0
REVIEW ARTICLES

Computational strategies for flexible multibody systems

[+] Author and Article Information
Tamer M Wasfy

Advanced Science and Automation Corp, Hampton VAtamer@ascience.com

Ahmed K Noor

Center for Advanced Engineering Environments, Old Dominion University, Hampton VA a.k.noor@larc.nasa.gov

Appl. Mech. Rev 56(6), 553-613 (Nov 26, 2003) (61 pages) doi:10.1115/1.1590354 History: Online November 26, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shabana  AA (1997), Flexible multibody dynamics: Review of past and recent developments, Multibody Syst. Dyn. 1(2), 189–222.
Bremer  H (1999), On the dynamics of elastic multibody systems, Appl. Mech. Rev. 52(9), 275–303.
Huston  RL (1981), Multibody dynamics including the effects of flexibility and compliance, Comput. Struct. 14(5-6), 443–451.
Huston  RL (1991), Multibody dynamics: Modeling and analysis methods, Appl. Mech. Rev. 44(3), 109–117.
Huston  RL (1991), Computer methods in flexible multibody dynamics, Int. J. Numer. Methods Eng. 32, 1657–1668.
Huston  RL (1996), Multibody dynamics since 1990, Appl. Mech. Rev. 49(10), S35–S40.
Schiehlen  W (1997), Multibody system dynamics: Roots and perspectives, Multibody Syst. Dyn. 1, 149–188.
Gaultier PE and Cleghorn WL (1989), Modeling flexible manipulator dynamics: A literature survey, Proc of 1st Natl App Mech and Robotics Conf, Paper No 89AMR-2C-3, Cincinnati OH.
Erdman  AG, Sandor  GN, and Oakberg  RG (1972), A general method for kineto-elastodynamic analysis of mechanisms, ASME J. Eng. Ind. 94, 1193–1205.
Lowen  GG and Jandrasits  WG (1972), Survey of investigations into the dynamics behavior of mechanisms links with distributed mass and elasticity, Mech. Mach. Theory 7, 3–17.
Jandrasits  WG and Lowen  GG (1979), The elastic-dynamic behavior of a counter-weighted rocker link with an overhanging endmass in a four-bar linkage, Part I: Theory; Part II: Application and experiment, ASME J. Mech. Des. 101(1), 77–98.
Lowen  GG and Chassapis  C (1986), The elastic behavior of linkages: An update, Mech. Mach. Theory 21(1), 33–42.
Thompson  BS and Sung  CK (1986), A survey of finite element techniques for mechanism design, Mech. Mach. Theory 21, 351–359.
Modi  VJ (1974), Attitude dynamics of satellites with flexible appendages: A brief review, J. Spacecr. Rockets 11, 743–751.
Huston RL (1990), Multibody Dynamics, Butterworth-Heinemann, USA.
Schiehlen W (1986), Technische Dynamik, Stuttgart, Teubner.
Amirouche FML (1992), Computational Methods in Flexible Multibody Dynamics, Prentice Hall, Englewood Cliffs, NJ.
Schiehlen W (ed) (1993), Advanced Multibody Systems Dynamics: Simulation and Software Tools, Kluwer Academic Publishing, Dordrecht.
Pereira MF and Ambrosio JAC (1995), Computational Dynamics in Multibody Systems, Kluwer Academic Publishers.
Xie M (1994), Flexible Multibody System Dynamics: Theory and Applications, Taylor and Francis, Washington.
Shabana AA (1998), Dynamics of Multibody Systems, 2nd Edition, Cambridge Univ Press.
Schwertassek R and Wallrapp O (1999), Dynamik Flexibler Mehrkvrpersysteme, Braunschweig, Vieweg.
Geradin M and Cardona A (2001), Flexible Multibody Dynamics: A Finite Element Approach, John Wiley & Sons.
Shabana AA and Pascal M (2001), Symposium on multibody dynamics and vibration, ASME 18th Biennial Conf on Mech Vib and Noise.
Schiehlen W (ed) (1990), Multibody Systems Handbook, Springer-Verlag, New York.
