0
REVIEW ARTICLES

Shape memory alloy actuators in smart structures: Modeling and simulation

[+] Author and Article Information
Stefan Seelecke

Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; stefan_seelecke@ncsu.edu

Ingo Müller

Inst. f. Verfahrenstechnik, TU Berlin, Sekr. HF2, Straße des 17. Juni 135, D-10623 Berlin, Germany; im@thermodynamik.tu-berlin.de

Appl. Mech. Rev 57(1), 23-46 (Feb 10, 2004) (24 pages) doi:10.1115/1.1584064 History: Online February 10, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ölander  A (1932), Z Christ 32A, 145.
Ölander  A (1932), J. Am. Chem. Soc. 54, 3819.
Bühler  JW, Gilfrich  JV, and Wiley  RC (1963), Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, J. Appl. Phys. 34, 1475–1477.
Funakubo H (ed), (1984), Shape Memory Alloys, Gordon and Breach Science Publishers.
Otsuka K and Wayman CM (eds), (1998), Shape Memory Materials, Cambridge Univ Press, UK.
Otsuka  K and Ren  X (1999), Martensitic transformations in nonferrous memory alloys, Mater. Sci. Eng., A A273–275, 89–105.
Otsuka  K and Ren  X (1999), Recent developments in the research of shape memory alloys, Intermetallics 7, 511–528.
Shaw  JA and Kyriakides  S (1995), Thermomechanical aspects of NiTi, J. Mech. Phys. Solids 43(8), 1243–1281.
Shaw  JA and Kyriakides  S (1997), On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater. 45(2), 683–700.
Shaw  JA and Kyriakides  S (1998), Iniation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, Int. J. Plast. 13(10), 837–871.
Bhattacharya K (1997), Shape Memory Alloys: From Microstructure to Macroscopic Properties, Ch Crystallographic Theory, TransTechPubl, Zürich.
James  RD and Hane  KF (2000), Martensitic transformations and shape-memory materials, Acta Mater. 48(1), 197–222.
Duerig TW, Melton KN, Stöckel D, and Wayman CM (1990), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann.
Bensmann G, Baumgart F, and Hartwig J (1979), Untersuchung der Memorylegierung NiTi und überlegungen zu ihrer Anwendung in der Medizintechnik, Tech Rep 327, Krupp Techn Mitt Krupp, Forsch Ber 327.
Duerig  T, Pelton  A, and Stöckel  D (1999), An overview of Nitinol medical applications, Mater. Sci. Eng., A A273–275, 149–160.
Goldstein DM and McNamara LJ (eds) (1978), Proc of Nitinol Heat Engine Conf, Silver Spring, NSWC MP 79–441.
Glasauer  FU and Müller  I (1996), Drum-and-disc-engine with shape memory wires, J de Phys IV, Colloque C1, Supplément au J de Phys III 6, 301–307.
Wilde  K, Gardoni  P, and Fujino  Y (2000), Base isolation system with shape memory alloy device for elevated highway bridges, Eng. Struct. 22, 222–229.
Aizawa  S, Kakizawa  T, and Higashino  M (1998), Case studies of smart materials for civil structures, Smart Mater. Struct. 7(5), 617–626.
DesRoches  R and Delemont  M (2002), Seismic retrofit of simply supported bridges using shape memory alloys, Eng. Struct. 24, 325–332.
Dolce  M and Cardone  D (2001), Mechanical behavior of shape memory alloys for seismic applications, 1: Martensite and austenite NiTi bars subjected to torsion, Int. J. Mech. Sci. 43, 2631–2656.
Dolce  M and Cardone  D (2001), Mechanical behavior of shape memory alloys for seismic applications 2. austenite NiTi wires subjected to tension, Int. J. Mech. Sci. 43, 2657–2677.
Seelecke S (2000), Dynamics of an SDOF system with shape memory element, Proc of 7th Ann Int Symp Smart Struct Mat, Newport Beach, CA, 2000, Vol 3992, SPIE.
