0
REVIEW ARTICLES

Mechanics of electroelastic bodies under biasing fields

[+] Author and Article Information
Jiashi Yang

Department of Engineering Mechanics, University of Nebraska, Lincoln, NE 68588-0526, USA

Yuantai Hu

Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China

Appl. Mech. Rev 57(3), 173-189 (Jun 10, 2004) (17 pages) doi:10.1115/1.1689411 History: Online June 10, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dokmeci  MC (1988), Recent progress in the dynamic applications of piezoelectric crystals, Shock Vib. Dig. 20, 3–20.
Wang  J and Yang  JS (2000), Higher-order theories of piezoelectric plates and applications, Ann. Glaciol. 53, 87–99.
Rao  SS and Sunar  M (1994), Piezoelectricity and its use in disturbance sensing and control of flexible structutes: a survey, Appl. Mech. Rev. 47, 113–123.
Sunar  M and Rao  SS (1999), Recent advances in sensing and control of flexible structures via piezoelectric materials technology, Appl. Mech. Rev. 52, 1–15.
Chee  CYK, Tong  L, and Steven  GP (1998), A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures, J. Intell. Mater. Syst. Struct. 9, 3–19.
Tani  J, Takagi  T, and Qiu  J (1998), Intelligent material systems: Application of functional materials, Ecologic. Econ. 51, 505–521.
Toupin  RA (1956), The elastic dielectric, J. Rational Mech. Anal. 5, 849–915.
Eringen  AC (1963), On the foundations of electroelastostatics, Int. J. Eng. Sci. 1, 127–153.
Tiersten  HF (1971), On the nonlinear equations of thermo-electroelasticity, Int. J. Eng. Sci. 9, 587–604.
Nelson  DF (1978), Theory of nonlinear electroacoustics of dielectric, piezoelectric, and pyroelectric crystals, J. Acoust. Soc. Am. 63, 1738–1748.
Eringen AC and Maugin GA (1990), Electrodynamics of Continua, Vol I, Springer, New York.
Tiersten  HF (1981), Electroelastic interactions and the piezoelectric equations, J. Acoust. Soc. Am. 70, 1567–1576.
Smith  GF, Smith  MM, and Rivlin  RS (1963), Integrity bases for a symmetric tensor and a vector-the crystal classes, Arch. Ration. Mech. Anal. 12, 93–133.
Spencer AJM (1971), Theory of invariants, Continuum Physics, Vol I, AC Eringen (ed), Academic Press, New York, 292–307.
Maugin  GA, and Epstein  M (1991), The electroelastic energy-momentum tensor, Proc. R. Soc. London 433A, 299–312.
Yang  JS and Batra  RC (1995), Mixed variational principles in nonlinear electroelasticity, Int. J. Non-Linear Mech. 30, 719–725.
Verma  PDS and Chaudhry  HR (1966), Small deformation superposed on large deformation of an elastic dielectric, Int. J. Eng. Sci. 4, 235–247.
Baumhauer  JC and Tiersten  HF (1973), Nonlinear electroelastic equations for small fields superposed on a bias, J. Acoust. Soc. Am. 54, 1017–1034.
Tiersten  HF (1995), On the accurate description of piezoelectric resonators subject to biasing deformations, Int. J. Eng. Sci. 33, 2239–2259.
Iesan D (1989), Prestressed Bodies, Longman Scientific and Technical, Essex, UK, Chapter 7.
Dokmeci  MC (1990), Shell theory for vibrations of piezoceramics under a bias, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 369–385.
Chen  CQ, Tian  XG, and Shen  YP (1998), Incremental variational equations for finitely deformed piezoelectric media, Acta Mechanica Solida Sinic 19, 228–238.
Yang  JS, Variational derivation of the equations for small fields superposed on finite biasing fields in an electroelastic body, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, (accepted for publication).
Hu  YT, Yang  JS and Jiang  Q (2002), Characterization of electroelastic beams under biasing fields with applications in buckling analysis, Arch. Appl. Mech. 72, 439–450.
Hu YT, Jiang Q, Kosinski JA, Pastore Jr RA, Yang JS, and Zhang X (2001), Two-dimensional equations for electroelastic plates under biasing fields, Proc IEEE Int Frequency Control Symp, 584–591.
