0
REVIEW ARTICLES

Microscale pumping technologies for microchannel cooling systems

[+] Author and Article Information
Vishal Singhal, Suresh V Garimella, Arvind Raman

NSF Cooling Technologies Research Center, School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907-2088; sureshg@ecn.purdue.edu

Appl. Mech. Rev 57(3), 191-221 (Jun 10, 2004) (31 pages) doi:10.1115/1.1695401 History: Online June 10, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Thermal management technology roadmap of the National Electronics Manufacturing Initiative (NEMI), 2002.
Garimella  SV and Sobhan  CB (2003), Transport in microchannels: A critical review, Annu. Rev. Heat Transfer 15, 1–50.
Gravesen  P, Branebjerg  J, and Jensen  OS (1993), Microfluidics: A review, J. Micromech. Microeng. 3, 168–182.
Shoji  S and Esashi  M (1994), Microflow devices and systems, J. Micromech. Microeng. 4, 157–171.
Elwenspoek  M, Lammerink  TSJ, Miyake  R, and Fluitman  JHJ (1994), Towards integrated microliquid handling systems, J. Micromech. Microeng. 4, 227–245.
Ho  C-M and Tai  Y-C (1998), Micro-Electro-Mechanical-Systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30, 579–612.
Gad-el-Hak  M (1999), The fluid mechanics of microdevices: The Freeman Scholar Lecture, ASME J. Fluids Eng. 121, 5–33.
Ahn CH and Allen MG (1995), Fluid micropumps based on rotary magnetic actuators, Proc of IEEE Micro Electro Mechanical Systems (MEMS), Amsterdam, Netherlands, 408–412.
Zengerle R, Richter A, and Sandmaier H (1992), A micro membrane pump with electrostatic actuation, Proc of IEEE Micro Electro Mechanical Systems Workshop, 19–24.
Smits  JG (1990), Piezoelectric micropump with three valves working peristaltically, Sens. Actuators, A 21, 203–206.
Bart  SF, Tavrow  LS, Mehregany  M, and Lang  JH (1990), Microfabricated electrohydrodynamic pumps, Sens. Actuators, A 21–23, 193–197.
Richter A and Sandmaier H (1990), An electrohydrodynamic micropump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 99–104.
Darabi  J, Ohadi  MM, and DeVoe  D (2001), An electrohydrodynamic polarization micropump for electronic cooling, J. Microelectromech. Syst. 10, 98–106.
Manz  A, Effenhauser  CS, Burggraf  N, Harrison  DJ, Seiler  K, and Fluri  K (1994), Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems, J. Micromech. Microeng. 4, 257–265.
Lemoff AV, Lee AP, Miles RR, and McConaghy CF (1999), An AC magnetohydrodynamic micropump: Towards a true integrated microfluidic system, Transducers’ 99, Sendai, Japan, 1126–1129.
Jun TK and Kim C-J (1996), Microscale pumping using traversing vapor bubbles in microchannels, 1996 Solid-State Sensor and Actuator Workshop, Hilton Head, South Carolina, 144–147.
Bohm S, Olthuis W, and Bergveld P (1999), An electrochemically actuated micropump for use in a “push-pull” microdialysis based in-vivo monitoring system, Transducers’ 99, Sendai, Japan, 880–881.
Moroney RM, White RM, and Howe RT (1990), Fluid motion produced by ultrasonic lamb waves, IEEE Ultrasonics Symp, 355–358.
Bockeris JOM and Reddy AKN (1970), Modern Electrochemistry, Plenum, New York.
Yun K-S, Cho I-J, Bu J-U, Kim G-H, Jeon Y-S, Kim C-J, and Yoon E (2001), A micropump driven by continuous electrowetting actuation for low voltage and low power operations, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 487–490.
Weisener T, Voegele G, Widmann M, Bark C, Schraft RD, Bertholds A, and Braunschweiler A (1996), Micropump/fluidic micromotor, Proc of Actuator 96: 5th Int Conf on New Actuators, H Borgmann (ed), 104–107.
Weisener T, Bark C, Schraft RD, Voegele G, Widmann M, Bertholds A, and Braunschweiler A (1996), Development and fabrication of a rotary micropump and its industrial and medical applications, Proc. of SPIE, 2882, 218–225.
Sen  M, Wajerski  D, and Gad-el-Hak  M (1996), A novel pump for MEMS applications, ASME J. Fluids Eng. 118, 624–627.
