0
REVIEW ARTICLES

Review of Wall Turbulence as Described by Composite Expansions

[+] Author and Article Information
Ronald L. Panton

Mechanical Engineering Department, University of Texas, Austin, TX 78712

Appl. Mech. Rev 58(1), 1-36 (Mar 08, 2005) (36 pages) doi:10.1115/1.1840903 History: Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Prandtl, L., 1976, Aerodynamic Theory, Durand, W. F. ed., Peter Smith, Gloucester, MA, Vol. III.
1976, Aerodynamic Theory, Durand, W. F. ed., Peter Smith, Gloucester, MA, Vol. III.
Rotta, J., 1950, Uber die Theorie der turbulenten Grenzschichten, Mitt. Max-Plank-Inst., Göttingen, No. 1; translated as; “On the Theory of Turbulent Boundary Layers,” NACA TM No. 1344, 1953.
Clauser,  F. H., 1956, “The Turbulent Boundary Layer,” Adv. Appl. Mech., 4, pp. 1–51.
Coles, D., and Hirst, 1968, Proceedings; Computation of Turbulent Boundary Layers-1968 AFOSR-IFP-Stanford Conference, Vol. II, Mechanical Engineering Department, Stanford University, CA.
Yaglom,  A., 1979, “Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows,” Annu. Rev. Fluid Mech., 11, pp. 505–540; 2001, Course 1 in “New Trends in Turbulence,” M. Lesieur, A. Yaglom, and F. David, eds., Springer-Verlag, Berlin.
Gad-el-Hak,  M., and Bandyophadhyay,  P., 1994, “Reynolds Number Effects in Wall Bounded Turbulent Flows,” Appl. Mech. Rev., 47, p. 307.
Fernholtz,  H. H., and Findley,  J. P., 1996, “The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data,” Prog. Aerosp. Sci., 32, pp. 245–311.
Isakson,  A., 1937, “On the Formula for the Velocity Distribution Near Walls,” Zh. Eksp. Teor. Fiz., 7, p. 919.
Millikan, C. B., 1938, “A Critical Discussion of Turbulent Flows in Channels and Circular Tubes,” Proceedings Fifth Int. Conference Appl. Mech., Cambridge MA, p. 386.
Mellor,  G. L., and Gibson,  D. M., 1966, “Equilibrium Turbulent Boundary Layers,” J. Fluid Mech., 24, pp. 225–253.
Busch,  W. B., and Fendel,  F. E., 1972, “Asymptotic Analysis of Turbulent Channel and Boundary Layer Flow,” J. Fluid Mech., 56, p. 657.
Deriat,  E., and Guiraud,  J.-P., 1986, “On the Asymptotic Description of Turbulent Boundary Layers,” J. Mec. Theor. Appl., 5, pp. 109–140.
Walker, J. D. A., 1998, “Turbulent Boundary Layers II, Further Developments,” in Recent Advances in Boundary Layer Theory, A. Kluwick, ed., Springer, New York, pp. 145–161.
Bjorgum, O., 1961, “On the Application of Asymptotic Expansions to Turbulent Shear Flow,” Mat. Naturv. Serie 1960, No. 18, Arbok University Press, Bergen, Norway.
Tennekes,  H., 1968, “Outline of a Second-Order Theory of Turbulent Pipe Flow,” AIAA J., 6, pp. 1735–1740.
Yajnik,  K. S., 1970, “Asymptotic Theory of Turbulent Shear Flows,” J. Fluid Mech., 42, pp. 411–427.
Mellor,  G. L., 1972, “The Large Reynolds Number, Asymptotic Theory of Turbulent Boundary Layers,” J. Fluid Mech., 10, pp. 851–873.
Afzal,  N., 1976, “Millikan’s Argument at Moderately Large Reynolds Numbers,” Phys. Fluids, 19, pp. 600–602.
Buschmann,  M., and Gad-el-Hak,  M., 2003, “The Generalized Logarithmic Law and Its Consequences,” AIAA J., 41, p. 40.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
Gersten, K., 1987, “Some Contributions to the Asymptotic Theory for Turbulent Flows,” Proc. 2nd Int. Symposium. on Transport Phenomena in Turbulent Shear Flows, Toyko, pp. 201–214.