Liou  FW and Erdman  AG (1989), Analysis of a high-speed flexible four-bar linkage, Part I: Formulation and solution, Part II: Analytical and experimental results on the Apollo, ASME J. Vib., Acoust., Stress, Reliab. Des. 111, 35–47.
Ambrosio  JAC and Nikravesh  PE (1992), Elastic-plastic deformation in multibody dynamics, Nonlinear Dyn. 3, 85–104.
Ambrosio  JAC and Ravn  P (1997), Elastodynamics of multibody systems using generalized inertial coordinates and structural damping, Mech. Struct. Mach. 25(2), 201–219.
Hsiao  KM and Jang  J (1991), Dynamic analysis of planar flexible mechanisms by corotational formulation, Comput. Methods Appl. Mech. Eng. 87, 1–14.
Iura  M and Iwakuma  T (1992), Dynamic analysis of the planar Timoshenko beam with finite displacement, Comput. Struct. 45(1), 173–179.
Elkaranshawy  HA and Dokainish  MA (1995), Corotational finite element analysis of planar flexible multibody systems, Comput. Struct. 54(5), 881–890.
Khulief  YA (1992), On the finite element dynamic analysis of flexible mechanisms, Comput. Methods Appl. Mech. Eng. 97, 23–32.
Belytschko  T, Schwer  L, and Klein  MJ (1977), Large displacement, transient analysis of space frames, Int. J. for Numer. Methods in English , 11, 65–84.
Simo  JC and Vu-Quoc  L (1988), On the dynamics in space of rods undergoing large motions: A geometrically exact approach, Comput. Methods Appl. Mech. Eng. 66, 125–161.
Cardona  A and Geradin  M (1988), A beam finite element non-linear theory with finite rotations, Int. J. Numer. Methods Eng. 26, 2403–2438.
Downer  JD, Park  KC, and Chiou  JC (1992), Dynamics of flexible beams for multibody systems: A computational procedure, Comput. Methods Appl. Mech. Eng. 96, 373–408.
Ibrahimbegovic A and Al Mikdad M (1996), On dynamics of finite rotations of 3D beams, Comput Methods in Appl Sci 96, Third ECCOMAS Comput Fluid Dyn Conf and the 2nd ECCOMAS Conf on Numer Methods in Eng 447–453.
Crisfield  MA, Galvanetto  U, and Jelenic  G (1997), Dynamics of 3-D co-rotational beams, Computational Mech., Berlin 20, 507–519.
Avello  A, Garcia de Jalon  J, and Bayo  E (1991), Dynamics of flexible multibody systems using Cartesian co-ordinates and large displacement theory, Int. J. Numer. Methods Eng. 32(8), 1543–1563.
Brenan KE, Campbell SL, and Petzold LR (1989), Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, New York.
Haug EJ and Deyo R (1990), Real-Time Integration Methods for Mechanical System Simulation, Springer-Verlag, Berlin.
Hairer E and Wanner G (1994), Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer, Berlin.
Ryu  J, Kim  SS, and Kim  SS (1994), A general approach to stress stiffening effects on flexible multibody systems, Mech. Struct. Mach. 22(2), 157–180.
Ryu  J, Kim  SS, and Kim  SS (1997), A criterion on inclusion of stress stiffening effects in flexible multibody dynamic system simulation, Comput. Struct. 62(6), 1035–1048.
Belytschko  T and Hsieh  BJ (1973), Non-linear transient finite element analysis with convected co-ordinates, Int. J. Numer. Methods Eng. 7, 255–271.
Housner J (1984), Convected transient analysis for large space structure maneuver and deployment, Proc of 25th Struct, Struct Dyn and Materials Conf, AIAA Paper No 84-1023, 616–629.
Housner JM, Wu SC, and Chang CW (1988), A finite element method for time varying geometry in multibody structures, Proc of 29th Struct, Struct Dyn and Materials Conf, AIAA Paper No 88–2234.
Iura  M and Atluri  SN (1988), Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams, Comput. Struct. 29, 875–889.
Simo  JC and Vu-Quoc  L (1986), A three dimensional finite strain rod model, Part II: Computational aspects, Comput. Methods Appl. Mech. Eng. 58, 79–116.
Simo  JC and Vu-Quoc  L (1986), On the dynamics of flexible beams under large overall motions—The plane case: Part I, Part II, ASME J. Appl. Mech. 53, 849–863.
Meirovitch  L and Nelson  HD (1966), High-spin motion of a satellite containing elastic parts, J. Spacecr. Rockets 3(11), 1597–1602.
Likins  PW (1967), Modal method for the analysis of free rotations of spacecraft, AIAA J. 5(7), 1304–1308.
Likins  PW (1973), Dynamic analysis of a system of hinge-connected rigid bodies with nonrigid appendages, Int. J. Solids Struct. 9, 1473–1487.
Likins  PW, Barbera  FJ, and Baddeley  V (1973), Mathematical modeling of spinning elastic bodies for modal analysis, AIAA J. 11, 1251–1258.
Likins  PW (1974), Geometric stiffness characteristics of a rotating elastic appendage, Int. J. Solids Struct. 10, 161–167.
Grotte  PB, McMunn  JC, and Gluck  R (1971), Equations of motion of flexible spacecraft, J. Spacecr. Rockets 8, 561–567.
Winfrey RC (1969), Dynamics of mechanisms with elastic, PhD Dissertation, UCLA.
Winfrey  RC (1971), Elastic link mechanism dynamics, ASME J. Eng. Ind. 93(1), 268–272.
Winfrey  RC (1972), Dynamic analysis of elastic link mechanisms by reduction of coordinates, ASME J. Eng. Ind. 94(2), 577–582.
Jasinski  PW, Lee  HC, and Sandor  GN (1970), Stability and steady-state vibrations in a high-speed slider-crank mechanism, ASME J. Appl. Mech. 37(4), 1069–1076.
Jasinski  PW, Lee  HC, and Sandor  GN (1971), Vibration of elastic connecting rod of a high speed slider-crank mechanism, ASME J. Eng. Ind. 93(2), 336–344.
Sadler JP and Sandor GN (1970), Kineto-elastodynamic harmonic analysis of four-bar path generating mechanisms, Proc of 11th ASME Conf on Mech, Columbus, OH, ASME Paper No 70-Mech-61.
Erdman AG, Imam I, and Sandor GN (1971), Applied kineto-elastodynamics, Proc of 2nd OSU Appl Mech Conf, Stillwater, OK, Paper No 21.
Erdman AG (1972), A general method for kineto-elastodynamic analysis and synthesis of mechanisms, PhD Dissertation, Div of Machines and Structures, RPI, Troy NY.
Imam I (1973), A general method for kineto-elastodynamic analysis and design of high speed mechanisms, Doctoral Dissertation, RPI, Troy NY.
Imam  I and Sandor  GN (1975), High speed mechanism design: A general analytical approach, ASME J. Eng. Ind. 97(2), 609–628.
Viscomi  BV and Ayre  RS (1971), Nonlinear dynamic response of elastic slider-crank mechanism, ASME J. Eng. Ind. 93(1), 251–262.
Dubowsky S and Maatuk J (1975), The dynamic analysis of spatial mechanisms, Proc of 4th World Congress of the Theory of Spatial Mech, Univ of Newcastle upon Tyne, England, 927–932.
Dubowsky  S and Gardner  TN (1975), Dynamic interactions of link elasticity and clearance connections in planar mechanical systems, ASME J. Eng. Ind. May, 97(2), 652–661.
Dubowsky  S and Gardner  TN (1977), Design and analysis of multi-link flexible mechanisms with multiple clearance connections, ASME J. Eng. Ind. 99(1), 88–96.
Bahgat  BM and Willmert  KD (1976), Finite element vibrational analysis of planar mechanisms, Mech. Mach. Theory 11, 47–71.
Midha  A, Erdman  AG, and Forhib  DA (1978), Finite element approach to mathematical modeling of high-speed elastic linkages, Mech. Mach. Theory 13, 603–618.
Midha A (1979), Dynamics of high-speed linkages with elastic members, Doctoral Dissertation, Univ of Minnesota.
Midha  A, Erdman  A, and Forhib  DA (1979), A computationally efficient numerical algorithm for the transient response of high-speed elastic linkages, ASME J. Mech. Des. 101, 138–148.