Hu  YT, Yang  JS, and Jiang  Q (2002), A model of electroelastic plates under biasing fields with applications in buckling analysis, Int. J. Solids Struct. 39, 2619–2642.
Hu  YT, Chen  C, Li  G, Yang  JS, and Jiang  Q (2002), Basic curvilinear coordinate equations of electroelastic plates under biasing fields with applications in buckling analysis, Acta Mechanica Solida Sinica 15, 189–200.
Dokmeci MC (1985), Vibration of piezoelectric disks under initial stresses, Proc 39th Annual Symp on Frequency Control, 431–435.
Hu  YT, Yang  JS, and Jiang  Q (2002), On modeling of extension and flexure response of electroelastic shells under biasing fields, Acta Mech. 156, 163–178.
Dokmeci MC (1990), Dynamics of piezoelectric laminae under a bias, Proc 44th Annual Symp on Frequency Control, 394–405.
Dulmet B and Bourquin R (1994), Applications of Lagrangian effective material constants to the study of the thermal behavior of SAW propagation in piezoelectric crystals, Proc IEEE Ultrasonics Symp, 331–335.
Dulmet  B and Bourquin  R (2001), Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals–I: Theory, J. Acoust. Soc. Am. 110, 1792–1799.
Dulmet  B, Bourquin  R, Bigler  E, and Ballandras  S (2001), Lagrangian effective material constants for the modeling of thermal behavior of acoustic waves in piezoelectric crystals–II: Applications and numerical values for quartz, J. Acoust. Soc. Am. 110, 1800–1807.
Yong Y-K and Wei W (2000), Lagrangean temperature coefficients of the piezoelectric stress constants and dielectric permittivity of quartz, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 364–372.
Yong Y-K and Wei W (2001), Lagrangean versus classical formulation of frequency-temperature problems in quartz resonators, Proc IEEE Int Frequency Control Symp and PDA Exhibition, 828–837.
Iesan  D (1988), Initially stressed thermoelastic dielectrics, J. Therm. Stresses 11, 421–441.
Yang  JS (2003), Equations for small fields superposed on finite biasing fields in a thermoelectroelastic body, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 187–192.
Wang  ZK and Shang  FL (1997), Cylindrical buckling of piezoelectric laminated plates, Acta Mechanica Solida Sinica 18, 101–108.
Shang  FL, Wang  ZK and Li  ZH (1997), Exact analysis of thermal buckling of piezoelectric laminated plates, Acta Mechanica Solida Sinica 18, 1–10.
Tian  XG, Shen  YP, and Gao  JX (2000), Buckling and post-buckling analysis of piezoelectric plates using finite element method, Acta Mechanica Solida Sinica 21, 123–130.
Cheng  C-Q, and Shen  Y-P (1997), Stability analysis of piezoelectric circular cylindrical shells, ASME J. Appl. Mech. 64, 847–852.
Yang  JS (1998), Buckling of a piezoelectric plate, Int. J. Appl. Electromagn. Mech. 9, 399–408.
Yang  JS (1998), Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications, Int. J. Appl. Electromagn. Mech. 9, 409–420.
Hu YT, Yang JS, and Jiang Q (2001), Buckling of electroelastic plates, Applied Electromagnetics and Mechanics, T Takagi and M Uesaka (eds), JSAEM, 31–32.
Hu YT, Yang JS, and Jiang Q (2002), Electroelastic structures under biasing fields, Proc of the 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 596–600.
Yang JS and Hu YT (2003), Electroelastic bodies under biasing fields, Mechanics of Electromagnetic Solids, JS Yang and GA Maugin (eds), Kluwer, 17–44, in press.
Benes E, Groschl M, Seifert F, and Pohl A (1997), Comparison between BAW and SAW sensor principles, Proc IEEE Int Frequency Control Symp, 5–20.
Deresiewicz H, Bieniek MP, and DiMaggio FL (ed) (1989), The Collected Papers of Raymond D. Mindlin, Vols I and II, Springer, New York.
Tiersten  HF (1978), Perturbation theory for linear electroelastic equations for small fields superposed on a bias, J. Acoust. Soc. Am. 64, 832–837.