Seelecke  S (2002), Modeling the dynamic behavior of shape memory alloys, Int. J. Non-Linear Mech. 37, 1363–1374.
Birman  V (1997), Review of mechanics of shape memory alloy structures, Appl. Mech. Rev. 50(11), 629–645.
Jia H, Lalande F, and Rogers CA (1996), Review of constitutive modeling of shape memory alloys, Proc of ASME Aerospace Div JCI Chang, J Coulter, D Brei, D Martinez, W Ng, and PP Friedmann (eds), Vol 52 of AD, ASME 1996.
Brinson  LC and Huang  MS (1996), Simplifications and comparisons of shape memory alloy constitutive models, J. Intell. Mater. Syst. Struct. 7, 108–114.
Bo Z and Lagoudas DC (1994), Comparison of different thermomechanical models for shape memory alloys, Adaptive Structures and Composite Materials, Analysis and Applications, E Garcia, H Cudney, and A Dasgupta (eds), Vol 45 of AD, ASME.
Huo  Y and Müller  I (1993), Non-equilibrium thermodynamics of pseudoelasticity, Continuum Mech. Thermodyn. 5, 1–19.
Achenbach  M and Müller  I (1985), Simulation of material behavior of alloys with shape memory, Arch. Mech. 37(6), 573–585.
Achenbach  M, Atanackovic  T, and Müller  I (1986), A model for memory alloys in plain strain, Int. J. Solids Struct. 22(2), 171–193.
Achenbach  M (1989), A model for an alloy with shape memory, Int. J. Plast. 5, 371–395.
Seelecke S (1999), Adaptive Strukturen mit SMA-Aktoren-Modellbildung und Simulation, Habilitation, TU Berlin.
Seelecke S (2003), A fully coupled thermomechanical model for shape memory alloys, Part I: Theory, J. Mech. Phys. Solids (submitted).
Seelecke S and Kastner O (2003), A fully coupled thermomechanical model for shape memory alloys, Part II: Numerical simulation, J. Mech. Phys. Solids (submitted).
Hollerbach JM, Hunter IW, and Ballantyne J (1992), A Comparative Analysis of Actuator Technologies for Robotics, Vol 2, MIT Press, 299–342.
Bhattacharyya A, Lagoudas DC, Wang Y, and Kinra VK (1994), Thermoelectric cooling of shape memory alloy actuators: Theoretical modeling and experiment, In Active Materials and Smart Structures, Vol 2427, SPIE.
Shahin  AR, Meckl  PH, Jones  JD, and Thrasher  MA (1994), Enhanced cooling of shape memory alloy wires using semiconductor ‘heat pump’ modules, J. Intell. Mater. Syst. Struct. 5, 95–104.
Semenyuk V, Seelecke S, Stockholm J, and Musolff A (1998), The use of thermoelectric cooling for shape memory wire temperature control, Europ. Thermoelectric Society Workshop 98, Madrid, Spain, Sept 17–20, Madrid, Spain.
Abadie J, Chaillet N, Lexcellent C, and Bourjault A (1999), Thermoelectric control of shape memory alloy microactuators: Thermal model, Proc of 6th Ann Int Symp Smart Struct Mat, Newport Beach, CA, Vol 3667 of SPIE. SPIE.
Potapov PL (1999), SMA actuators with thermoelastic cooling, Tech Rep, Technische Univ Berlin, FB6-Institut für Verfahrenstechnik, FG Thermodynamik, D-10587 Berlin.
Abadie  J, Chaillet  N, and Lexcellent  C (2002), An integrated shape memory alloy micro-actuator controlled by thermoelectric effect, Sens. Actuators A 3251, 1–7.
Bauer C, Martin W, and Siegling HF (1998), An adaptive composite structure to control the sonic shock of transport aircraft wings, Proc of 4th European Conf of Smart Structures and Materials, Harrogate, UK, 6–8 July 1998 G Tomlinson and W Bullough (eds), Harrogate, UK.
Breitbach E, Bein T, and Hanselka H (1998), The adaptive spoiler—mechanical aspects of a local spoiler thickening to control the transsonic shock, Proc of 9th Int Conf of Adaptive Structures and Technologies, Cambridge MA, 14–16 Oct 1998, M Atalla and NW Hagood (eds), Cambridge, MA.
Hanselka H, Bein T, Monner HP, and Breitbach EJ (1998), Structure mechanical aspects for the realization of adaptive wing structures, Proc of 4th Europ Conf Smart Struct Mat, Harrogate, UK, 6–8 July, 1998, GR Tomlinson and WA Bullogh (eds), Harrogate, UK.
Kudva JN, Martin CA, Scherer LB, Jardine AP, Sanders BP, Sendeckyj GP, McGowan AR, and Lake RC (1999), Overview of the DARPA/AFRL/NASA smart wing program, Proc of 6th Ann Int Symp Smart Struct Mat, Newport Beach, USA, 1–5 March 1999, Vol 3674, SPIE.
Campanile LF, Carli V, Sachau D, Papenfuß N, and Seelecke S (1999), Extensive geometric adaptability in aerospace structures by means of shape memory alloys, Proc of 38th Conf of Metallurgists, Quebec City, Canada, 1999, Quebec City, Canada.
Müller I, Musolff A, and Seelecke S (1999), Adaptive wings with shape memory alloys, TMR Project Phase Transition in Crystalline Solids, TU Berlin, http://www.thermodynamik.tu-berlin.de.
Cudney HH and Inman DJ (1998), Smart wing concept using shape memory alloys, Demonstrator Workshop, Presentation at 4th Europ Conf Smart Mat and Struct, 6–8 July 1998, Harrogate, UK.
Chopra I (1998), Status of application of smart structures technology to rotorcraft systems. In Proc 9th Int Conf Adapt Struct Tech, Cambridge MA, 14–16 Oct 1998, M Atalla and NW Hagood (eds), Cambridge, MA.
Giurgiutu V, Chaudry Z, and Rogers C (1994), Active control of helicopter rotor blades with induced strain actuators, AIAA Paper AIAA 94 1765 CP, 288–297.
Vaidyanathan  R, Chiel  HJ, and Quinn  RD (2000), A hydrostatic robot for marine applications, Rob. Auton. Syst. 30, 103–113.
Rediniotis OK and Lagoudas DC (1997), An SMA actuator for aquatic biomimetrics, SPIE 1997 Smart Structures and Materials Conf, San Diego CA, March 1997.
Rediniotis OK, Lagoudas DC, Garner LJ, and Wilson N (1998), Experiments and analysis of an active hydrofoil with SMA actuators, 35th Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper No 98–102.
Rediniotis OK, Lagoudas DC, Mashio T, Garner LJ, and Qidwai MA (1998), Theoretical and experimental investigations of an active hydrofoil with SMA actuators, http://aero.tamu.edu/fluids/publications.
Ho KK, Gill JJ, Carman GP, and Jardine P (1999), Fabrication and characterization of thin film NiTi for use as a microbubble for active flow control, Proc of 6th Ann Int Symp Smart Struct Mat, 1–5 March 1999, Newport Beach, CA, M Wuttig (ed), SPIE.
Miyazaki  S and Ishida  A (1999), Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Mater. Sci. Eng., A A273–275, 106–133.
Krulevitch  P, Lee  AP, Ramsey  PB, Trevino  JC, Hamilton  J, and Northrup  MA (1996), Thin film shape memory alloy microactuators, J. Microelectromech. Syst. 5(4), 270–282.
Benard  WL, Kahn  H, Heuer  AH, and Huff  MA (1998), Thin-film shape-memory alloy actuated micropumps, J. Microelectromech. Syst. 7(2), 245–251.
Makino  E, Mitsuya  T, and Shibata  T (2001), Fabrication of TiNi shape memory micropump, Sens. Actuators A 88, 256–262.
Xu  D, Wang  L, Ding  G, Zhou  Y, Yu  A, and Cai  B (2001), Characteristics and fabrication of NiTi/Si diaphragm micropump, Sens. Actuators A 93, 87–92.