Gersten, K., and Herwig, H., 1992, Strömungsmechanik, Verlag Vieweg, Wiesbaden.
Schlichting, H., and Gersten, K., 2000, Boundary Layer Theory, 8th ed., McGraw-Hill, New York.
Barenblatt, G. I., 1979, Similarity, Self Similarity, and Intermediate Asymptotics, Plenum Press, New York.
Barenblatt,  G. I., 1993a, “Scaling Laws for Fully Developed Turbulent Shear Flows. Part 1: Basic Hypothesis and Analysis,” J. Fluid Mech., 248, p. 513.
Barenblatt,  G. I., and Prostokishin,  V. M., 1993, “Scaling Laws for Fully Developed Turbulent Shear Flows. Part 2: Processing Experimental Data,” J. Fluid Mech., 248, p. 521.
Barenblatt, G. I., 1996, Scaling, Self Similarity, and Intermediate Asymptotics, Revised ed., Cambridge University Press, Cambridge.
Barenblatt,  G. I., Chorin,  A. J., and Prostokishin  V. M., 1997a, “Scaling Laws for Fully Developed Turbulent Flow in Pipes: Discussion of Experimental Data,” Proc. Natl. Acad. Sci. U.S.A., 94, p. 773.
Barenblatt,  G. I., Chorin,  A. J., and Prostokishin,  V. M., 1997b, “Scaling Laws in Fully Developed Turbulent Pipe Flow,” Appl. Mech. Rev., 50, p. 413.
Barenblatt,  G. I., Chorin,  A. J., Hald,  O. H., and Prostokishin,  V. M., 1997c, “Structure of the Zero-Pressure-Gradient Turbulent Boundary Layer,” Proc. Natl. Acad. Sci. U.S.A., 94, p. 7817.
Barenblatt, G. I., Chorin, A. J., and Prostokishin, V. M., 2000a, “Analysis of Experimental Investigations of Self-Similar Intermediate Structures in Zero-Pressure-Gradient Boundary Layers at Large Reynolds Numbers,” UC Berkeley, Center for Pure and Applied Math, Report PAM 777, January 2000.
Barenblatt,  G. I., Chorin,  A. J., and Prostokishin,  V. M., 2000b, “Self-Similar Intermediate Structures in Turbulent Boundary Layers at Large Reynolds Numbers,” J. Fluid Mech., 410, p. 263.
Barenblatt,  G. I., Chorin,  A. J., and Prostokishin,  V. M., 2000c, “A Note on the Intermediate Region in Turbulent Boundary Layers,” Phys. Fluids, 12(9), p. 2159.
George, W. K., Knecht, P., and Castillo, L., 1992, “Zero-Pressure-Gradient Turbulent Boundary Layer Revisited,” Proceedings of the Thirteenth Biennial Symposium on Turbulence, Rolla MO.
George,  W. K., and Castillo,  L., 1997, “Zero-Pressure-Gradient Turbulent Boundary Layer,” Appl. Mech. Rev., 50, pp. 689–729.
George, W. K., Castillo, L., and Wosnik, M., 1997, “A-Theory for Turbulent Pipe and Channel Flows,” TAM Report No. 872 UILU-ENG-6033, University of Illinois, November 1997.
Wosnik,  M., Castillo,  L., and George,  W., 2000, “A Theory for Turbulent Pipe and Channel Flows,” J. Fluid Mech., 421, p. 521.
von Kármán, T., 1930, Mechanische Aehnlichkeit und Turbulenz, Nachr. Ges. Wiss. Goettingen, p. 68.
Schlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, New York.
Stanton,  T. E., and Pannel,  J. R., 1914, “Similarity of Motion in Relation to the Surface Friction of Fluids,” Philos. Trans. R. Soc. London, Ser. A, 214, p. 199.
Coles,  D., 1956, “The Law of the Wake in a Turbulent Boundary Layer,” J. Fluid Mech., 1, pp. 191–226.
Oberlack,  M., 2001, “A Unified Approach for Symmetries in Plane Parallel Turbulent Shear Flows,” J. Fluid Mech., 427, pp. 299–328.
Lindgren, B., Österlund, J. M., and Johansson, A. V., 2002, “Evaluation of Scaling Laws Derived From Lie Group Symmetries in Turbulent Boundary Layers,” AIAA Pap. 2002-1103.