Dewa AS, Deng K, Ritter DC, Bonham C, Guckel H, and Massood-Ansari S (1997), Development of LIGA-fabricated, self-priming, in-line gear pumps, Transducers’ 97, Chicago, 757–760.
Hatch  A, Kamholz  AE, Holman  G, Yager  P, and Bohringer  KF (2001), A ferrofluidic magnetic micropump, J. Microelectromech. Syst. 10, 215–221.
van Lintel  HTG, van De Pol  FCM, and Bouwstra  S (1988), A piezoelectric micropump based on micromachining of silicon, Sens. Actuators 15, 153–167.
van der Schoot  BH, Jeanneret  S, van den Berg  A, and de Rooij  NF (1993), A modular miniaturized chemical analysis system, Sens. Actuators B 13, 333–335.
van der Schoot  BH, Jeanneret  S, van den Berg  A, and de Rooij  NF (1993), Modular setup for a miniaturized chemical analysis system, Sens. Actuators B 15, 211–213.
Gass  V, van der Schoot  BH, Jeanneret  S, and de Rooij  NF (1993), Micro liquid handling using a flow-regulated silicon micropump, J. Micromech. Microeng. 3, 214–215.
Gass  V, van der Schoot  BH, Jeanneret  S, and de Rooij  NF (1994), Integrated flow-regulated silicon micropump, Sens. Actuators, A 43, 335–338.
Esashi  M, Shoji  S, and Nakano  A (1989), Normally closed microvalve and micropump fabricated on a silicon wafer, Sens. Actuators 20, 163–169.
Shoji  S, Nakagawa  S, and Esashi  M (1990), Micropump and sample-injector for integrated chemical analyzing systems, Sens. Actuators, A 21, 189–192.
Shoji  S, Esashi  M, van der Schoot  B, and de Rooij  N (1992), A study of a high-pressure micropump for integrated chemical analysing systems, Sens. Actuators, A 32, 335–339.
Carrozza  MC, Croce  N, Magnani  B, and Dario  P (1995), A piezoelectric-driven stereolithography-fabricated micropump, J. Micromech. Microeng. 5, 177–179.
Stehr  M, Messner  S, Sandmaier  H, and Zengerle  R (1996), The VAMP—A new device for handling liquids or gases, Sens. Actuators, A 57, 153–157.
Zengerle  R, Ulrich  J, Kluge  S, Richter  M, and Richter  A (1995), A bidirectional silicon micropump, Sens. Actuators, A 50, 81–86.
Nguyen  NT, Schubert  S, Richter  S, and Dötzel  W (1998), Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor, Sens. Actuators, A 69, 85–91.
Ederer  I, Raetsch  P, Schullerus  W, Tille  C, and Zech  U (1997), Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output, Sens. Actuators, A 62, 752–755.
Park JH, Yoshida K, and Yokota S (1997), A piezoelectric micropump using resonance drive; proposal of resonance drive and basic experiments on pump characteristics, Fluid Power Systems and Technology, ASME FPST 4/DSC 63, 77–82.
Park  JH, Yoshida  K, and Yokota  S (1999), Resonantly driven piezoelectric micropump; fabrication of a micropump having high power density, Mechatronics 9, 687–702.
Koch  M, Harris  N, Maas  R, Evans  AGR, White  NM, and Brunnschweiler  A (1997), A novel micropump design with thick-film piezoelectric actuation, Meas. Sci. Technol. 70, 49–57.
Koch  M, Harris  N, Evans  AGR, White  NM, and Brunnschweiler  A (1998), A novel micromachined pump based on thick-film piezoelectric actuation, Sens. Actuators, A 70, 98–103.
Cunneen  J, Lin  YC, Caraffini  S, Boyd  JG, Hesketh  PJ, Lunte  SM, and Wilson  GS (1998), A positive displacement micropump for microdialysis, Mechatronics 8, 561–583.
Kaemper K-P, Doepper J, Ehrfeld W, and Oberbeck S (1998), A self-filling low-cost membrane micropump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 432–437.
Linnemann R, Woias P, Senfft C-D, and Ditterich JA (1998), Self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 532–537.
Maillefer D, van Lintel H, Ray-Mermet G, and Hirschi R (1999), A high-performance silicon micropump for an implantable drug delivery system, Proc of 12th IEEE Conf on Micro Electro Mechanical Systems, Orlando FL, 541–546.
Maillefer D, Gamper S, Frehner B, Balmer P, van Lintel H, and Renaud P (2001), A high-performance silicon micropump for disposable drug delivery systems, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 413–417.
Li HQ, Roberts DC, Steyn JL, Turner KT, Carretero JA, Yaglioglu O, Su YH, Saggere L, Haggod NW, Spearing SM, Schmidt MA, Mlcak R, and Breuer KS (2000), A high frequency high flow rate piezoelectrically driven MEMS micropump, 2000 Solid-State Sensor and Actuator Workshop, Hilton Head SC, 69–72.
King  TG, Preston  ME, Murphy  BJM, and Cannell  DS (1990), Piezoelectric ceramic actuators: A review of machinery applications, Precis. Eng. 12, 131–136.
Brei  DE and Blechschmidt  J (1992), Design and static modeling of a semiconductor polymeric piezoelectric microactuator, J. Microelectromech. Syst. 1, 106–115.
Low  TS and Guo  W (1995), Modeling of a three-layer piezoelectric bimorph beam with hysteresis, J. Microelectromech. Syst. 4, 230–237.
DeVoe  DL and Pisano  AP (1997), Modeling and optimal design of piezoelectric cantilever microactuators, J. Microelectromech. Syst. 6, 266–270.
Weinberg  MS (1999), Working equations for piezoelectric actuators and sensors, J. Microelectromech. Syst. 8, 529–533.
Debeda  H, Freyhold  Tv, Mohr  J, Wallrabe  U, and Wengelink  J (1999), Development of miniaturized piezoelectric actuators for optical applications realized using LIGA technology, J. Microelectromech. Syst. 258–263.
Accoto  D, Carrozza  MC, and Dario  P (2000), Modelling of micropumps using unimorph piezoelectric actuator and ball valves, J. Micromech. Microeng. 10, 277–281.
Morris  CJ and Forster  FK (2000), Optimization of a circular piezoelectric bimorph for a micropump driver, J. Micromech. Microeng. 10, 459–465.
Ilzhofer  A, Ritter  B, and Tsakmakis  Ch (1995), Development of passive microvalves by the finite element method, J. Micromech. Microeng. 5, 226–230.
Ulrich  J and Zengerle  R (1996), Static and dynamic flow simulation of a KOH-etched microvalve using the finite-element method, Sens. Actuators, A 53, 379–385.
Zhang  Y and Wise  KD (1994), Performance of non-planar silicon diaphragms under large deflections, J. Microelectromech. Syst. 3, 59–68.
Zengerle  R and Richter  M (1994), Simulation of microfluid systems, J. Micromech. Microeng. 4, 192–204.
Bourouina  T and Grandchamp  J-P (1996), Modeling micropumps with electrical equivalent networks, J. Micromech. Microeng. 6, 398–404.
Carmona  M, Marco  S, Samitier  J, and Morante  JR (1996), Dynamic simulations of micropumps, J. Micromech. Microeng. 6, 128–130.
Voigt  P, Schrag  G, and Wachutka  G (1998), Electrofluidic full-system modelling of a flap valve micropump based on Kirchhoffian network theory, Sens. Actuators, A 66, 9–14.
Richter  M, Linnemann  R, and Woias  P (1998), Robust design of gas and liquid micropumps, Sens. Actuators, A 68, 480–486.
Voigt  P, Schrag  G, and Wachutka  G (1998), Microfluidic system modeling using VHDL-AMS and circuit simulation, Microelectron. J. 29, 791–797.
Cabuz C, Herb WR, Cabuz EI, and Lu SL (2001), The dual diaphragm pump, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 519–522.
Bourouina  T, Bossebuf  A, and Grandchamp  J-P (1997), Design and simulation of an electrostatic micropump for drug-delivery applications, J. Micromech. Microeng. 10, 186–188.
Français  O, Dufour  I, and Sarraute  E (1997), Analytical static modelling and optimization of electrostatic micropumps, J. Micromech. Microeng. 7, 183–185.
Français  O and Dufour  I (1998), Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena, Sens. Actuators, A 70, 56–60.
Français  O and Dufour  I (2000), Enhancement of elementary displaced volume with electrostatically actuated diaphragms: Application to electrostatic micropumps, J. Micromech. Microeng. 10, 282–286.
Böhm  S, Olthuis  W, and Bergveld  P (1999), A plastic micropump constructed with conventional techniques and materials, Sens. Actuators, A 77, 223–228.
Gong  Q, Zhou  Z, Yang  Y, and Wang  X (2000), Design, optimization and simulation on microelectromagnetic pump, Sens. Actuators, A 83, 200–207.
Khoo  M and Liu  C (2001), Micro magnetic silicone elastomer membrane actuator, Sens. Actuators, A 89, 259–266.
Kallenbach  E, Kube  H, Zöppig  V, Feindt  K, Hermann  R, and Beyer  F (1999), New polarized electromagnetic actuators as integrated mechatronic components—design and application, Mechatronics 9, 769–784.
van de Pol  FCM, van Lintel  HTG, Elwenspoek  M, and Fluitman  JHJ (1990), A thermopneumatic micropump based on micro-engineering techniques, Sens. Actuators, A 21, 198–202.
Wego  A and Pagel  L (2001), A self-filling micropump based on PCB technology, Sens. Actuators, A 88, 220–226.
Wego  A, Glock  HW, Pagel  L, and Richter  S (2001), Investigations on thermo-pneumatic volume actuators based on PCB technology, Sens. Actuators, A 93, 95–102.
Benard  WL, Kahn  H, Heuer  AH, and Huff  MA (1998), Thin-film shape-memory alloy actuated micropumps, J. Microelectromech. Syst. 7, 245–251.
Xu  D, Wang  L, Ding  G, Zhou  Y, Yu  A, and Cai  B (2001), Characteristics and fabrication of NiTi/Si diaphragm micropump, Sens. Actuators, A 93, 87–92.
Makino  E, Mitsuya  T, and Shibata  T (2001), Fabrication of TiNi shape memory micropump, Sens. Actuators, A 88, 256–262.
Makino  E, Shibata  T, and Kato  K (1999), Dynamic thermo-mechanical properties of evaporated TiNi shape memory thin film, Sens. Actuators, A 78, 163–167.
Makino  E, Mitsuya  T, and Shibata  T (2000), Dynamic actuation properties of TiNi shape memory diaphragm, Sens. Actuators, A 79, 128–135.
Makino  E, Mitsuya  T, and Shibata  T (2000), Micromachining of TiNi shape memory thin film for fabrication of micropump, Sens. Actuators, A 79, 251–259.
Krulevitch  P, Lee  AP, Ramsey  PB, Trevino  JC, Hamilton  J, and Northrup  MA (1996), Thin film shape memory alloy microactuators, J. Microelectromech. Syst. 5, 270–282.
Mizoguchi H, Ando M, Mizuno T, Takagi T, and Nakajima N (1992), Design and fabrication of light driven micropump, Proc of IEEE Micro Electro Mechanical Systems Workshop, 31–36.
Quandt  E and Seemann  K (1995), Fabrication and simulation of magnetostrictive thin-film actuators, Sens. Actuators, A 50, 105–109.
Body  C, Reyne  G, Meunier  G, Quandt  E, and Seemann  K (1997), Application of magnetostrictive thin films for Microdevices, IEEE Trans. Magn. 33, 2163–2166.
Quandt  E and Ludwig  A (2000), Magnetostrictive actuation in microsystems, Sens. Actuators, A 81, 275–280.
Stemme  E and Stemme  G (1993), A valveless diffuser/nozzle-based fluid pump, Sens. Actuators, A 39, 159–167.
Olsson  A, Stemme  G, and Stemme  E (1995), A valve-less planar fluid pump with two pump chambers, Sens. Actuators, A 47, 549–556.
Olsson  A, Enoksson  P, Stemme  G, and Stemme  E (1996), A valve-less planar pump isotropically etched in silicon, J. Micromech. Microeng. 6, 87–91.
Olsson  A, Enoksson  P, Stemme  G, and Stemme  E (1997), Micromachined flat-walled valveless diffuser pumps, J. Microelectromech. Syst. 6, 161–166.
Olsson  A, Stemme  G, Larsson  O, Holm  J, Lundbladh  L, and Öhman  O (1998), Valve-less diffuser micropumps fabricated using thermoplastic replication, Sens. Actuators, A 64, 63–68.
Andersson  H, van der Wijngaart  W, Nilsson  P, Enoksson  P, and Stemme  G (2001), A valve-less diffuser micropump for microfluidic analytical systems, Sens. Actuators B 72, 259–265.
Gerlach  T, Schuenemann  M, and Wurmus  H (1995), A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves, J. Micromech. Microeng. 5, 199–201.
Forster FK, Bardell RL, Afromowitz MA, Sharma NR, and Blanchard A (1995), Design, fabrication and testing of fixed-valve micro-pumps, Proc of ASME Fluids Engineering Division, FED 234, 39–44.
Bardell RL, Sharma NR, Forster FK, Afromowitz MA, and Penney RJ (1997), Designing high-performance micro-pumps based on no-moving-parts valves, ASME Microelectromechanical Systems, DSC 62/HTD 354, 47–53.
Jang LS, Morris CJ, Sharma NR, Bardell RL, and Forster FK (1999), Transport of particle-laden fluids through fixed-valve micropumps, Microelectromechanical Systems, ASME MEMS 1, 503–509.
Jang LS, Sharma NR, and Forster FK (2000), The effect of particles on performance of fixed-valve micropumps, Proc of 4th Int Symp on Micro Total Analysis Systems (μTAS), Enschede, Netherlands, 283–286.
Koch  M, Evans  AGR, and Brunnschweiler  A (1998), The dynamic micropump driven with a screen printed PZT actuator, J. Micromech. Microeng. 8, 119–122.
Schabmueller CGJ, Koch M, Evans AGR, Brunnschweiler A, and Kraft M (2000), Design and fabrication of a self-aligning gas/liquid micropump, Proc of SPIE, 4177, 282–290.
Jiang  XN, Zhou  ZY, Huang  XY, Li  Y, Yang  Y, and Liu  CY (1998), Micronozzle/diffuser flow and its application in micro valveless pumps, Sens. Actuators, A 70, 81–87.
Jeong OC and Yang SS (2000), Fabrication of a thermopneumatic micropump with a corrugated p+ diaphragm, Transducers’ 99, Sendai, Japan, 1780–1783.
Jeong  OC and Yang  SS (2000), Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm, Sens. Actuators, A 83, 249–255.
Gerlach  T and Wurmus  H (1995), Working principle and performance of the dynamic micropump, Sens. Actuators, A 50, 135–140.
Olsson  A, Stemme  G, and Stemme  E (1996), Diffuser-element design investigation for valve-less pumps, Sens. Actuators, A 57, 137–143.
Heschel  M, Mullenborn  M, and Bouwstra  S (1997), Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon, J. Microelectromech. Syst. 6, 41–47.
Gerlach  T (1998), Mirodiffusers as dynamic passive valves for micropump applications, Sens. Actuators, A 69, 181–191.
Olsson  A, Stemme  G, and Stemme  E (2000), Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sens. Actuators, A 84, 165–175.
Singhal V, Garimella SV, and Murthy J (2003), Numerical characterization of low Reynolds number flow through the nozzle-diffuser element in a valveless micropump, Proc of 6th ASME/JSME Thermal Engineering Joint Conf, Kohala Coast HI, TED-AJ03, 1–9.
Ullmann  A (1998), The piezoelectric valve-less pump-performance enhancement analysis, Sens. Actuators, A 69, 97–105.
Olsson  A, Stemme  G, and Stemme  E (1999), A numerical design study of the valveless diffuser pump using a lumped-mass model, J. Micromech. Microeng. 9, 34–44.
Nguyen N-T and Huang X (2000), Numerical simulation of pulse-width-modulated micropumps with diffuser/nozzle elements, Int Conf on Modeling and Simulation of Microsystems 636–639.
Pan  LS, Ng  TY, Liu  GR, Lam  KY, and Jiang  TY (2001), Analytical solutions for the dynamic analysis of a valveless micropump-A fluid-membrane coupling study, Sens. Actuators, A 93, 173–181.
Matsumoto S, Klein A, and Maeda R (1999), Development of bi-directional valve-less micropump for liquid, Proc of 12th IEEE Conf on Micro Electro Mechanical Systems, Orlando FL, 141–146.
Grosjean C and Tai Y-C (1999), A thermopneumatic peristaltic micropump, Transducers’ 99, Sendai, Japan, 1776–1779.
Nguyen  N-T and Huang  X (2001), Miniature valveless pumps based on printed circuit board technique, Sens. Actuators, A 88, 104–111.
Cao  L, Mantell  S, and Polla  D (2001), Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sens. Actuators, A 94, 117–125.
Richter  A, Plettner  A, Hofmann  KA, and Sandmaier  H (1991), A micromachined electrohydrodynamic (EHD) pump, Sens. Actuators, A 29, 159–168.
Furuya  A, Shimokawa  F, Matsuura  T, and Sawada  R (1996), Fabrication of fluorinated polyimide microgrids using magnetically controlled reactive ion etching (MC-RIE) and their applications to an ion drag integrated micropump, J. Micromech. Microeng. 6, 310–319.
Wong CC, Adkins DR, and Chu D (1996), Development of a micropump for microelectronic cooling, Microelectromechanical Systems (MEMS), DSC 59, 239–244.
Ahn  S-H and Kim  Y-K (1998), Fabrication and experiment of a planar micro ion drag pump, Sens. Actuators, A 70, 1–5.
Fuhr G, Hagedorn R, Muller T, Benecke W, and Wagner B (1992), Pumping of water solutions in microfabricated electrohydrodynamic systems, Proc of IEEE Micro Electro Mechanical Systems Workshop, 25–30.
Fuhr  G, Hagedorn  R, Muller  T, Benecke  W, and Wagner  B (1992), Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity, J. Microelectromech. Syst. 1, 141–146.
Fuhr  G, Schnelle  T, and Wagner  B (1994), Travelling wave-driven microfabricated electrohydrodynamic pumps for liquids, J. Micromech. Microeng. 4, 217–226.
Moesner FM and Higuchi T (1995), Devices for particle handling by an AC electric field, Proc of IEEE Micro Electro Mechanical Systems, 66–71.
Zeng  S, Chen  CH, Mikkelsen  JC, and Santiago  JC (2001), Fabrication and characterization of electroosmotic micropumps, 79 , 107–114.
Zeng S, Chen CH, Mikkelsen JC, and Santiago JG (2000), Fabrication and characterization of electrokinetic micro pumps, ITherm, Las Vegas NV 31–36.
Zeng  S, Chen  CH, Santiago  JG, Chen  J-R, Zare  RN, Tripp  JA, Svec  F, and Fréchet  JMJ (2002), Electroosmotic flow pumps with polymer frits, Sens. Actuators B 82, 209–212.
Yao S, Huber, D, Mikkelsen JC, and Santiago JC (2001), A large flowrate electroosmotic pump with micron pores, ASME IMECE, MEMS-23890, 1–7.
Chen CH, Zeng S, Mikkelsen JC and Santiago JG (2000), Development of a planar electrokinetic micropump, Proc of ASME Int Mech Eng Congress and Exposition, Orlando FL, MEMS 1, 523–528.
Paul PH, Arnold DW, and Rakestraw DJ (1998), Electrokinetic generation of high pressures using porous microstructures, Proc of μ-TAS, Banff, Canada, 49–52.
Deshpande M, Ghaddar C, Gilbert JR, John PMS, Woudenberg T, Connell C, Molho J, Herr A, Mungal G, and Kenny T (1998), Numerical framework for the modeling of electrokinetic flows, Proc of SPIE, 3515, 217–227.
Rife JC and Bell MI (1998), Acousto- and electroosmotic microfluidic controllers, Proc of SPIE, 3515, 125–135.
Gan  W-E, Yang  L, He  Y-Z, Zeng  R-H, Cervera  ML, and de la Guardia  M (2000), Mechanism of porous core electroosmotic pump flow injection system and its application to determination of chromium (VI) in waste-water, Talanta 51, 667–675.
Arulanandam  S and Li  D (2000), Liquid transport in rectangular microchannels by electroosmotic pumping, Colloids Surf., A 161, 89–102.
Moorthy  J, Khoury  C, Moore  JS, and Beebe  DJ (2001), Active control of electroosmotic flow in microchannels using light, Sens. Actuators B 75, 223–229.
Morf  WE, Guenat  OT, and de Rooij  NF (2001), Partial electroosmotic pumping in complex capillary systems – Part 1: Principles and general theoretical approach, Sens. Actuators B 72, 266–272.
Guenat  OT, Ghiglione  D, Morf  WE, and de Rooij  NF (2001), Partial electroosmotic pumping in complex capillary systems – Part 2: Fabrication and application of a micro total analysis system (TAS) suited for continuous volumetric nanotitrations, Sens. Actuators B 72, 273–282.
Lemoff  AV and Lee  AP (2000), An AC magnetohydrodynamic micropump, Sens. Actuators B 63, 178–185.
Heng K-H, Huang L, Wang W, and Murphy MC (1999), Development of a diffuser/nozzle type micropump based on magnetohydrodynamic (MHD) principle, Proc of SPIE, 3877, 66–73.
Heng K-H, Wang W, Murphy MC, and Lian K (2000), UV-LIGA microfabrication and test of an AC-type micropump based on the magnetohydrodynamic (MHD) principle, Proc of SPIE, 4177, 174–184.
Jang  J and Lee  SS (2000), Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sens. Actuators, A 80, 84–89.
Jun  TK and Kim  C-J (1998), Valveless pumping using traversing vapor bubbles in microchannels, J. Appl. Phys. 83, 5658–5664.
Ozaki K (1995), Pumping mechanism using periodic phase changes of a fluid, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 31–36.
Yuan  H and Prosperetti  A (1999), The pumping effect of growing and collapsing bubbles in a tube, J. Micromech. Microeng. 9, 402–413.
Ory  E, Yuan  H, Prosperetti  A, Popinet  S, and Zaleski  S (1999), Growth and collapse of a vapor bubble in a small tube, Phys. Fluids 12, 1268–1277.
Yuan  H, Oguz  HN, and Prosperetti  A (1999), Growth and collapse of a vapor bubble in a small tube, Int. J. Heat Mass Transfer 42, 3643–3657.
Sammarco  TS and Burns  MA (1999), Thermocapillary pumping of discrete drops in microfabricated analysis devices, AIChE J. 45, 350–366.
Sammarco  TS and Burns  MA (2000), Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices, J. Micromech. Microeng. 10, 42–55.
Gurrum SP, Murthy S, and Joshi YK (2002), Numerical simulation of thermocapillary pumping using level set method, 5th ISHMT/ASME Heat and Mass Transfer Conf, Kolkata, India, 1–6.
Geng  X, Yuan  H, Oguz  HN, and Prosperetti  A (2001), Bubble-based micropump for electrically conducting liquids, J. Micromech. Microeng. 11, 270–276.
Tsai  J-H and Lin  L (2002), A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11, 665–671.
Song  YJ and Zhao  TS (2001), Modelling and test of a thermally-driven phase-change nonmechanical micropump, J. Micromech. Microeng. 11, 713–719.
Moroney RM, White RM, and Howe RT (1991), Ultrasonically induced microtransport, IEEE MEMS, 277–282.
Moroney  RM, White  RM, and Howe  RT (1991), Microtransport induced by ultrasonic Lamb waves, Appl. Phys. Lett. 774–776.
Moroney RM, White RM, and Howe RT (1991), Ultrasonically induced microtransport with cylindrical geometry, Micromechanical Sensors, Actuators, and Systems, ASME DSC 32, 181–190.
Luginbuhl  P, Collins  SD, Racine  G-A, Grétillat  M-A, De Rooji  NF, Brooks  KG and Setter  N (1998), Ultrasonic flexural Lamb-wave actuators based on PZT thin film, Sens. Actuators, A 57, 41–49.
Luginbuhl  P, Collins  SD, Racine  G-A, Grétillat  M-A, De Rooji  NF, Brooks  KG and Setter  N (1997), Microfabricated Lamb wave device based on PZT sol-gel thin film for mechanical transport of solid particles and liquids, J. Microelectromech. Syst. 6, 337–346.
Black JP and White RM (1999), Microfluidic applications of ultrasonic flexural plate waves, Transducers’ 99, Sendai, Japan, 1134–1136.
Nguyen  NT and White  RM (1999), Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation, Sens. Actuators, A 77, 229–236.
Nguyen  N-T, Meng  AH, Black  J, and White  RM (2000), Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps, Sens. Actuators, A 79, 115–121.
Nguyen  N-T and White  RM (2000), Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1463–1471.
Matsumoto H and Colgate JE (1990), Preliminary investigation of micropumping based on electrical control of interfacial tension, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 105–110.
Lee J and Kim C-J (1998), Microactuation by continuous electrowetting phenomenon and silicon deep RIE process, ASME MEMS (DSC), 66, 475–480.
Pollack  MG, Fair  RB, and Shenderov  AD (2000), Electrowetting-based actuation of liquid droplets for microfluidic applications, Appl. Phys. Lett. 77, 1725–1726.
Lee  J and Kim  C-J (2000), Surface-tension-driven microactuation based on continuous electrowetting, J. Microelectromech. Syst. 9, 171–180.
Lee J, Moon H, Fowler J, Kim C-J, and Schoellhammer T (2001), Addressable micro liquid handling by electric control of surface tension, Proc of IEEE Micro Electro Mechanical Systems (MEMS), 499–502.
Namasivayam V, Kalyan H, Burke DT, Larson RG, and Burns MA (2000), Microfabricated valveless pump for delivering non-pulsatile flow, Proc of SPIE, 4177, 220–228.
Tuckerman DB and Pease RFW (1981), High performance heat sinking for VLSI, IEEE Electron Device Letters, EDL-2, 126–129.
Weisberg  A, Bau  HH, and Zemel  JN (1992), Analysis of microchannels for integrated cooling, Int. J. Heat Mass Transfer 35, 2465–2474.

Figures

Grahic Jump Location
Principle of operation of a rotary micropump
Grahic Jump Location
a) Vibrating diaphragm micropump, b) action in the suction mode, and c) action in the pumping mode
Grahic Jump Location
Structure and operation of a peristaltic micropump. The flow direction can be reversed by changing the actuation sequence of the diaphragms.
Grahic Jump Location
Schematics of a) Induction-type, b) Injection-type, and c) Polarization-type EHD micropumps. All these pumps are bi-directional; representative flow directions are shown.
Grahic Jump Location
a) Schematic of an electroosmotic micropump and b) Velocity profile in the channel cross-section. The flow direction can be reversed by changing the polarity of the electrodes.
Grahic Jump Location
Schematic and operation of an MHD micropump. The flow direction can be reversed by changing the polarity of the electrodes.
Grahic Jump Location
Principle of operation of a bubble micropump. The flow direction can be reversed by changing the sequence of operation of the heaters.
Grahic Jump Location
Schematic and operation of an electrochemical micropump
Grahic Jump Location
Flexural plate wave micropump: a) Top view and b) Side view. The flow direction can be reversed by changing the polarity of the electrodes.
Grahic Jump Location
Structure of the internal-gear rotary micropump 2122
Grahic Jump Location
Structure and operation of the two-gear rotary micropump 24. The coupling ring and the magnets surrounding the structure are not shown in the figure. The flow direction can be reversed by changing the direction of the magnetic field.
Grahic Jump Location
Ferrofluid-actuated rotary micropump 25. The flow direction can be reversed by changing the direction of the rotor.
Grahic Jump Location
a) Vibrating diaphragm micropump 31 and b) passive check valves used in the pump
Grahic Jump Location
Structure of the stereolithographically fabricated micropump 34
Grahic Jump Location
Structure of the piezoelectric micropump with no valves. The pump utilizes the elastic buffer and the variable gap mechanism 35.
Grahic Jump Location
Electrostatically actuated micropump 9
Grahic Jump Location
Dual-diaphragm pump 66: a) Side view and b) Top view through chamber. The flow direction can be reversed by changing the actuation sequence of the electrodes.
Grahic Jump Location
Operation and structure of an electromagnetically actuated micropump 71 (actuation unit not shown): a) Suction mode and, b) Pumping mode
Grahic Jump Location
Vibrating diaphragm micropump using thermopneumatic actuation 76
Grahic Jump Location
Shape memory alloy micropump 78: a) Suction mode and b) Pumping mode
Grahic Jump Location
Shape memory alloy micropump with a) no bias pressure and b) positive bias pressure 80
Grahic Jump Location
One chamber in the light driven micropump of Mizoguchi et al. 85
Grahic Jump Location
Flow rectification in a valveless micropump: a) Expansion mode, and b) Contraction mode. The thicker arrows imply higher volume flow rates.
Grahic Jump Location
Nozzle-diffuser micropump 89
Grahic Jump Location
Structure and operation of the nozzle-diffuser pump presented in 90
Grahic Jump Location
Structure of a valvular conduit described in 96 and resultant fluid flow direction
Grahic Jump Location
Structure of the valveless micropump presented in 115. The flow direction can be reversed by changing the actuation sequence of the heaters relative to that of the PZT actuator.
Grahic Jump Location
Peristaltic micropump 10. The flow direction can be reversed by changing the actuation sequence of the diaphragms.
Grahic Jump Location
Thermopneumatically actuated micropump 116. The flow direction can be reversed by changing the actuation sequence of the membranes.
Grahic Jump Location
Structure of the injection-type EHD pump 12119. The flow direction can be reversed by changing the polarity of the electrodes.
Grahic Jump Location
Cross-section of the MHD pump presented by Lemoff and Lee 140. The pumping direction is perpendicular to the plane of the paper.
Grahic Jump Location
Operation of the bubble pump of Jun and Kim 16144 under a) single-bubble mechanism and b) multiple-bubble mechanism. The flow direction can be reversed by changing the actuation sequence of the heaters.
Grahic Jump Location
Structure of the bubble micropump presented by Geng et al. 152
Grahic Jump Location
Operation of the bubble pump presented by Tsai and Lin 153 when a) heaters are on (bubble expanding) and b) heaters are off (bubble collapsing)
Grahic Jump Location
Flexural plate wave device 18156. The flow direction can be reversed by changing the polarity of the electrodes.
Grahic Jump Location
Structure of the micropump presented by Namasivayam et al. 169
Grahic Jump Location
a) Maximum flow rate per unit cross-sectional area at zero back pressure and b) maximum back pressure at zero flow rate of various micropumps presented in literature. The maximum back pressure was not reported for the Shape Memory Alloy pump 79, Induction-type EHD pump 123124, MHD pump 140 and Flexural Plate Wave pump 160.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In