Kohl  M, Skrobanek  KD, and Miyazaki  S (1999), Development of stress-optimized shape memory microvalves, Sens. Actuators 72, 243–250.
Kohl  M, Dittmann  D, Quandt  E, and Winzek  B (2000), Thin film shape memory microvalves with adjustable operation temperature, Sens. Actuators A 83, 214–219.
Johnson AD (2002), http://www.sma-mems.com.
Hesselbach J (1999), Adaptronics and Smart Structures, Ch Shape Memory Actuators. Springer-Verlag, Berlin, Heidelberg, New York.
Pitschellis R (1998), Mechanische Miniaturgreifer mit Formgedächtnisantrieb, No 714 in Fortschr Ber VDI Reihe 8, VDI Verlag Düsseldorf.
Kohl  M and Skrobanek  KD (1998), Linear microactuators based on the shape memory effect, Sens. Actuators A 70, 104–111.
Kohl  M, Just  E, Pfleging  W, and Miyazaki  S (2000), SMA microgripper with integrated antagonism, Sens. Actuators A 83, 208–213.
Kohl  M, Krevet  B, and Just  E (2002), SMA microgripper system, Sens. Actuators A 3197, 1–7.
Gill  JJ, Chang  DT, Momoda  LA, and Carman  GP (2001), Manufacturing issues of thin film NiTi microwrapper, Sens. Actuators A 93, 148–156.
Bellouard  Y, Lehnert  T, Bidaux  JE, Sidler  T, Clavel  R, and Gotthardt  R (1999), Local annealing of complex mechanical devices: A new approach for developing monolithic micro-devices, Mater. Sci. Eng., A A273–275, 795–798.
Schleich M and Pfeiffer F (2000), Development of a SMA actuator for application in a robot hand, Robotik 2000, June 29–30, Berlin.
Reynaerts  D and van Brussel  H (1998), Design aspects of shape memory actuators, Mechatronics 8, 635–656.
Reynaerts  D, Peirs  J, and van Brussel  H (1999), Shape memory micro-actuation for a gastro-intestinal intervention system, Sens. Actuators A 77, 157–166.
Taylor  PM, Moser  A, and Creed  A (1998), A sixty-four element tactile display using shape memory alloy wires, Displays 18, 163–168.
MacGregor R (2002), http://www.nanomuscle.com.
James RD and Wuttig M (1996), Alternative smart materials, In Mathematics and Control in Smart Structures, Vol 2715, SPIE, 1996.
James  RD, Tickle  R, and Wuttig  M (1999), Large field-induced strains in ferromagnetic shape memory materials, Mater. Sci. Eng., A A273–275, 320–325.
Ullakko K, Yakovenko PG, and Gavriljuk VG (1996), New developments in actuator materials as reflected in magnetically controlled shape memory alloys and high-strength shape memory steels, Mathematics and Control in Smart Structures, Vol 2715, SPIE.
Ullakko  K, Huang  JK, Kokorin  VV, and O’Handley  RC (1997), Magnetically controlled shape memory effect in Ni2MnGa intermetallics, Scr. Mater. 36(10), 1133–1138.
Tanaka  K and Nagaki  S (1982), A thermomechanical description of materials with internal variables in the process of phase transition, Ingenieur Archiv Arch Appl Mech 51, 287–299.
Tanaka  K (1986), A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior, Res. Mech. 18, 251–263.
Tanaka  K, Kobayashi  S, and Sato  Y (1986), Thermomechanics of transformation, pseudoelasticity and shape memory effect in alloys, Int. J. Plast. 2, 59–72.
Liang  C and Rogers  CA (1990), One-dimensional thermomechanical constitutive relations for shape memory materials, J. Intell. Mater. Syst. Struct. 1, 207–234.
Brinson  LC (1993), One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable, J. Intell. Mater. Syst. Struct. 4, 229–242.