Sinha  BK and Locke  S (1987), Acceleration and vibration sensitivity of SAW devices, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 29–38.
Shick  DV, Zhou  YS, and Tiersten  HF (1989), An analysis of the in-plane acceleration sensitivity of quartz surface-wave resonators rigidly supported along the edges, J. Appl. Phys. 65, 35–40.
Tiersten  HF and Shick  DV (1988), On the normal acceleration sensitivity of ST-cut quartz surface wave resonators supported along rectangular edges, J. Appl. Phys. 64, 4334–4341.
Tiersten  HF and Shick  DV (1990), On the in-plane acceleration sensitivity of ST-cut quartz surface-wave resonators with interior rectangular supports, J. Appl. Phys. 67, 2554–2566.
Lee  PCY and Wu  K-M (1978), The influence of support-configuration on the acceleration sensitivity of quartz resonator plates, IEEE Trans. Sonics Ultrason. 25, 220–223.
Lee  PCY, and Wu  K-M (1984), In-plane accelerations and forces on frequency changes in doubly rotated quartz plates, J. Acoust. Soc. Am. 75, 1105–1117.
Lee  PCY and Guo  X (1991), Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 358–365.
Tiersten  HF and Shick  DV (1990), On the normal acceleration sensitivity of contoured quartz resonators rigidly supported along rectangular edges, J. Appl. Phys. 67, 60–67.
Tiersten  HF and Zhou  YS (1991), On the in-plane acceleration sensitivity of contoured quartz resonators supported along rectangular edges, J. Appl. Phys. 70, 4708–4714.
Zhou  YS and Tiersten  HF (1991), On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports, J. Appl. Phys. 69, 2862–2870.
Filler  RL (1988), The acceleration sensitivity of quartz crystal oscillators: a review, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 297–305.
Kosinski  JA and Pastore  RA (2001), Theory and design of piezoelectric resonators immune to acceleration: Present state of the art, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1426–1437.
Sinha  BK and Tiersten  HF (1979), On the influence of a flexural biasing state on the velocity of piezoelectric surface waves, Wave Motion 1, 37–51.
Sinha  BK, Tanski  WJ, Lukaszek  T, and Ballato  A (1985), Influence of biasing stresses on the propagation of surface waves, J. Appl. Phys. 57, 767–776.
Taziev  RM, Kolosovsky  EA, and Kozlov  AS (1995), Pressure-sensitive cuts for surface acoustic waves in α-quartz, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 845–849.
Lee  PCY and Yong  Y-K (1987), Thickness vibrations of doubly rotated crystal plates under initial deformations, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 659–666.
Lee  PCY , and Wang  YS, and Markenscoff  X (1975), High-frequency vibrations of crystal plates under initial stresses, J. Acoust. Soc. Am. 57, 95–105.
Lee  PCY, Wang  YS, and Markenscoff  X (1976), Nonlinear effects of initial bending on the vibrations of crystal plates, J. Acoust. Soc. Am. 59, 90–96.
Wang  ZY, Zhu  HZ, Dong  YG, Wang  JS, and Feng  GP (2001), Force-frequency coefficient of symmetrical incomplete circular quartz crystal resonator, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1471–1479.
Tiersten  HF, Sinha  BK, and Meeker  TR (1981), Intrinsic stress in thin films deposited on anisotropic substrates and its influence on the natural frequencies of piezoelectric resonators, J. Appl. Phys. 52, 5614–5624.
Gafka  D, and Tani  J (1991), Parametric constitutive equations for electroelastic crystals upon electric or mechanical bias, J. Appl. Phys. 70, 6679–6686.
Gafka  D and Tani  J (1993), Sensitivity of surface acoustic wave velocity in lithium niobate to electric field or biasing stress, J. Appl. Phys. 73, 7145–7151.
Tiersten  HF and Sinha  BK (1978), A perturbation analysis of the attenuation and dispersion of surface waves, J. Appl. Phys. 49, 87–95.
Joshi  SG (1982), Surface acoustic wave propagation in a biasing electric field, J. Acoust. Soc. Am. 72, 1872–1878.
Nalamwar  AL and Epstein  M (1976), Surface acoustic waves in strained media, J. Appl. Phys. 47, 43–48.
Lee  PCY and Yong  Y-K (1986), Frequency-temperature behavior of thickness vibrations of doubly rotated quartz plates affected by plate dimensions and orientations, J. Appl. Phys. 60, 2327–2342.
Sinha  BK and Tiersten  HF (1980), On the temperature dependence of the velocity of surface waves in quartz, J. Appl. Phys. 51, 4659–4665.
Tiersten  HF and Sinha  BK (1979), Temperature dependence of resonant frequency of electroded doubly-rotated quartz thickness-mode resonators, J. Appl. Phys. 50, 8038–8051.
Stevens  DS, Tiersten  HF, and Sinha  BK (1983), Temperature dependence of the resonant frequency of electroded contoured AT-Cut quartz crystal resonators, J. Appl. Phys. 54, 1704–1716.
Sorokin BP, Turchin PP, Burkov SI, Glushkov A, and Alexandrov KS (1996), Influence of static electric field, mechanical pressure and temperature on the propagation of acoustic waves in La3Ga5SiO14 piezoelectric single crystals, Proc IEEE Int Frequency Control Symp, 161–169.
Yong  Y-K (1987), Three-dimensional finite-element solution of the Lagrangean equations for the frequency-temperature behavior of Y-cut and NT-cut bars, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 491–499.
Wang  J (1999), The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1042–1046.
Yong  Y-K, Wang  J, and Imai  T (1999), On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1–13.
Sinha  BK and Tiersten  HF (1984), Thermally generated transient frequency excursions in doubly-rotated quartz thickness-mode resonators, J. Appl. Phys. 55, 3337–3347.
Kosinski JA, Pastore Jr RA, Yang JS, Yang X, and Turner JA (2002), Second-order frequency shifts in crystal resonators under relatively large biasing fields, Proc IEEE Int Frequency Control Symp, 103–110.
Kosinski JA, Pastore Jr RA, Yang JS, Yang X, and Turner JA (2003), Perturbation theory for degenerate acoustic eigenmodes, Proc IEEE Int Frequency Control Symp, IEEE, New York.
Kosinski JA, Pastore Jr RA, Yang JS, and Zhang X (2001), Thickness-shear vibration of crystal plates under time-dependent biasing deformations, Proc IEEE Int Frequency Control Symp, 597–604.
Yang JS, Zhang X, Kosinski JA, and Pastore Jr RA (2002), Electrically forced thickness-shear vibration of a quartz plate under time-dependent biasing deformations, Proc IEEE Int Frequency Control Symp and PDA Exhibition, 96–102.
Yang JS (2003), Frequency stability of piezoelectric resonators, Electro-Magneto-Mechanics of Advanced Material Systems and Structures, Y Shindo (ed), WIT Press, 249–260.
Zhang X (2002), Analytical modeling of piezoelectric transformers and resonators, master’s degree thesis, Univ of Nebraska-Lincoln.
EerNisse, EP, (2002), Quartz resonators vs their environment: Time bases or sensors? Seminar given to the Department of Engineering Mechanics, Univ of Nebraska-Lincoln.
Karrer  HE and Leach  J (1969), A quartz resonator pressure transducer, IEEE Trans. Ind. Electron. Control Instrum. 16, 44–50.
Karrer  E and Ward  R (1977), A low-range quartz resonator pressure transducer, ISA Trans. 16, 90–98.
Besson  RJ, Boy  JJ, Glotin  B, Jinzaki  Y, and Sinha  B (1993), A dual-mode thickness-shear quartz pressure sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 584–591.
Dulmet  B, Bourquin  R, and Shibanova  N (1995), Frequency-output force sensor using a multimode doubly rotated quartz resonator, Sens. Actuators A 48, 109–116.
Clayton  LD and EerNisse  EP (1998), Quartz thickness-shear mode pressure sensor design for enhanced sensitivity, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1196–1203.
Clayton LD and EerNisse EP (1996), Application of finite element analysis to the design of quartz thickness-shear mode pressure sensors, Proc IEEE Freq Control Symp, 541–549.
Yang  JS and Zhang  X (2002), A high sensitivity pressure sensor, Sens. Actuators A 101, 332–337.
Onoe M (1977) Quartz crystal accelerometer insensitive to temperature variation, Proc 31st Annual Frequency Control Symp, 62–70.
Reedy  ED and Kass  WJ (1990), Finite-element analysis of a quartz digital accelerometer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 464–474.
Tiersten  HF, Stevens  DS, and Das  PK (1980), Acoustic surface wave accelerometer and rotation rate sensor, Proc. IEEE Ultrason Symp., IEEE, New York, 692–695.
Tierste  HF, Stevens  DS, and Das  PK (1981), Circulating flexural wave rotation rate sensor, Proc.-IEEE Ultrason. Symp., IEEE, New York, 163–166.
Soderkvist  J (1994), Micromachined gyroscopes, Sens. Actuators A 43, 65–71.
Yang JS (2002), Vibrations of rotating piezoelectric structures and angular rate sensors, Proc of the 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 378–382.
Wade  WH and Slutsky  LJ (1962), Quartz crystal thermometer, Rev. Sci. Instrum. 33, 212–213.
Smith  WL and Spencer  WJ (1963), Quartz crystal thermometer for measuring temperature deviations in the 10−3 to 10−6 °C range, Rev. Sci. Instrum. 34, 268–270.
Hammond  DL, Adams  CA, and Schmidt  P (1965), A linear, quartz-crystal temperature-sensing element, ISA Trans. 4, 349–354.
Ziegler  H and Tiesmeyer  J (1983), Digital sensor for radiation, Sens. Actuators 4, 363–367.
Ziegler  H (1984), A low-cost digital temperature sensor system, Sens. Actuators 5, 169–178.
Kanie  H and Kawashima  H (2000), Lame-mode miniaturized quartz temperature sensor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 341–345.
Leblois  TG and Tellier  CR (2000), Micromachined resonant temperature sensors: theoretical and experimental results, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 333–340.
Yang  JS and Zhang  X (2003), Vibrations of a crystal plate under a thermal bias, J. Therm. Stresses 26, 467–477.
EerNisse  EP, Ward  RW, and Wiggins  RB (1988), Survey of quartz bulk resonator sensor technologies, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 323–330.
EerNisse  EP and Wiggins  RB (2001), Review of thickness-shear mode quartz resonator sensors for temperature and pressure, IEEE Sensors Journal 1, 79–87.
EerNisse  EP (2001), Quartz resonators vs their environment: time base or sensor?, Jpn. J. Appl. Phys. Part 1, 40, 3479–3483.
Hellwege K-H (ed) (1979), Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag, New York.
Cho  Y and Yamanouchi  K (1987), Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate, J. Appl. Phys. 61, 875–887.
Thurston  RN, McSkimin  HJ, and Andreatch  P (1966), Third-order elastic constants of quartz, J. Appl. Phys. 37, 267–275.
Brendal  R (1983), Material nonlinear piezoelectric coefficients of quartz, J. Appl. Phys. 54, 5339–5346.
Hruska  CK (1989), Material nonlinearities and the extensional mode of quartz rods, Proc. IEEE Ultrason Symp, IEEE, New York, 405–410.
Hruska CK and Brendal R (1989), Determination of the third-order piezoelectric constants and electrostriction of alpha quartz using the thickness modes of plates, Proc 3rd Annual Symp on Frequency Control, 485–489.
Hruska  CK and Brendal  R (1989), The electroelastic constants of quartz determined by the resonator method, J. Appl. Phys. 65, 715–717.
Kittinger  E, Tichy  J, and Friedel  W (1986), Nonlinear piezoelectricity and electrostriction of alpha quartz, J. Appl. Phys. 60, 1465–1471.
Reider  GA, Kittinger  E, and Tichy  J (1982), Electroelastic effect in alpha quartz, J. Appl. Phys. 53, 8716–8721.
Nakagawa  Y, Yamanouchi  K, and Shibayama  K (1973), Third-order elastic constants of lithium niobate, J. Appl. Phys. 44, 3969–3974.
Korobov  AI and Lyamov  VE (1975), Nonlinear piezoelectric coefficients of LiNbO3,Sov. Phys. Solid State 17, 932–933.
