0
REVIEW ARTICLES

Bed forms in turbulent channel flow

[+] Author and Article Information
Albert Gyr

Institute of Hydromechanics and Water Resources Management, Swiss Federal Institute of Technology, Zurich, Switzerland; gyr@ihw.baug.ethz.ch

Wolfgang Kinzelbach

Institute of Hydromechanics and Water Resources Management, Swiss Federal Institute of Technology, Zurich, Switzerland; gyr@ihw.baug.ethz.ch

Appl. Mech. Rev 57(1), 77-93 (Feb 10, 2004) (17 pages) doi:10.1115/1.1584063 History: Online February 10, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Perry  AE, Schofield  WH, and Joubert  N (1969), Rough wall turbulent boundary layers, J. Fluid Mech. 37, 383–413.
Perry  AE, and Abell  CJ (1977), Asymptotic similarity of turbulence structures in smooth-and rough-walled pipes, J. Fluid Mech. 79, 785–799.
Nikora V, Koll K, McLean S, Dittrich A, and Aberle J (2002), Zero-plane displacement for rough-bed open-channel flows, Proc of Int Conf on Fluvial Hydraulics, River Flow 2002, Belgium, D Bousmar and Y Zech (eds), Balkema Publishers, 1 , 83–91.
Gessler J (1965), Der Geschiebetrieb bei Mischungen untersucht an natürlichen Abpflästerungserscheinungen in Kanälen, Mitt der VAW, ETHZ, Heft 69.
Müller  A, Gyr  A, and Dracos  T (1971), Interaction of rotating elements of the boundary layer with grains of a bed: A contribution to the problem of the threshold of sediment transportation, J. Hydraul. Res. 9, 372–411.
Kline SJ and Robinson SK (1989), Turbulent boundary layer structure: Progress, status, and challenges. A review of vortex structures and associated coherent motions in turbulent boundary layers, Structure of Turbulence and Drag Reduction, A Gyr (ed), Springer Verlag, Berlin-Heidelberg, 3–50.
Holmes P, Lumley JL, and Berkooz G (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mech., Cambridge Univ Press.
Zhou  J, Adrian  RJ, Balachandar  S, and Kendall  TM (1999), Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech. 387, 353–396.
Shields A (1936), Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt der Preußischen Versuchsanstalt für Wasser-, Erd-und Schiffbau, Heft 26.
Schlichting  H (1936), Experimentelle Untersuchungen zum Rauhigkeitsproblem, Ing.-Arch. 7, 1–34.
Lumley JL, Blossey PN, and Podvin-Delarue, B (1999), Low dimensional models, the minimal flow unit and control, Fundamental Problematic Issues in Turbulence, A Gyr, W Kinzelbach, and A Tsinober (eds), Trends in Mathematics, Birkhäuser Verlag, 57–66.
Jimenéz  J, and Moin  P (1991), The minimal flow unit in near-wall turbulence, J. Fluid Mech. 225, 213–240.
Hage W, Bechert DW, and Bruse M (2000), Artificial shark skin on its way to technical application, Science and Art Symp 2000, A Gyr, PD Koumoutsakos, and U Burr (eds), Kluwer Academic Publ, Dordrecht, 169–175.
Bruse M, Bechert DW, and Hage W (1999), The flow over riblets: Velocity measurements with hot-film probes, IUTAM Symp on Mechanics of Passive and Active Flow Control, GEA Meier and PR Viswanath (eds), Kluwer Academic Publ., 115–120.
Bechert  DW, Bruse  M, Hage  W, van der Hoeven  JGT, and Hoppe  G (1997), Experiments on drag reducing surfaces and their optimisation with adjustable geometry, J. Fluid Mech. 338, 59–87.
Gyr A (1999), Natural riblets, IUTAM Symp on Mechanics of Passive and Active Flow Control, GEA Meier and PR Viswanath (eds), Kluwer Academic Publ, 109–114.
Liu CK, Kline SJ, and Johnston JP (1966), An experimental study of turbulent boundary layers on rough walls, Thermoscience Div, Mech Eng Dept, Stanford Univ Rep MD–15.
Gyr  A, and Müller  A (1975), Alteration of structures of sublayer flow in dilute polymer solutions, Nature (London) 253, 185–187.
Benney  DJ, and Lin  CC (1960), On the secondary motion induced by oscillations in a shear flow, Phys. Fluids 3, 656–657.
Benney  DJ (1961), A non-linear theory for oscillations in a parallel flow, J. Fluid Mech. 10, 209–236.
Landau LD (1944), Dokl. Akad. Nauk U.S.S.R. 44, 339 pp (or Landau LD and Lifschitz EM (1991), Lehrbuch der Theoretischen Physik VI, § 26, Die Stabilität der stationären Strömung einer Flüssigkeit, Akademie Verlag, Berlin 5, Aufl, 121–125).
Simons D and Sentuerk F (1977), Sediment transport technology, Water Resources Publ Fort Collins Colorado.
Liu H (1957), The mechanics of sediment ripple formation, J Hydraulics Div, ASCE Proc 1197, 83 (No HY2).
Hardtke P (1979), Turbulenzerzeugte Sedimentriffeln, Mitt Inst Wasserbau III, Univ Karlsruhe, Heft 47.