Bekker  A and Brinson  LC (1997), Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach, J. Mech. Phys. Solids 45(6), 949–988.
Boyd  JG and Lagoudas  DC (1994), Thermomechanical response of shape memory composites, J. Intell. Mater. Syst. Struct. 5, 333–346.
Lu  ZK and Weng  GJ (1997), Martensitic transformation and stress-strain relations of shape-memory alloys, J. Mech. Phys. Solids 45(11/12), 1905–1928.
Lu  ZK and Weng  GJ (1998), A self-consistent model for the stress-strain behavior of shape-memory alloy polycrystals, Acta Mater. 46(15), 5423–5433.
Huang  M and Brinson  LC (1998), A multivariant model for single crystal shape memory alloy behavior, J. Mech. Phys. Solids 46(8), 1379–1409.
Gao  X, Huang  M, and Brinson  LC (2000), A multivariant micromechanical model for SMAs, Part 1: Crystallographic issues for single crystal model, Int. J. Plast. 16, 1345–1369.
Huang  M, Gao  X, and Brinson  LC (2000), A multivariant micromechanical model for SMAs, Part 2: Polycrystal model, Int. J. Plast. 16, 1371–1399.
Bo  Z and Lagoudas  DC (1999), Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part 1: Theoretical derivations, Int. J. Eng. Sci. 37, 1089–1140.
Bo  Z and Lagoudas  DC (1999), Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: Material characterization and experimental results for a stable transformation cycle, Int. J. Eng. Sci. 37, 1141–1173.
Bo  Z and Lagoudas  DC (1999), Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect, Int. J. Eng. Sci. 37, 1175–1203.
Bo  Z and Lagoudas  DC (1999), Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops, Int. J. Eng. Sci. 37, 1205–1249.
Goo  BC and Lexcellent  C (1998), Micromechanics-based modeling of two-way shape memory effect of a single crystalline shape-memory alloy, Acta Mater. 45(2), 727–737.
Vivet  A and Lexcellent  C (1997), Micromechanical modeling for tension-compression pseudoelastic behavior of AuCd single crystals, Eur. Phys. J.: Appl. Phys. 4, 125–132.
Ivshin  Y and Pence  TJ (1994), A constitutive model for hysteretic phase transition behavior, Int. J. Eng. Sci. 32, 681–704.
Ivshin  Y and Pence  TJ (1994), A thermomechanical model for a one variant shape memory material, J. Intell. Mater. Syst. Struct. 5, 455–473.
Müller  I and Wilmanski  K (1980), A model for a pseudoelastic body, Nuovo Cimento Soc. Ital. Fis., B 57B, 283–318.
Achenbach  M and Müller  I (1982), A model for shape memory, J de Phys Colloque C4 supplement au no 12 J. de Phys. III 12, 163–167.
Govindjee  S and Hall  GJ (2000), A computational model for shape memory alloys, Int. J. Solids Struct. 37, 735–760.
Govindjee S and Hall GJ (1999), Computational aspects of solid-solid phase transformation modeling with a Gibbs function. Proc of 6th Ann Int Symp Smart Struct Mat, 1–5 March 1999, Newport Beach, CA, SPIE.
Hall GJ and Govindjee S (1999), A model and numerical framework for the simulation of solid-solid phase transformations, Tech Rep UCB/SEMM-1999/11, Dept of Civil and Env Eng, Univ of California, Berkley.
Fu  S, Huo  Y, and Müller  I (1993), Thermodynamics of pseudoelasticity An analytical approach, Acta Mech. 99, 1–19.
Glasauer FU (1996), Thermodynamische Untersuchungen and Gedächtnislegierungen, PhD Thesis, TU Berlin.
Madill DR and Wang DWL (1996), L2-stability of a shape memory alloy position control system, Proc of 33rd IEEE Conf on Decision and Control, IEEE Computer Society Press, Los Alamitos, CA.
Preisach  F (1935), Über die magnetische Nachwirkung, Z Phys 94, 277–302.
Krasnosel’skii M and Prokrovskii A (1989), Systems with Hysteresis, Springer-Verlag, Berlin.