Van Dyke, M., 1975, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, CA.
Hinch, E. J., 1991, Perturbation Methods, Cambridge University Press, Cambridge.
Lagerstrom, P. A., 1989, “Matched Asymptotic Expansions,” Applied Mathematical Sciences, Springer-Verlag, Berlin, p. 76.
Eckhaus, W., 1979, Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam.
Mauss,  J., and Cousteix,  J., 2002, “Uniformly Valid Approximation for Singular Perturbation Problems and Matching Principle,” Comptes Rendus Mécanique,330, p. 697.
Latta, G. E., 1951, “Singular Perturbation Problems,” Doctoral thesis, California Inistitute of Technology, Pasadena.
Monkewitz, P., et al., 2001, Bulletin of the American Physical Society, Division Fluid Dynamics Meeting 2001.
Cole, J. D., 1968, Perturbation Methods in Applied Mathematics, Ginn/Blaidsdell, Waltham MA.
Zagarola,  M. V., and Smits,  A. J., 1998, “Mean Flow Scaling of Turbulent Pipe Flow,” J. Fluid Mech., 373, pp. 33–79.
Zagarola,  M. V., and Smits,  A. J., 1997, “Scaling of the Mean Velocity Profile for Turbulent Pipe Flow,” Phys. Rev. Lett., 78, p. 239.
Perry,  A. E., Hafez,  S., and Chong,  M. S., 2001, “A Possible Reinterpretation on the Princeton Superpipe Data,” J. Fluid Mech., 439, pp. 395–401.
Panton, R. L., 1996, “Incompressible Flow,” 2nd ed., Wiley-Interscience, New York.
Panton,  R. L., 1997, “A Reynolds Stress Function for Wall Layers,” ASME J. Fluids Eng., 119, p. 325.
Musker,  A. J., 1979, “Explicit Expression for the Smooth Wall Velocity Distribution in a Turbulent Boundary Layer,” AIAA J., 17, p. 655.
Clauser,  F. H., 1954, “Turbulent Boundary Layers in Adverse Pressure Gradients,” J. Aeronaut. Sci., 21, pp. 91–108.
Österlund, J. M., 1999, “Experimental Studies of Zero-Pressure-Gradient Turbulent Boundary Layer Flows,” Doctoral thesis, Royal Institute of Technology, Stockholm.
Lewkowicz,  A. K., 1982, “An Improved Universal Wake Function for Turbulent Boundary Layers and Some of Its Consequences,” Z. Flugwiss. Weltraumforsch., 6, pp. 261–266.
Ludwieg, H., 1949, “Ein Gerät zur Messung der Wandschubspannung turbulenten Reibungsschichten,” Ing.-Arch. 17,288; translated as “Instrument for Measuring the Wall Shearing Stress of Turbulent Boundary Layer,” NACA TM 1284 (1950).
Ludwieg, H., and Tillmann, W., 1949, “Untersuchungen über die Wandschubspannung in Turbulenten Reibungsschichten,” Ing.-Arch. 17,288-299; translated as “Investigations of the Wall Shearing Stress in Turbulent Boundary Layer,” NACS TM 1285 (1950).
Townsend, A. A., 1956, The Structure of Turbulent Shear Flow, 2nd ed., Cambridge University Press, Cambridge.
Townsend,  A. A., 1961, “Equilibrium Layers and Wall Turbulence,” J. Fluid Mech., 11, p. 97.
Österlund,  J. M., Johansson,  A. V., Nagib,  H. M., and Hites,  M. H., 2000, “A Note on the Intermediate Region in Turbulent Boundary Layers,” Phys. Fluids, 12, p. 2159.
Ross,  D., and Roberson,  J. M., 1951, “A Superposition Analysis of the Turbulent Boundary Layer in an Adverse Pressure Gradient,” ASME J. Appl. Mech., 18, p. 95.
Finley,  P. J., Phoe,  K. C., and Poh,  C. J., 1966, “Velocity Measurements in a Thin Turbulent Layer,” Houille Blanche, 21, p. 713.
Spalart,  P. R., 1988, “Direct Numerical Simulation of a Turbulent Boundary Layer up to ReΘ=1410,” J. Fluid Mech., 187, p. 61.