Aleksandrov  KS, Kirensky  LV, Sorokin  BP, Turchin  PP, and Glushkov  DA (1992), Non-linear piezoelectricity in La3Ga5SiO14 piezoelectric single crystal, Ferroelectr., Lett. Sect. 14, 115–125.
Aleksandrov  KS, Sorokin  BP, Turchin  PP, Burkov  SI, Glushkov  DA, and Karpovich  AA (1995), Effects of static electric field and of mechanical pressure on surface acoustic waves propagation in La3Ga5SiO14 piezoelectric single crystals, Proc.-IEEE Ultrason. Symp., IEEE, New York, 409–412.
Sorokin  BP, Turchin  PP, and Glushkov  DA (1994), Elastic nonlinearity and propagation of volume acoustic waves under conditions of homogeneous mechanical stresses in a La3Ga5SiO14 single crystal, Phys. Solid State 36, 1545–1550.
Alexandrov KS, Kirensky LV, Turchin PP, Sorokin BP, Karpovich AA, and Nefedov VA (2000), Bulk acoustic waves propagation in Li2B4O7 piezoelectric crystals under the static uniaxial mechanical pressure, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 214–217.
Sorokin BP, Marushyak AN, and Alexandrov KS (2000), Influence of non-homogeneous unaxial pressure on the propagation of bulk acoustic waves in crystals, Proc IEEE/EIA Int Frequency Control Symp and Exhibition, 404–409.
Chang  ZP and Barsch  GR (1967), Nonlinear pressure dependence of elastic constants and fourth-order elastic constants of Gesium Halides, Phys. Rev. Lett. 19, 1381–1382.
Chang  ZP and Barsch  GR (1971), Pressure dependence of the elastic constants of RbCl, RbBr and RbI, J. Phys. Chem. Solids 32, 27–40.
Markenscoff  X (1977), On the determination of the fourth-order elastic constants, J. Appl. Phys. 48, 3752–3755.
Markenscoff  X (1977), Higher-order effects of initial deformation on the vibration of crystal plates, J. Acoust. Soc. Am. 61, 436–438.
Lee  PCY and Yong  Y-K (1984), Temperature derivatives of elastic stiffness derived from the frequency-temperature behavior of quartz plates, J. Appl. Phys. 56, 1514–1521.
Sinha  BK and Tiersten  HF (1979), First temperature derivatives of the fundamental elastic constants of quartz, J. Appl. Phys. 50, 2732–2739.
Kahan A (1982), Elastic constants of quartz and their temperature coefficients, Proc of IEEE Annual Frequency Control Symp, 159–169.
Mason WP (1950), Piezoelectric Crystals and Their Applications to Ultrasonics, Van Nostrand, New York.
Mason WP (1966), Crystal Physics of Interaction Processes, Academic Press, New York.
Nye JF (1957), Physical Properties of Crystals, Oxford Univ Press, Oxford, UK.
Rittenmyer  KM (1994), Electrostrictive ceramics for underwater transducer applications, J. Acoust. Soc. Am. 95, 849–856.
Hom  CL and Shankar  N (1994), A fully coupled constitutive model for electrostrictive ceramic materials, J. Intell. Mater. Syst. Struct. 5, 795–801.
Piquette  JC and Forsythe  SE (1998), Generalized material model of lead magnesium niobate (PMN) and an associated electromechanical equivalent circuit, J. Acoust. Soc. Am. 104, 2763–2772.
Zheng  Q-S (1993), On transversely isotropic, orthotropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. Eng. Sci. 31, 1399–1453.
Hu  YT, Yang  JS, and Jiang  Q (2000), Wave propagation in electrostrictive materials under biasing fields, Proc. IEEE Ultrason Symp, IEEE, New York, 897–900.
Chai  J-F and Wu  T-T (1996), Propagation of surface waves in a prestressed piezoelectric material, J. Acoust. Soc. Am. 100, 2112–2122.
Hu YT, Yang JS, and Jiang Q, Surface waves in electrostrictive materials under biasing fields, ZAMP(accepted for publication) .