Midha  A, Erdman  A, and Forhib  DA (1979), A closed-form numerical algorithm for the periodic response of high-speed elastic linkages, ASME J. Mech. Des. 101, 154–162.
Nath  PK and Gosh  A (1980), Kineto-elastodynamic analysis of mechanisms by finite element method, Mech. Mach. Theory 15, 179–197.
Huston  RL (1980), Flexibility effects in multibody systems, Mech. Res. Commun. 7(4), 261–268.
Huston  RL and Passarello  CE (1980), Multibody structural dynamics including translation between the bodies, Comput. Struct. 12, 713–720.
Book WJ (1979), Modeling, design and control of flexible manipulators arms, PhD Thesis, MIT, Dept of Mechanical Engineering.
Book WJ (1976), Characterization of strength and stiffness constraints on manipulator control, Proc of Symp on Theory of Robots and Manipulators, New York, Elsevier/North-Holland, 28–37.
Argyris  JH, Balmer  H, Doltsinis  ISt, Dunne  PC, Haase  M, Kleiber  M, Malejannakis  GA, Mlejnek  HP, Muller  M, and Schapf  DW (1979), Finite element method: The natural approach, Comput. Methods Appl. Mech. Eng. 17/18, 1–106.
Argyris  JH (1982), An excursion into large rotations, Comput. Methods Appl. Mech. Eng. 32, 85–155.
Belytschko T and Hughes TJR (1983), Computational Methods for Transient Analysis, Elsevier Science Publ.
Yang  Z and Sadler  JP (1990), Large-displacement finite element analysis of flexible linkages, ASME J. Mech. Des. 112, 175–182.
Wasfy TM (1994), Modeling flexible multibody systems including impact and thermal effects using the finite element method and element convected frames, PhD Dissertation, Columbia Univ.
Wasfy  TM (1996), A torsional spring-like beam element for the dynamic analysis of flexible multibody systems, Int. J. Numer. Methods Eng. 39, 1079–1096.
Wu  SC, Chang  CW, and Housner  JM (1992), Finite element approach for transient analysis of multibody systems, J. Guid. Control Dyn. 15(4), 847–854.
Crisfield  MA (1990), A consistent co-rotational formulation for non-linear, three-dimensional beam elements, Comput. Methods Appl. Mech. Eng. 81, 131–150.
Crisfield  MA and Shi  J (1994), A co-rotational element/time-integration strategy for non-linear dynamics, Int. J. Numer. Methods Eng. 37(11), 1897–1913.
Crisfield  MA and Shi  J (1996), Energy conserving co-rotational procedure for non-linear dynamics with FE, Nonlinear Dyn. 9(1-2), 37–52.
Wasfy  TM and Noor  AK (1996), Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements, Comput. Methods Appl. Mech. Eng. 138, 187–211.
Oden TD (1972), Finite Elements of Nonlinear Continua, McGraw-Hill, New York.
Bathe  KJ, Ramm  E, and Wilson  EL (1975), Finite element formulations for large deformation dynamic analysis, Int. J. Numer. Methods Eng. 9, 353–386.
Bathe  KJ and Bolourchi  S (1979), Large displacement analysis of three-dimensional beam structures, Int. J. Numer. Methods Eng. 14, 961–986.
Simo  JC (1985), A finite strain beam formulation, the three dimensional dynamic problem, Part I, Comput. Methods Appl. Mech. Eng. 49, 55–70.
Simo  JC and Vu-Quoc  L (1987), The role of nonlinear theories in transient dynamic analysis of flexible structures, J. Sound Vib. 119, 487–508.
Simo  JC and Vu-Quoc  L (1991), Geometrically-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct. 27(3), 371–393.
Geradin  M and Cardona  A (1989), Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra, Computational Mech., Berlin 4, 115–136.
Crespo Da Silva  MRM (1988), Nonlinear flexural-torsional-extensional dynamics of beams, I: Formulation, Int. J. Solids Struct. 24, 1225–1234.
Jonker  JB (1989), A finite element dynamic analysis of spatial mechanisms with flexible links, Comput. