” J. Eng. Mech.

[CrossRef], 126 , pp. 626–632.

Micaletti, R. C., Cakmak, A. S., Nielsen, S. R. K., and Koyluoglu, H. U., 1998, “Error Analysis of Statistical Linearization With Gaussian Closure for Large-Degree-of-Freedom Systems,” Probab. Eng. Mech., 13 , pp. 77–84.

Pandey, M. D., 1995, “Stochastic-Analysis of Structures With Passive Seismic Control,” Can. J. Civ. Eng., 22 , pp. 970–980.

Yang, J. N., Li, Z., and Vongchavalitkul, S., 1994, “Stochastic Hybrid Control of Hysteretic Structures,” Probab. Eng. Mech., 9 , pp. 125–133.

Suzuki, Y., 1995, “Stochastic Control of Hysteretic Structural Systems,” Sadhana: Proc., Indian Acad. Sci., 20 , pp. 475–488.

Xu, Y. L., Samali, B., and Kwok, K. C. S., 1992, “Control of Along-Wind Response of Structures by Mass and Liquid Dampers,” J. Eng. Mech., 118 , pp. 20–39.

Xu, Y. L., Kwok, K. C. S., and Samali, B., 1992, “The Effect of Tuned Mass Dampers and Liquid Dampers on Corrs-Wind Response of Tall Slender Structures,” J. Wind. Eng. Ind. Aerodyn., 40 , pp. 33–54.

Zhang, X. T., Zhang, R. C., and Xu, Y. L., 1993, “Analysis on Control of Flow-Induced Vibration by Tuned Liquid Damper With Crossed Tube-Like Containers,” J. Wind. Eng. Ind. Aerodyn.

[CrossRef], 50 , pp. 351–360.

Xu, Y. L., and Shum, K. M., 2003, “Multiple-Tuned Liquid Column Dampers for Torsional Vibration Control of Structures: Theoretical Investigation,” Earthquake Eng. Struct. Dyn., 32 , pp. 309–328.

Chen, Y., and Ahmadi, G., 1992, “Wind Effects on Base-Isolated Structures,” J. Eng. Mech., 118 , pp. 1708–1727.

Kareem, A., and Li, Y. S., 1993, “Wind-Excited Surge Response of Tension-Leg Platform-Frequency-Domain Approach,” J. Eng. Mech., 119 , pp. 161–183.

Qian, J., and Wang, X., 1992, “3-Dimensional Stochastic Response of Offshore Towers Random Sea Waves,” Comput. Struct., 43 , pp. 385–390.

Liu, Y., and Bergdahl, L., 1997, “Influence of Current and Seabed Fricion on Mooring Cable Response: Comparison Between Time-Domain And Frequency-Domain Analysis,” Eng. Struct., 19 , pp. 945–953.

Sarkar, A., and Taylor, R. E., 2002, “Dynamics of Mooring Cables in Random Seas,” J. Fluids Struct., 16 , pp. 193–212.

Benfratello, S., and Falsone, G., 1995, “Non-Gaussian Approach for Stochastic Analysis of Offshore Structures,” J. Eng. Mech.

[CrossRef], 121 , pp. 1173–1180.

Quek, S. T., Li, X. M., and Koh, C. G., 1994, “Stochastic Response of Jack-Up Platform by the Method for Statistical Quadratization,” Appl. Ocean. Res., 16 , pp. 113–122.

Li, X. M., Quek, S. T., and Koh, C. G., 1995, “Stochastic Response of Offshore Platform by Statistical Cubization,” J. Eng. Mech.

[CrossRef], 121 , pp. 1056–1068.

Kareem, A., Zhao, J., and Tognarlli, M. A., 1995, “Surge Response Statistics of Tension Leg Platforms Under Wind and Wave Loads: A Statistical Quadratization Approach,” Probab. Eng. Mech.

[CrossRef], 10 , pp. 225–240.

Tognarelli, M. A., Zhao, J., and Kareem, A., 1997, “Equivalent Statistical Qubicization for System and Forcing Nonlinearization,” J. Eng. Mech.

[CrossRef], 123 , pp. 890–893.

Wolfram, J., 1999, “On Alternative Approaches to Linearization and Morison’s Equation for Wave Forces,” Proc. R. Soc. London, Ser. A, 455 , pp. 2957–2974.

Zhang, J. J., and Knothe, K., 1996, “Statistical Linearization of Wheel Rail Contact Nonlinearities for Investigation of Curving Behaviour With Random Track Irregularities,” Veh. Syst. Dyn., 25 , pp. 731–745.

Oblak, M. M., Lesnika, A. S., and Butinar, B. J., 2002, “Optimum Design of Stochastically Excited Non-Linear Dynamic Systems Without Geometric Constrains,” Int. J. Numer. Methods Eng., 53 , pp. 2429–2443.

Narayanan, S., and Raju, G. V., 1992, “Active Control of Nonstationary Response of Vehicles With Nonlinear Suspensions,” Veh. Syst. Dyn., 21 , pp. 73–87.

Raju, G. V., and Narayanan, S., 1995, “Active Control of Nonstationary Response of a 2-Degree of Freedom Vehicle Model With Nonlinear Suspension,” Sadhana: Proc., Indian Acad. Sci., 20 , pp. 489–499.

Narayanan, S., and Senthil, S., 1998, “Stochastic Optimal Active Control of a 2-Dof Quarter Car Model With Non-Linear Passive Suspension Elements,” J. Sound Vib.