Stehr E (1975), Grenzschicht-theoretische Studie über die Gesetze der Strombank und Riffelbildung, Hamburger Küstenforschung Heft 34.
Exner F (1925), Über die Wechselwirkung zwischen Wasser und Geschiebe in Flüssen, Akad. der Wiss in Wien, Math-Naturwissenschafliche Klasse, Sitzungsberichte, Abt IIa, 134, 165–203.
Kennedy  J (1969), The formation of sediment ripples, dunes and antidunes, Annu. Rev. Fluid Mech. 1, 147–168.
Richards  K (1980), The formation of ripples and dunes on an erodible bed, J. Fluid Mech. 99, 597–618.
Engelund  F, and Fredsoe  J (1982), Sediment ripples and dunes, Annu. Rev. Fluid Mech. 14, 13–37.
Raudkivi  AJ (1963), Study of sediment ripple formation, J. Hydr. Div. ASCE Proc. 3692 89, HY6 15–33.
Grass  A (1970), Initial stability of fine bed sand, J. Hydraul. Div., Am. Soc. Civ. Eng. 96, (HY2) 619–632.
Grass  A (1971), Structural features of turbulent flow over smooth and rough boundaries, J. Fluid Mech. 50, 233–255.
Allen  J (1971), Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena, J. Fluid Mech. 49, 49–63.
Williams  P, and Kemp  P (1971), Initiation of ripples on flat sediment bed, J. Hydraul. Div., Am. Soc. Civ. Eng., Proc. 8042 97, (HY4) 505–522.
Jackson  R (1995), Sedimentological and fluid dynamic implications of the turbulent bursting phenomenon in geophysical flows, J. Fluid Mech. 77, 531–566.
Schmid A (1985), Wandnahe turbulente Bewegungsabläufe und ihre Bedeutung für die Riffelbildung, Diss ETHZ Nr 7697.
Gyr A (2003), The self-organization of ripples towards two-dimensional forms, Sedimentation and Sediment Transport: At the Crossroads of Physics and Engineering, A Gyr and W Kinzelbach (eds), Kluwer Academic Publisher, 183–186.
Grass AJ (1983), The influence of boundary layer turbulence on the mechanics of sediment transport, Proc of Euromech 156, Mechanics of Sediment Transport, BM Sumer and A Müller (eds), AA Balkema, 3–17.
Grass  AJ, Stuart  RJ, and Mansour-Tehrani  M (1991), Vortical structure and coherent motion in turbulent flow over smooth and rough boundaries, Philos. Trans. R. Soc. London, Ser. A A336, 35–65.
Grass AJ and Mansour-Tehrani M (1996), Generalized scaling of coherent bursting structures in the near-wall region on turbulent flow over smooth and rough boundaries, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 41–61.
Müller A and Studerus X (1979), Secondary flow in an open channel,. Proc of 18th IAHR Congress, 3 , 19–24.
Studerus X (1982), Sekundärströmungen im offenen Gerinne über rauhen Längsstreifen, Diss ETHZ Nr 7035.
Nakagawa H, Nezu I and Tominaga A (1981) Spanwise streaky structure and macroturbulence in open channel flows, Mem Fac Eng, Kyoto Univ43-1 , 34–67.
Nezu I and Rodi (1985) Experimental study on secondary currents in open channel flows, Proc of 21st IAHR Congress, 2 , 115–119.
Townsend AA (1976) The Structure of Turbulent Shear Flow, 2nd Edition, Cambridge Univ Press.
Tsujimoto T and Kitamura T (1996), Interaction between cellular secondary currents and lateral alternate sorting, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 359–374.
Defina A (1996), Transverse spacing of low-speed streaks in a channel flow over a rough bed, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 87–99.
Führböter A (1980), Strombänke (Grossriffel) und Dünen als Stabilisierungsformen, Mitt Leichtweiss Inst TU Braunschweig 67.
Raudkivi AJ (1982), Grundlagen des Sedimenttransportes, Springer Verlag.
Müller A and Gyr A (1996) Geometrical analysis of the feedback between flow, bedforms and sediment transport, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best and SJ McLelland (eds), John Wiley and Sons Ltd, 237–247.
Müller A and Gyr A (1983), Visualisation of the mixing layer behind dunes, Mechanics of Sediment Transport, Proc EUROMECH 156, BM Sumer and A Müller (eds), AA Balkema, 41–45.
Müller  A, and Gyr  A (1986), On the vortex formation in the mixing layer behind dunes, J. Hydraul. Res. 24, 359–375.
Lesieur MR (1995), Mixing layer vortices, Fluid vortices, SI Green (ed) Kluwer Acad Publ 35–63.
Sidorchuk A (1996), The structure of river bed relief, Coherent Flow Structures in Open Channels, PJ Ashworth, SJ Bennett, JL Best, and SJ McLelland (eds), John Wiley and Sons Ltd, 397–421.
Alam AMZ, Cheyer TD, and Kennedy JF (1996), Friction factors for flow in sand bed channels, MIT Hydrodynamics Lab, Rept No 78.