Visintin A (1994), Differential Models of Hysteresis, Applied Mathematical Sciences, Springer Verlag, Berlin,
Brokate M and Sprekels J (1996), Hysteresis and Phase Transitions, Springer Verlag, New York.
Huo  Y (1989), A mathematical model for the hysteresis in shape memory alloys, Continuum Mech. Thermodyn. 1, 283–303.
Ortin  J (1992), Preisach modeling of hysteresis for a pseudoelastic cu-zn-al single crystal, J. Appl. Phys. 71, 1454–1461.
Hughes DC and Wen JT (1994), Preisach modeling and compensation for smart material hysteresis, Active Materials and Smart Structures, Vol 2427, SPIE.
Hughes DC and Wen JT (1996), Preisach modeling of piezoceramic and shape memory alloy hysteresis, Mathematics and Control in Smart Structures, Vol 2715, SPIE.
Gorbet RB (1997), Control of hysteresis systems with preisach representations, PhD Thesis, Univ of Waterloo, Waterloo, Canada.
Gorbet RB, Morris KA, and Wang DWL (1997), Stability of control for the Preisach hysteresis model Proc of 1997 IEEE Int Conf on Robotics and Automation, Vol 1, Albuquerque, NM.
Gorbet  RB and Wang  DWL (1998), A dissipativity approach to stability of a shape memory alloy position control system, IEEE Tans Contr Syst Tech 6(4), 554–562.
Seelecke S, da Silva E, and Söffker D (1998), Simulation of feedback control for SMA actuators, Proc 9th Int Conf Adapt Struct Tech, Cambridge, MA, 14-16 Oct 1998, MJ Atalla and NW Hagood (eds), Cambridge MA, 14–16 Oct, 238–246.
da Silva EP (2000), Zur Kalorimetrie von Gedächtnislegierungen und zu ihrer Anwendung als elektrisch aktivierte Aktuatoren, PhD Thesis, TU Berlin, Berlin, Germany.
Hairer E and Wanner G (1991), Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Math, Springer-Verlag.
Grant  D and Hayward  V (1997), Variable structure control of shape memory alloy actuators, IEEE Control Syst. Mag. 17(3), 80–88.
Cruz-Hernandez JM and Hayward V (1998), An approach to reduction of hysteresis in smart materials, Proc of 1998 IEEE, Int Conf on Robotics and Automation, Leuven, Beligium.
van der Wijst  MWM, Schreurs  PJG, and Veldpaus  FE (1997), Application of computed phase transformation power to control shape memory alloy actuators, Smart Mater. Struct. 6(2), 190–198.
Webb GV and Lagoudas DC (1999), Control of SMA actuators under dynamic enviroments, Proc 6th Ann Int Symp Smart Struct Mat, Newport Beach, CA, 1–5 March 1999, Vol. 3667, SPIE.
Webb  GV, Lagoudas  DC, and Kurdila  AJ (1998), Hysteresis modeling of SMA actuators for control applications, J. Intell. Mater. Syst. Struct. 9, 432–448.
Webb  GV, Lagoudas  DC, and Kurdila  AJ (2000), Adaptive hysteresis compensation for SMA actuators with stress-induced variations in hysteresis, J. Intell. Mater. Syst. Struct. 10(11), 845–854.
Webb GV, Lagoudas DC, and Kulkarni M (1999), Adaptive shape control for an SMA-actuated aerofoil rib structure, Proc of IMECE ’99 ASME Int Mech Eng Congress and Exposition, ASME.
Banks  HT, Kurdila  A, and Webb  G (1997), Identification of hysteretic control influence operators representing smart actuators, Part I: Formulation, Math Probl Eng 3, 287–328.
Banks  HT, Kurdila  A, and Webb  G (1997), Identification of hysteretic control influence operators representing smart actuators, Part II: Convergent approximations, J. Intell. Mater. Syst. Struct. 8, 536–550.
