0
REVIEW ARTICLES

Mechanics of variable-mass systems—Part 1: Balance of mass and linear momentum

[+] Author and Article Information
Hans Irschik

Institute of Mechanics and Machine Design, Johannes Kepler University of Linz, Altenbergerstr 69, A-4040 Linz-Auhof, Austriahans.irschik@jku.at and helmut.holl@jku.at

Helmut J Holl

Institute of Mechanics and Machine Design, Johannes Kepler University of Linz, Altenbergerstr 69, A-4040 Linz-Auhof, Austriahans.irschik@jku.at and helmut.holl@jku.at

Appl. Mech. Rev 57(2), 145-160 (Apr 26, 2004) (16 pages) doi:10.1115/1.1687409 History: Online April 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pauli W (2000), Relativitätstheorie, Neu herausgegeben und kommentiert von D Giulini, Springer, Berlin (First published in Encyklopädie der Mathematischen Wissenschaften, Vol V, A Sommerfeld (ed), BG Teubner, Leipzig, 1921).
Shames IH (1992), Mechanics of Fluids, 3rd Edition, McGraw-Hill, New York (first edition published in 1962).
White FM (1999), Fluid dynamics, Fundamentals of Fluid Mechanics, JA Schetz and AE Fuhs (eds), John Wiley, New York, 8–32.
Truesdell C and Toupin R (1960), The classical field theories, Handbuch der Physik, Band III/1: Prinzipien der Klassischen Mechanik und Feldtheorie, S Flügge (Hsg), Berlin, Springer-Verlag, 226–793.
Reynolds O (1903), The Sub-Mechanics of the Universe, Cambridge Univ Press, distributed for the Royal Society in London, Cambridge.
Hamel G (1927), Die Axiome der Mechanik, Handbuch der Physik, Band V: Grundlagen der Mechanik, Mechanik der Punkte und starren Körper, H Geiger and K Scheel (eds), Verlag von Julius Springer, Berlin, 1–41.
Prigogine I (1947), Etude Thermodynamique des Phenomenes Irreversibles, Dunod-Desoer, Paris.
Grad  H (1952), Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals, Comm. Pure Appl. Math. 5, 455–494.
Ericksen JL (1960), Tensor fields, Handbuch der Physik, Band III/1: Prinzipien der Klassischen Mechanik und Feldtheorie, S Flügge (Hsg), Berlin, Springer-Verlag, 794–858.
Dugas R (1988), A History of Mechanics, Dover, New York (first published in 1955).
Warsi ZUA (1999), Fluid Dynamics, Theoretical and Computational Approaches, 2nd Edition, CRC Press, Boca Raton (first edition published in 1993).
Ziegler F (1998), Mechanics of Solids and Fluids, 2nd English Edition, corrected 2nd printing, Springer, New York (first published as Technische Mechanik der festen und flüssigen Körper, Springer-Verlag, Vienna, 1985).
Jaumann G (1905), Die Grundlagen der Bewegungslehre von einem modernen Standpunkte aus, JA Barth, Leipzig.
Spielrein J (1916), Lehrbuch der Vektorrechnung nach den Bedürfnissen in der Technischen Mechanik und Elektrizitätslehre, Verlag von K Wittwer, Stuttgart (second edition 1926).
Thompson PA (1972), Compressible-Fluid Dynamics, McGraw-Hill, New York.
Ziegler  F (1998), Didaktische Aspekte in mechanischen Erhaltungssätzen, Mitt. Ges. Angew. Math. Mech. 1, 61–72.
Thomas  TY (1949), The fundamental hydrodynamical equations and shock conditions for gases, Math. Mag. 22, 169–189.
Maugin GA (1988), Continuum Mechanics of Electromagnetic Solids, Amsterdam, North-Holland.
Bednarczyk  H (1967), Zur Gestalt der Grundgleichungen der Kontuinuumsmechanik an Unstetigkeitsflächen, Acta Mech. 4, 122–127.