Wilcox, D. C., 1998, Turbulence Modeling for CFD, 2nd ed., DCW Industries, La Cañada, CA.
Bradshaw,  P., 1967b, “The Turbulence Structure of Equilibrium Boundary Layers,” J. Fluid Mech., 29, p. 625.
East, L. F., Sawyer, W. G., and Nash, C. R., 1979, “An Investigation of the Structure of Equilibrium Turbulent Boundary Layers,” Royal Aircraft Establishment, Tech. Report 79040, April 1979.
Skare,  P. E., and Krogstad,  P., 1994, “A Turbulent Equilibrium Boundary Layer Near Separation,” J. Fluid Mech., 272, p. 319.
DeGraff,  D. B., and Eaton,  J. K., 2000, “Reynolds Number Scaling of the Flat Plate Turbulent Boundary Layer,” J. Fluid Mech., 422, pp. 319–346.
Panton, R. L., 2001, “The Law-of-the-Wake for the Reynolds Stress in a Boundary Layer,” Proceedings Turbulence and Shear Flow Phenomena 2, KTH Stockholm, June 2001.
Panton, R. L., 2002a, “Reynolds Number Effect for the Reynolds Stress in a Boundary Layer,” AIAA Pap. 2002-1105.
Bradshaw,  P., and Koh,  Y. M., 1981, “A Note on Poisson’s Equation for Pressure in a Turbulent Flow,” Phys. Fluids, 24, p. 777.
Lilley, G. M., and Hodgson, T. H., 1960, AGARD Report No. 276.
Bradshaw,  P., 1967a, “Irrotational Fluctuations Near a Turbulent Boundary Layer,” J. Fluid Mech., 27, p. 209.
Panton,  R. L., Goldman,  A. L., Lowery  R. L., and Reischman,  M. M., 1980, “Low-Frequency Pressure Fluctuations in Axisymmetric Turbulent Boundary Layers,” J. Fluid Mech., 97, pp. 299–319.
Farabee,  T. M., and Casarella,  M. J., 1991, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers,” Phys. Fluids, 3, pp. 2410–2420.
Lofdahl,  L., Kalvesten,  E., and Stemm,  G., 1996, “Small Silicon Pressure Transducers for Space-Time Correlation Measurements in a Flat Plate Boundary Layer,” ASME J. Fluids Eng., 118, pp. 457–463.
Naguib,  A. M., Gravante,  S. P., and Wark,  C. E., 1996, “Extraction of Turbulent Wall-Pressure Time Series Using Optimal Filtering,” Exp. Fluids, 22, pp. 14–22.
Klewicki, J. C., and Miner, H., 2002, “Wall Pressure Structure at High Reynolds Number,” Bulletin of the American Physical Society, Division Fluid Dynamics Meeting 2002, FH 001.
Bradshaw,  P., 1967c, “Inactive’ Motion and Pressure Fluctuations in Turbulent Boundary Layers,” J. Fluid Mech., 30, p. 241.
Willmarth,  W. W., 1975a, “Structure of Turbulent Boundary Layers,” Adv. Appl. Mech., 15, pp. 159–254.
Willmarth,  W. W., 1975b, “Pressure Fluctuations Beneath Turbulent Boundary Layers,” Annu. Rev. Fluid Mech., 7, p. 13.
Willmarth,  W. W., and Yang,  C. S., 1970, “Wall-Pressure Fluctuations Beneath Turbulent Boundary Layers on a Flat Plate and a Cylinder,” J. Fluid Mech., 11, pp. 47–80.
Karangelen, C. C., Casarella, M. J., and Farabee, T. M., 1991b, “Wavenumber-Frequency Spectra of Turbulent Wall Pressure Fluctuations,” American Society of Mechanical Engineers Winter Annual Meeting, NCA-Vol. 11/FED-Vol. 130, pp. 37–44.
Wills,  J. A. B., 1970, “Measurements of the Wavenumber/Phase Velocity Spectrum of Wall Pressure Beneath a Turbulent Boundary Layer,” J. Fluid Mech., 45, pp. 65–90.
Panton,  R. L., and Linebarger,  J. H., 1974, “Wall Pressure Spectra Calculations for Equilibrium Boundary Layers,” J. Fluid Mech., 65, pp. 261–287.
Panton, R. L., 1989, “Inner-Outer Structure of Wall-Pressure Correlation Function,” Near Wall Turbulence, Kline, S. J. and Afgan, N. H., eds., Hemisphere Press, New York, pp. 381–396.
Panton,  R. L., and Robert,  G., 1994, “The Wavenumber-Phase Velocity Representation for the Turbulent Wall-Pressure Spectrum,” ASME J. Fluids Eng., 116, pp. 477–483.
Österlund, J. M., and Johansson, A. V., 2001, “Turbulence Statistics of Zero Pressure Gradient Turbulent Boundary Layers” (unpublished).
Nagib, H. M., and Hites, M. H., 1995, AIAA Pap. 95-0786.
Hinze, J. O., 1975, Turbulence, McGraw-Hill, New York.
Kaplan, S., 1967, Fluid Mechanics and Singular Perturbations: Collected Papers by Saul Kaplan, P. A. Lageerstrom, L. N. Howard, and C.-H. Liu, eds., Academic Press, New York.
Zanoun, E., Nagib, H., Durst, F., and Monkewitz, P., 2002, “Higher Reynolds Number Channel Data and Their Comparison to Recent Asymptotic Theory,” AIAA Pap. 2002-1102.
Smith, D. W., and Walker, J. H., 1958, “Skin-Friction Measurements in Incompressible Flow,” NACA TN 4231, March 1958.
Winter, K. G., and Gaudet, L., 1973, “Turbulent Boundary Layer Studies at High Reynolds Numbers and Mach Numbers Between 0.2 and 2.8,” Aeronautical Research Council R & M No. 3712.
Kim,  J., Moin,  P., and Moser,  R. D., 1987, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech., 177, pp. 133–139.
Moser,  R. D., Kim,  J., and Mansour,  N. N., 1999, “Direct Numerical Simulation of Turbulent Channel Flow Up to Re_Tau=590,” Phys. Fluids, 11, p. 943.
Comte-Bellot, G., 1965, “Ecoulement Turbulent Entre Deux Parois Parallèles,” Pub. Scient. et Tech. du Minist. de l’Air No. 419.
den Toonder, J. M., and Nieuwstadt, F., 1997, “Reynolds Number Effects in a Pipe Flow for Low and Moderate Re,” Phys. Fluids, 1 , p. 3398.
Österlund,  J. M., Johansson,  A. V., and Nagib,  H. M., 2000, “Comment on a Note on the Intermediate Region in Turbulent Boundary Layers Phys. Fluids, 12 , p. 2159”, Phys. Fluids , 12, p. 2360.
Panton,  R. L., 2002, “Evaluation of the Barenblatt-Chorin-Prostokishin Power Law for Turbulent Boundary Layers,” Phys. Fluids, 14, pp. 1806–1808.
Long,  R. R., and Chen,  T.-C., 1981, “Experimental Evidence for the Existence of a Mesolater in Turbulent Systems,” J. Fluid Mech., 105, pp. 19–59.
Afzal,  N., and Bush,  W. B., 1985, “A Three-Layer Asymptotic Analysis of Turbulent Channel Flow,” Proc. Indian Acad. Sci.,94, pp. 135–148.
Sreenivasan, K. R., and Sahay, A., 1997, in Self-Sustaining Mechanisms of Wall Turbulence, Panton, Ronald, L., ed., Computational Mechanics Publications, Southhampton, UK, Chap. 11.
Antonia,  R. A., Teitel,  M., Kim,  J., and Browne,  L. W. B., 1992, “Low Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow,” J. Fluid Mech., 236, pp. 579–605.
Harder,  K. J., and Tiederman,  W. G., 1991, “Drag Reduction and Turbulent Structure in Two-Dimensional Channel Flow,” Philos. Trans. R. Soc. London, Ser. A, 336, pp. 19–28.
Wei,  T., and Willmarth,  W. W., 1989, “Reynolds Number Effects on the Structure of a Turbulent Channel Flow,” J. Fluid Mech., 204, pp. 57–64.
Kuroda, A., Kasagi, N., and Hirata, M., 1989, “A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow,” International Symposium on Computational Fluid Dynamics, Nagoya, pp. 1174–1179; also in 1990, Numerical Methods in Fluid Dynamics, M. Yasuhara et al., eds., Jap. Soc. Comp. Fluid Dyn., Vol. 2, pp. 1012–1017.