[CrossRef], 211 , pp. 495–506.

Socha, L., 1999, “Active Control of Nonlinear 2-Degree of Freedom Vehicle Suspension Under Stochastic Excitations,” "*Smaart Structures*", J.Holnicki-Szulc and J.Rodellar, eds., Kluwer Academic, Dordrecht, pp. 321–327.

Socha, L., 2000, “Application of Statistical Linearization Techniques to Design of Quasi-Optimal Control of Nonlinear Systems,” Theor Appl. Mech., 38 , pp. 591–605.

Foliente, G. C., Singh, M. P., and Dolan, J. D., 1996, “Response Analysis of Wood Structures Under Natural Hazard Dynamic Loads,” Wood Fiber Sci., 28 , pp. 110–127.

Facchini, L., Gusella, V., and Spinelli, P., 1994, “Block Random Rocking and Seismic Vulnerability Estimation,” Eng. Struct., 16 , pp. 412–424.

Ellison, J., Ahmadi, G., and Grodsinsky, C., 1997, “Stochastic Response of Pasive Vibration Control Systems to G-Jitter Excitation, Microgravity,” Microgravity Sci. Technol., 10 , pp. 2–12.

Bennett, A. F., and Thorburn, M. A., 1992, “The Generalized Inverse of a Nonlinear Quasi-Geostrophic Ocean Circulation Model,” J. Phys. Oceanogr., 22 , pp. 213–230.

Evensen, G., 1992, “Using the Extended Kalman Filter With a Multilayer Quasi-Geostrophic Ocean Model,” J. Geophys. Res., 97 , pp. 17905–17924.

Bukhanovskii, A. V., 1998, “Probabilistic Modelling of Sea Wave Climate,” Izv. AN Fiz. Atmos. Ok+, 34 , pp. 261–266.

Lei, J. H., and Schilling, W., 1994, “Parameter Uncertainty Propagation Analysis for Urban Rainfall-Runoff Modelling,” Water Sci. Technol., 29 , pp. 145–154.

Inaudi, J. A., Leitmann, G., and Kelly, J. M., 1994, “Single-Degree-of-Freedom Nonlinear Homogeneous Systems,” J. Eng. Mech., 120 , pp. 1543–1562.

Inaudi, J. A., and Kelly, J. M., 1995, “Mass Damper Using Friction-Dissipating Devices,” J. Eng. Mech.

[CrossRef], 121 , pp. 142–149.

Bellizzi, S., Bouc, R., and Defilippi, M., 1998, “Response Spectral Densities and Identification of a Randomly Exited Non-Linear Squeeze Film Oscillator,” Mech. Syst. Signal Process.

[CrossRef], 12 , pp. 693–711.

Cha, D., and Sinha, A., 2003, “Computational of the Optimal Normal Load of a Friction Damper Under Different Types Exitation,” ASME J. Eng. Gas Turbines Power

[CrossRef], 125 , pp. 1042–1049.

Spanos, P. D., Chevallier, A. M., and Politis, N. P., 2002, “Nonlinear Stochastic Drill-String Vibrations,” ASME J. Vibr. Acoust.

[CrossRef], 124 , pp. 512–518.

Chaudhary, A. K., Bhatia, V. B., Das, M. K., and Tavakol, R. K., 1995, “Statistical Response of Randomly Excited Nonlinear Radial Oscillations in Polytropes,” J. Astrophys. Astron., 16 , pp. 45–52.

Spanos, P. T. D., 1981, “Stochastic Linearization in Structural Dynamics,” Appl. Mech. Rev., 34 , pp. 1–8.

Roberts, J. B., 1981, “Response of Nonlinear Mechanical Systems to Random Excitation, Part 2: Equivalent Linearization and Other Methods,” Shock Vib. Dig., 13 , pp. 15–29.

Schuëller, G. I., Pradlwarter, H. J., Vasta, M., and Harnpornchai, N., 1999, “Benchmark Study On Non-Linear Stochastic Structural Dynamics,” "*Proc. of Seventh Int. Conf. on Structural Safety and Reliability*", N.Shiraishi, M.Shinozuka, and Y.K.Wen, eds., Balkema, Rotterdam.

Pradlwarter, H. J., Schuëller, G. I., and Schenk, C. A., 2003, “A Computational Procedure to Estimate the Stochastic Dynamic Response of Large Nonlinear FE—Models,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 , pp. 777–801.

Zhang, X. T., Elishakoff, I., and Zhang, R. C. h., 1991, “A New Stochastic Linearization Technique Based on Minimum Mean-Square Deviation of Potential Energies,” "*Stochastic Structural Dynamics—New Theoretical Developments*", Y.K.Lin and I.Elishakoff, eds., Springer-Verlag, Berlin, pp. 327–338.

Elishakoff, I., 1991, “Method of Stochastic Linearization: Revisited and Improved,” "*Computational Stochastic Mechanics*", P.D.Spanos and C.A.Brebbia, eds., Computational Mechanics Publication and Elsevier Applied Science , London, pp. 101–111.

Ismaili, M. A., and Bernard, P., 1997, “Asymptotic Analysis and Linearization of the Randomly Perturbed Two-Wells Duffing Oscillator,” Probab. Eng. Mech., 12 , pp. 171–178.

Ricciardi, G., and Elishakoff, I., 2002, “A Novel Local Stochastic Linearization Method via Two Extremum Entropy Principles,” Int. J. Non-Linear Mech., 37 , pp. 785–800.