Bednarczyk  H (1968), Einige dynamische Kompatibilitätsbedingungen bei der Wechselwirkung senkrechter Unstetigkeitsflächen, Acta Mech. 6, 117–139.
Kluwick  A (1971), Zur Ausbreitung schwacher Stöße in dreidimensionalen instationären Strömungen, Z. Angew. Math. Mech. 51, 225–232.
Kelly  PD (1964), A reacting continuum, Int. J. Eng. Sci. 2, 129–153.
Eringen  AC and Ingram  JD (1965), A continuum theory of chemically reacting media—I, Int. J. Eng. Sci. 3, 197–212.
Hutter  K, Jöhnk  K, and Svendsen  R (1994), On interfacial transition conditions in two phase gravity flow, Z. Angew. Math. Phys. 45, 746–762.
Morland  LW, and Sellers  S (2001), Multiphase mixtures and singular surfaces, Int. J. Non-Linear Mech. 36, 131–146.
Irschik  H (2003), On the necessity of surface growth terms for the consistency of jump relations at a singular surface, Acta Mech. 162, 195–211.
Tait PG (1895), Dynamics, Adam and Charles Black, London.
Ambrosi  D, and Mollica  F (2002), On the mechanics of a growing tumor, Int. J. Eng. Sci. 40, 1297–1316.
Meshchersky IV (1949), Works on the Mechanics of Bodies with Variable Mass (in Russian), with an introduction by AA Kosmodemyansky, GITTL, Moscow, Leningrad.
Routh EJ (1960), The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies, Dover, New York (first edition published in 1905).
Poeschl Th (1927), Technische Anwendungen der Stereomechanik, Handbuch der Physik, Band V: Grundlagen der Mechanik, Mechanik der Punkte und starren Körper, H Geiger and K Scheel (eds), Verlag von Julius Springer, Berlin, 484–577.
Hadjidemetriou  J (1967), Secular variation of mass and the evolution of binary systems, Adv. Astron. Astrophys. 5, 131–188.
Plastino  AR, and Muzzio  JC (1992), On the use and abuse of Newton’s second law for variable mass problems, Celestial Mechanics and Dynamical Astronomy53, 227–232.
Cveticanin L (1998), Dynamics of Machines with Variable Mass, Gordon and Breach Science Publishers, Amsterdam.
Lamb H (1997), Hydrodynamics, Cambridge Univ Press (reprint of the 6th edition 1932, first published as Treatise on the Mathematical Theory of the Motion of Fluids in 1879).
Oswatitsch K (1959), Physikalische Grundlagen der Strömungslehre, Handbuch der Physik, S Flügge (ed), Band VIII/1: Strömungsmechanik I, C Truesdell (ed), Springer-Verlag, Berlin, 1–124.
Truesdell  C (1957), Sulle basi della termomeccanica, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 22, 33–38, 158–166.
Lagally M (1927), Ideale Flüssigkeiten, Handbuch der Physik, Vol VII: Mechanik der flüssigen und gasförmigen Körper, H Geiger and K Scheel (eds), Verlag von Julius Springer, Berlin, 1–91.
Arrighi  G (1933), Una generalizzazione dell’ equazione di continuita, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. XVIII, 302–307.
Lubarda  VA and Hoger  A (2002), On the mechanics of solids with a growing mass, Int. J. Solids Struct. 39, 4672–4664.
Stefan  J (1871), Über das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasmengen, Sitzungsberichte Akademie der Wissenschaften in Wien63.2, 63–124.
de Boer R (2000), Theory of Porous Media: Highlights in the Historical Development and Current State, Springer-Verlag, Berlin.
de Boer  R (2000), Contemporary progress in porous media theory, Appl. Mech. Rev. 53, 323–369.
Morland  LW (1992), Flow of viscous fluid through a porous matrix, Surv. Geophys. 13, 209–268.
Levi-Civita  T (1928), Sul moto di un corpo di massa variabile, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. VIII, 329–333.