Figures

Grahic Jump Location
a) The three main separation eddies at the ripple body, and b) Eddy system observed in the wake of the ripple body
Grahic Jump Location
a) Mean secondary flow and b) Velocity distribution in mean flow direction; Cross section of a flume of 25-m length and 0.6-m width just above a roughness stripe (indicated by fat line on the bottom) from Studerus 42 (all distances in centimeters, velocities in cm/s)
Grahic Jump Location
a) Contour lines of vertical velocity distribution (in % of u0, dotted line v=0, line interval 0.5%, drawn out lines positive, dashed lines negative); and b) Turbulence intensity (in %, interval between lines 0.5%) (both distributions at longitudinal coordinate x=4.5 m of a flume of 25-m length and 0.6-m width, distances in cm) from Studerus 42
Grahic Jump Location
Schematic 2D representation of the separation at a single bed form unit viewed as an open separation bubble a) laminar and b) turbulent
Grahic Jump Location
Joint probability density function of the location of the velocity fluctuation vector in the (u,v) plane (concentric ellipses). Contribution of the four quadrants to the momentum exchange with the bed. The quadrants became attributed to the turbulent structures although this representation is valid in the statistical mean only. The major axis of the concentric ellipses provides the mean direction in which a fluid particle moves (angle α).
Grahic Jump Location
Schematic representation of the onset of bed movement. A sweep hits the sand bed and is decelerated. The suspended grains are deposited by longitudinal vortices in stripes in the flow direction.
Grahic Jump Location
Section through the near wall flow. The detail shows the longitudinal vortices with alternating sense of rotation in the buffer layer. The zones of fast and slow flowing fluid, which are produced by the opposite vortex rotation, lead to inflection points in the local velocity profile and thus to instabilities. This is especially true for regions where fluid is transported away from the wall. A hypothetic but incorrect sediment transport into zones with lower velocity is indicated.
Grahic Jump Location
Schematic representation of the origin of longitudinal stripe patterns by sweeps
Grahic Jump Location
Explanation of the propagation velocity of a ripple front
Grahic Jump Location
Shields diagram with the critical parameters for ripple formation
Grahic Jump Location
The single ripple investigated by Schmid 36
Grahic Jump Location
Schematic representation of the extremely simplified burst cycle (See text. The co-transported coordinate system has velocity U. 2D representation under actual flow conditions).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In