Brinson  LC, Huang  MS, Boller  C, and Brand  W (1997), Analysis of controlled beam deflections using SMA wires, J. Intell. Mater. Syst. Struct. 8, 12–25.
Shu  SG, Lagoudas  DC, Hughes  D, and Wen  JT (1997), Modeling of flexible beam actuated by shape memory alloy wires, Smart Mater. Struct. 6(3), 265–277.
Lagoudas  DC and Shu  SG (1999), Residual deformation of active structures with SMA actuators, Int. J. Mech. Sci. 41, 595–619.
Perreux  D and Lexcellent  C (1999), Theoretical and experimental study of a smart hinge-beam based on shape memory alloy wire actuators, J. Intell. & Robotic Syst. 25, 167–182.
Seelecke S (1997), Control of beam structures by shape memory wires, 2nd Sci Conf Smart Mechanical Systems: Adaptronics, March 1997, Otto-von-Guericke Univ, Magdeburg.
Seelecke S and Büskens C (1997), Optimal control of beam structures by shape memory wires, OPTI 97, Computer Aided Optimum Design of Structures, Rome, Italy, Sept 8–10, 1997 S Hernandez and CA Brebbia (eds), Comp Mech Press, Rome, Italy.
Büskens C (1996), NUDOCCCS, User’s Manual. Universität Münster.
Büskens C and Maurer H (1996), Sensitivity analysis and real-time control of nonlinear optimal control systems via nonlinear programming methods, Proc 12th Conf Calculus of Variations, Optimal Control and Applications, Trassenheide, Germany, Sept 1996, Trassenheide, Germany.
Büskens C (1997), Real-time control of an industrial robot using nonlinear programming methods, Proc 4th IFAC Workshop on Algorithms and Architectures for Real-Time Control, Vilamoura, April 1997, Portugal.
Büskens C (2002), Real-Time Optimization and Real-Time Optimal Control of Parameter-Pertutbed Problems. (in German), Habilitation, Univ of Bayreuth.
Papenfuß N and Seelecke S (1999), Simulation and control of SMA actuators, Proc 6th Ann Int Symp Smart Struct Mat, 1–5 March, Vol 3667, SPIE, Newport Beach, CA.
Grötschel M, Krumke SO, and Rambau J (eds) (2001), Online Optimization of Large Scale Systems, Springer.
Brinson  LC and Lammering  R (1993), Finite element analysis of the behavior of shape memory alloys and their applications, Int. J. Solids Struct. 30, 3261–3280.
Rediniotis OK, Lagoudas DC, Aranki T, and Wilson N (1997), Smart flap assisted control surface (SFACS), http://barracuda.tamu.edu, Research Project at Texas A&M Univ.
Auricchio F and Taylor RL (1996), Shape memory alloy superelastic behavior: 3d finite-element simulations, 3rd European Conf on Smart Structures and Materials, Lyon, France, 3–5 June, 1996, Vol 2779 of SPIE.
Auricchio  F and Taylor  RL (1997), Shape-memory alloys: Modelling and numerical simulations of the finite-strain superelastic behavior, Comput. Methods Appl. Mech. Eng. 143, 175–194.
Auricchio  F and Sacco  E (1999), A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations, Comput. Methods Appl. Mech. Eng. 174, 171–190.
Trochu  F and Qian  YY (1997), Nonlinear finite element simulation of superelastic shape memory alloy parts, Comput. Struct. 62(5), 799–810.
Taylor RL (1997), pcfeap, version 2.04, http://www.ce.berkley.edu/rlt/.
Seelecke  S and PapenfuPapenfuß  N (2000), A finite element formulation for SMA actuators, Appl. Mech. Eng. 5(1), 241–250.
Zienkiewicz OC and Taylor RL (1989), The Finite Element Method, Volume 1: Basic Formulations and Linear Problems 4th Edition, McGraw-Hill, London.
Zienkiewicz OC and Taylor RL (1991), The Finite Element Method, Volume 2: Solid and Fluid Mechanics, Dynamics and Nonlinearity, 4th Edition, McGraw-Hill, London.