Ganguly  M (1984), Bleustein-Gulyave waves in a pre-stressed piezoelectric half space, Proc. Indian Acad. Sci., Sect. A 50A, 375–381.
Yang  JS (2001), Bleustein-Gulyaev waves in strained piezoelectric ceramics, Mech. Res. Commun. 28, 679–683.
Ganguly  M and Pal  AK (1988), Amplification of B-G waves in a pre-stressed piezoelectric half space of hexagonal symmetry, Acta Phys. Hung. 63, 321–329.
Liu  H, Wang  TJ, and Wang  ZK (2000), Effect of initial stress on the propagation behavior of generalized Rayleigh waves in layered piezoelectric structures, Acta Mech. Sin. 32, 491–496.
Liu  H, Wang  ZK, and Wang  TJ (2001), Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure, Int. J. Infrared Millim. Waves 38, 37–51.
Soos  E and Baesu  E (2001), Transverse acousto-electric waves in pre-strained and pre-polarized piezoelectrics, Mathematical Reports 3, 75–82.
Simionescu-Panait  O (2000), The influence of initial fields on wave propagation in piezoelectric crystals, Int. J. Appl. Electromagn. Mech. 12, 241–251.
Simionescu-Panait  O (2002), Wave propagation in cubic crystals subject to initial mechanical and electric fields, J. Appl. Math. Phys (ZAMP) 53, 1038–1051.
Simionescu  O and Soos  E (2001), Wave propagation in piezoelectric crystals subjected to initial deformations and electric fields, Math. Mech. Solids 6, 437–445.
Baesu  E (2003), On electroacoustic energy flux, J. Appl. Math. Phys. (ZAMP) 54, 1001–1009.
Soos  E (1996), Stability, resonance and stress concentration in prestressed piezoelectric crystals containing a crack, Int. J. Eng. Sci. 34, 1647–1673.
Baesu  E and Soos  E (2001), Antiplane piezoelectricity in the presence of initial mechanical and electrical fields, Math. Mech. Solids 6, 409–422.
Baesu E and Liu F (2002), The influence of biasing fields on the behavior of piezoelectric materials, Proc of 4th Int Conf on Nonlinear Mechanics, Shanghai, China, August 13–16, 9–13.
Baesu  E, Fortune  D, and Soos  E (2003), Incremental behavior of hyperelastic dielectrics and piezoelectric crystals, J. Appl. Math. Phys. (ZAMP) 54, 160–178.
Liu FH (2002), Piezoelectricity with initial fields: Antiplane problems, master’s degree thesis, Univ of Nebraska-Lincoln.
Baesu E, The mechanics of pre-stressed and pre-polarized piezoelectric crystals, Advances in Continuum Mechanics, A Smirnov et al. (ed), World Scientific (in press) .
Baesu  E, and Soos  E (2001), Antiplane fracture in a pre-stressed and pre-polarized piezoelectric crystal, IMA J. Mathematics Appl. Bus. Indust. 66, 499–508.
Baesu  E and Soos  E, Fracture criteria for prestressed and prepolarized piezoelectric crystals Math. Mech. Solids 8, 327–334.
Schreuer  J (2002), Elastic and piezoelectric properties of La3Ga5SiO14 and La3Ga5.5Ta0.5O14: An application of resonant ultrasound spectroscopy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1474–1479.

Figures

Grahic Jump Location
An electroelastic body under finite deformation
Grahic Jump Location
The reference, initial, and present configurations of an electroelastic body
Grahic Jump Location
Simply supported electroelastic bimorphs of polarized ceramics
Grahic Jump Location
A bulk acoustic wave piezoelectric resonator and packaging
Grahic Jump Location
Thickness-shear static deformation and vibration modes of a plate
Grahic Jump Location
(a) A BAW resonator. (b) Its frequency shifts due to accelerations in different directions
Grahic Jump Location
Frequency-temperature behavior of a BAW resonator (ppm=parts per million)
Grahic Jump Location
A frequency and amplitude modulated mode
Grahic Jump Location
Experimental schematic for measuring acoustic wave speed under a bias
Grahic Jump Location
Strain versus electric field in PMN electrostrictive ceramics for different temperatures
Grahic Jump Location
Frequency jumps in piezoelectric resonators

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In