Kuroda, A., Kasagi, N., and Hirata, M., 1990a, “A Direct Numerical Simulation of the Turbulent Flow Between Two Parallel Walls: Turbulence Characteristics Near the Wall Without Mean Shear,” 5th Symposium on Numerical Simulation of Turbulence, IIS of the University of Tokyo, pp. 1–5.
Kasagi, N., Horiuti, K., Miyake, Y., Miyauchi, T., and Nagano, Y., 1992, “Direct Numerical Simulation Database of Turbulent Transport Phenomena,” by the Ministry of Education, Science and Culture, The University of Tokyo, Bunkyo-ku, Tokyo 113: http://www.thtlab.t.u-tokyo.ac.jp/.
Andersson,  H. I., and Kristoffersen,  R., 1992, “Statistics of Numerically Generated Turbulence,” Acta Appl. Math., 26, pp. 293–314.
Gilbert, N., and Kleiser, L., 1991, “Turbulence Model Testing Withthe Aid of Direct Numerical Simulation Results,” Proc. of 8th Symposium on Turbulent Shear Flows, Paper 26-1, Munich, Sept. 9–11.
Eggels,  J. G. M., Unger,  F., Weiss,  M. H., Westerweel,  J., Adrian,  R. J., Friedrich,  R., and Nieuwstadt,  F. T. M., 1994, “Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment,” J. Fluid Mech., 268, pp. 175–209.
Eggels,  J. G. M., Westerweel,  J., Nieuwstadt,  F. T. M., and Adrian,  R. J., 1993, “Direct Numerical Simulation of Turbulent Pipe Flow: A Comparison Between Simulation and Experiment at Low Re-Number,” Appl. Sci. Res., 51, pp. 319–324.

Figures

Grahic Jump Location
Composite velocity profiles from experiments on pipe flow. Data from Zagarola and Smits 53.
Grahic Jump Location
Wake velocity profiles from experiments on pipe flow. Data from Zagarola and Smits 53.
Grahic Jump Location
Wake velocity profiles for different types of flows. Data sources cited in the caption are listed in the Refs. 6611253.
Grahic Jump Location
Mathematical model composite velocity profiles in inner variables for several values of Re
Grahic Jump Location
Mathematical model comparison of the composite, the common part and the exact answer for Re=1000
Grahic Jump Location
Schematic of interaction of Reynolds stress inner function and wake function
Grahic Jump Location
Reynolds stress inner function from channel flow experiments. Data sources Antonia et al. 110, Harder and Tiederman 111, and Wei and Willmarth 112.
Grahic Jump Location
Reynolds stress inner function from channel flow DNS. Data sources cited in the caption are listed in Refs. 113114115116117101102.
Grahic Jump Location
Reynolds stress inner function from pipe flow experiments. Data from Toonder and Nieuwstadt 104.
Grahic Jump Location
Reynolds stress inner function from pipe flow DNS. Data from Eggels et al. 118 and Unger and Friedrich 119.
Grahic Jump Location
Composite expansion compared with Reynolds stress from pipe flow experiments. Data from Toonder and Nieuwstadt 104.
Grahic Jump Location
Reynolds number dependence ratio of Rotta–Clauser thickness to Coles thickness
Grahic Jump Location
Independence of log law from pressure gradient. Data from Ludwieg and Tillmann 63.
Grahic Jump Location
Boundary layer growth in flow direction. Data from Österlund 60.
Grahic Jump Location
Boundary layer growth rate proportional to friction velocity. Data from Österlund 60.
Grahic Jump Location
Defect law for boundary layers at various Re* . Data from Österlund 60.
Grahic Jump Location
Wake law for boundary layers at various Re* . Data from Österlund 60.
Grahic Jump Location
Boundary layer velocity profiles. DNS (Spalart 69) calculation compared with composite expansion.
Grahic Jump Location
Equilibrium boundary layer parameters. Free stream velocity exponent as function of pressure gradient parameter.
Grahic Jump Location
Equilibrium boundary layer parameters. Coles’ wake parameter as function of pressure gradient parameter.