Papenfuss N and Seelecke S (1998), FE-simulation adaptiver strukturen mit formgedächtnisaktoren, Proc 16th CADFEM User’s Meeting, Bad Neuenahr, Germany, Oct 7–9, 1998, Bad Neuenahr, Germany.
Papenfuß N (1999), Finite-elemente-simulation adaptiver strukturen mit formgedächtnisaktoren, Master’s Thesis, TU Berlin.

Figures

Grahic Jump Location
Schematic load-deformation diagram of a shape memory alloy, displaying quasiplastic (left) and pseudoelastic behavior (right)
Grahic Jump Location
Deformation-temperature diagram of a typical NiTiCu wire
Grahic Jump Location
Section of an adaptive aircraft wing illustrating the actuation potential of SMA wires
Grahic Jump Location
Lattice particle in austenitic phase A and martensitic twin phases M±
Grahic Jump Location
Potential energy of a lattice particle
Grahic Jump Location
Layer structure of macroscopic SMA model
Grahic Jump Location
Helmholtz free energy (effective potential energy) of a layer at three different temperatures: high (top), intermediate (middle) and low temperature (bottom)
Grahic Jump Location
Gibbs free energy of a layer under a load at an intermediate temperature
Grahic Jump Location
Pseudoelastic behavior of a CuZnAl single crystal. Experimental data taken from Fu et al. 106 and Glasauer 107
Grahic Jump Location
Tensile experiment performed with a NiTi wire in air and water environment. Experimental data from Shaw and Kyriakides 8
Grahic Jump Location
Experimental setup for closed loop feedback control of an SMA actuator
Grahic Jump Location
Response of SMA actuator to step function set point (thin line) at small gain factor—experiment
Grahic Jump Location
Response of SMA actuator to step function set point (thin line) at small gain factor—simulation
Grahic Jump Location
Response of SMA actuator to step function set point (thin line) at high gain factor—experiment
Grahic Jump Location
Response of SMA actuator to step function set point (thin line) at high gain factor—simulation
Grahic Jump Location
Response of SMA actuator to sinusoidal set point (thin line) at small frequency (ω=0.4 rad/s)—experiment
Grahic Jump Location
Response of SMA actuator to sinusoidal set point (thin line) at small frequency (ω=0.4 rad/s)—simulation
Grahic Jump Location
Response of SMA actuator to sinusoidal set point (thin line) at high frequency (ω=1.4 rad/s)—experiment
Grahic Jump Location
Response of SMA actuator to sinusoidal set point (thin line) at intermediate frequency (ω=0.6 rad/s)—simulation
Grahic Jump Location
Elastic beam with heated SMA wire actuator
Grahic Jump Location
Two heating pulses applied to the wire (left) and resulting temperature (right)
Grahic Jump Location
Evolution of the phase fractions during the heating and cooling process
Grahic Jump Location
Time-dependent wire deformation leading to different beam shapes
Grahic Jump Location
Optimal control of beam shape adjustement with SMA wires
Grahic Jump Location
Wire deformation in the case of unknown final value
Grahic Jump Location
Optimal control in the case of unknown final value
Grahic Jump Location
Wire deformation in the case of disturbed environmental temperature
Grahic Jump Location
Optimal control in the case of disturbed environmental temperature
Grahic Jump Location
Wire deformation for the coupled problem
Grahic Jump Location
Optimal control for the coupled problem
Grahic Jump Location
Photograph of an adaptive beam with two shape memory wires
Grahic Jump Location
Finite element mesh of the adaptive beam
Grahic Jump Location
Heating functions for the two wires. Left wire: dashed line, right wire: solid line
Grahic Jump Location
Resulting temperature in the two wires. Left wire: dashed line, right wire: solid line
Grahic Jump Location
Sequence of resulting beam shapes at different times
Grahic Jump Location
Finite element model of a section of the flexible trailing edge of an adaptive aircraft wing
Grahic Jump Location
Reference configuration and maximally bent trailing edge

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In