Levi-Civita  T (1928), Aggiunta alla Nota: Sul moto di un corpo di massa variabile Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. VIII, 621–622.
Gylden  H (1884), Die Bahnbewegung in einem Systeme von zwei Körpern in dem Falle, dass die Massen Veränderungen unterworfen sind, Astron. Nachr. 109, 2593–94.
Seeliger H (1890), Über Zusammenstösse und Theilungen planetarischer Massen, Abh der Königl Bayer Akademie der Wiss, Cl II, Bd XVII, Abth II, 459–490.
Szabo I (1987), Geschichte der mechanischen Prinzipien und ihrer wichtigsten Anwendungen, 3rd Edition, Birkhäuser Verlag (first edition published in 1977).
Holl  HJ, Belyaev  AK, and Irschik  H (1999), Simulation of the Duffing-oscillator with time-varying mass by a BEM in time, Comput. Struct. 73, 177–186.
Messerschmid E and Fasoulas S (2000), Raumfahrtsysteme, Springer, Berlin.
Routh EJ (1960), A Treatise on Dynamics of a Particle, Dover, New York (first edition published in 1898).
Cayley  A (1857), On a class of dynamical problems, Proc. R. Soc. London VIII, 506–511.
Irschik H and Cojocaru (2003), Continuum Mechanics Based Formulations for the Cayley Class of Continuous-Impact Dynamical Problems, [in publication].
Wittenbauer  F (1905), Die Bewegungsgesetze der veränderlichen Masse, Z. Angew. Math. Phys. 52, 150–164.
Jose JV and Saletan EJ (1998), Classical Dynamics: A Contemprorary Approach, Cambridge Univ Press, Cambridge.
Synge JL (1960), Classical dynamics, Handbuch der Physik, Band III/1: Prinzipien der Klassischen Mechanik und Feldtheorie, S Flügge (Hsg) Berlin, Springer-Verlag, 1–225.
Agostinelli  C (1935–1936), Sui sistemi di masse variabili, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 71, 254–272.
Pars LA (1965), A Treatise on Analytical Dynamics, Heinemann, London.
Ge  Z-M (1984), The equations of motion of nonlinear nonholonomic variable mass system with applications, ASME J. Appl. Mech. 51, 435–437.
Luo  S-K and Mei  F-X (1992), The principles of least action of variable mass nonholonomic nonconservative system in noninertial reference frames, Appl. Math. Mech. 13, 851–859.
Ge  Z-M and Cheng  Y-H (1982), Extended Kane’s equations for non-holonomic variable mass systems, ASME J. Appl. Mech. 49, 429–431.
Zhang  Y and Qiao  Y (1995), Kane’s equations for percussion motion of variable mass nonholonomic mechanical systems, Appl. Math. Mech. 16, 839–850.
Musicki  D (1999), General energy change law for systems with variable mass, Eur. J. Mech. A/Solids 18, 719–730.
Federhofer K (1922), Dynamik sich ändernder Massen, Mitteilungen des Deutschen Ingenieur-Vereines in Mähren, Hauptvereines deutscher Ingenieure in der tschechoslow Republik11 (H.6), 83–86, (H.7), 115–118.
Serrin J (1959), Mathematical principles of classical fluid mechanics, Handbuch der Physik, S Flügge (ed), Band VIII/1: Strömungsmechanik I, C Truesdell (ed), Springer-Verlag, Berlin, 125–263.
Prandtl L and Tietjens O (1929), Hydro- und Aeromechanik, Vol 1, Verlag von Julius Springer, Berlin (English Edition published as Fundamentals of Hydro- and Aeromechanics, McGraw-Hill, New York, 1934).
Oswatitsch K (1952), Gasdynamik, Springer-Verlag, Wien.
Oswatitsch K (1976), Grundlagen der Gasdynamik, Springer-Verlag, Wien.
Cisotti  U (1917), Sulle azione dinamiche di masse fluide continue, Rend Lombardo 50, 502–515.
von Mises R (1908), Theorie der Wasserräder, BG Teubner, Leipzig (reprinted from Zeitschrift für Mathematik und Physik, 57 ).
Müller  W (1933), Über den Impulssatz der Hydromechanik für bewegte Gefäßwände und die Berechnung der Reaktionskräfte der Flüssigkeit, Ann. Phys. (Paris) 5(16), 489–512.
Rosser JB, Newton RR, and Gross GL (1947), Mathematical Theory of Rocket Flight, McGraw-Hill, New York.
Rankin  RA (1948), The mathematical theory of the motion of rotated and unrotated rockets, Philos. Trans. R. Soc. London 241, 457–538.
Gantmakher FR and Levin LM (1964), The Flight of Uncontrolled Rockets, Macmillan, New York.
Meirowitch  L (1970), General motion of a variable mass flexible rocket with internal flow, J. Spacecr. Rockets 7, 186–195.
Meirovitch L (1970), Methods of Analytical Dynamics, McGraw-Hill, New York.
Djerassi  S (1998), Algorithm for simulation of motions of variable mass systems, J. Guid. Control Dyn. 21, 427–434.
Grubin  C (1963), Mechanics of variable mass systems, J. Franklin Inst. 276, 305–312.
Halfman RL (1962), Dynamics, Vol I, Addison Wesley Publ, Reading, MA.
Eke  FO and Wang  S-M (1994), Equations of motion of two-phase variable mass systems with solid base, ASME J. Appl. Mech. 61, 855–860.
Thorpe  JF (1962), On the momentum theorem for a continuous system of variable mass, Am. J. Phys. 30, 637–640.
Leitman  G (1957), On the equation of rocket motion, J. Br. Interplanet. Soc. 16, 141–147.
Thomson  WT (1966), Equations of motion of the variable mass system, AIAA J. 4, 766–768.
Belknap  SB (1972), A general transport rule for variable mass dynamics, AIAA J. 10, 1137–1138 (Full paper referenced as N72-21570, Natl Tech Information Service, VA).
Kapoulitsas  G (1987), The mass-centre motion of a continuously variable system of particles, Part 2, Ingenieur-Archiv57, 91–98.
Parkus H (1995), Mechanik der festen Körper, 2nd Edition, 5th reprint, Springer-Verlag, Wien (first edition published in 1960).
Riemer M (1993), Technische Kontinuumsmechanik, synthetische und analytische Darstellung, BI Wissenschaftsverlag, Mannheim.
Wauer J (1976), Querschwingungen bewegter eindimensionaler Kontinua veränderlicher Länge, Fortschritt-Berichte der VDI Zeitschriften, Reihe 11, Nr 26, VDI-Verlag, Düsseldorf.
Riemer  M and Wauer  J (1988), Zur Behandlung von Schubgelenken in Mehrkörpersystemen mit verformbaren Teilstrukturen, Z. Angew. Math. Mech. 68, T111–T113.
Hamel G (1949), Theoretische Mechanik, Vol LVII of “Die Grundlehren der Mathematischen Wissenschaften,” W Blaschke et al. (eds), Springer-Verlag, Berlin.
Szabo I (1975), Einführung in die Techische Mechanik, 8th Edition, Springer-Verlag, Berlin (first edition published in 1957).
Steiner  W and Troger  H (1995), On the equations of motion of an inextensible string, Z. Angew. Math. Phys. 46, 960–979.
Crellin  EB, Janssens  F, Poelaert  D, Steiner  W, and Troger  H (1997), On balance and variational formulations of the equation of motion of a body deploying along a cable, ASME J. Appl. Mech. 64, 369–374.
Irschik  H and Holl  H (2002), The equations of Lagrange written for a non-material volume, Acta Mech. 153, 231–248.
Kluwick A (2000), Zur Bedeutung der Prandtl’schen Untersuchungen über die dissipative Struktur von Verdichtungsstößen, Ludwig Prandtl, ein Führer durch die Strömungslehre, GEA Meier (ed), Vieweg, Braunschweig, 139–146.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In