Grahic Jump Location
Velocity defect profiles, equilibrium boundary layers showing log region. Data from East et al. 72. Flow (1); beta=−0.25, (2) −0.15, (3) 0.00, (4) 0.47, (5) 1.87, (6) 7.27, (7) 61.6.
Grahic Jump Location
Velocity wake profiles for equilibrium boundary layers. Wiegardt flow, dp/dx=0, two flows from Bradshaw and one from Clauser, each with three different streamwise stations. Data are in Coles and Hirst 5.
Grahic Jump Location
Velocity wake profiles for equilibrium boundary layers from East et al. 72 compared with Coles’ law. Flows (1); beta=−0.25, (2) −0.15, (3) 0.00, (4) 0.47.
Grahic Jump Location
Velocity wake profiles for equilibrium boundary layers from East et al. 72 compared with Coles’ law. Flows (4); beta=0.47, (5) 1.87, (6) 7.27, (7) 61.6.
Grahic Jump Location
Velocity wake profiles for equilibrium boundary layers from Skare and Krogstad 73 Π=6.9 (beta=20)
Grahic Jump Location
Reynolds stress wake law for a boundary layer with dp/dx=0. Data from Degraaff and Eaton 74. Computation using Coles’ velocity law shown for reference.
Grahic Jump Location
Reynolds stress wake law for a boundary layer with dp/dx=0. DNS data from Spalart 69. Computation using Coles’ velocity law shown for reference.
Grahic Jump Location
Reynolds stress in a boundary layer with dp/dx=0. DNS data from Spalart 69. Composite derived from Coles’ law and g0 from Eq. (5.36).
Grahic Jump Location
Reynolds stress wake profiles for equilibrium boundary layers from East et al. 72. Computation using Coles’ velocity law shown for reference. Flows (1); beta=−0.25, (2) −0.15, (3) 0.00, (4) 0.47.
Grahic Jump Location
Reynolds stress wake profiles for equilibrium boundary layers from East et al. 72. Computation using Coles’ velocity law shown for reference. Flows (4); beta=0.47, (5) 1.87, (6) 7.27, (7) 61.6.
Grahic Jump Location
Reynolds stress wake profiles for equilibrium boundary layers from Skare and Krogstad 73. Computation using Coles’ velocity law is shown for reference. Π=6.9 (beta=16.6).
Grahic Jump Location
Spectrum of wall pressure under an atmospheric boundary layer at Re*=109. Data from Klewicki and Miner 84.
Grahic Jump Location
Wall-pressure spectrum. Contour plot in phase-velocity/wave number space. Graph from Wills 89.
Grahic Jump Location
Wall-pressure spectrum. Contour plot normalized for constant level in overlap region. Data from Panton and Robert 92.
Grahic Jump Location
Wall-pressure spectrum. Overlap function at K=10. From Panton and Robert 92.
Grahic Jump Location
Wall-pressure spectrum. Overlap function at K=30. From Panton and Robert 92.
Grahic Jump Location
Defect law with U0 scale for boundary layers at various Re* . Data from Österlund 61.
Grahic Jump Location
Insensitivity of wake strength at high Re* . Data of Smith and Walker 99 corrected by East et al. 72.
Grahic Jump Location
Reynolds stress wall function for Ames channel flow DNS. Data from Moser et al. 102.
Grahic Jump Location
Composite expansion for Reynolds stress and Ames channel flow DNS. Data from Moser et al. 102.
Grahic Jump Location
Composite expansion for velocity and Ames channel flow DNS at Re* =590. Data from Moser et al. 102.
Grahic Jump Location
Log law diagnostic function gamma for channel flow. Composite expansion and Ames DNS at Re* =590.
Grahic Jump Location
Log law diagnostic function gamma for channel flow. Composite expansion at Re* =500 and 1000.
Grahic Jump Location
Log law diagnostic function gamma for boundary layer. Composite expansion at Re* =500, 1000, and 5000.
Grahic Jump Location
Relative shape of Barenblatt’s power law to the log law. Displayed in the inner variable y+.
Grahic Jump Location
Wake law representation of Barenblatt’s power law. Coles’ wake law shown for comparison.
Grahic Jump Location
Von Kármán constant for higher-order overlap law of Buschmann and Gad-el-Hak 20

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In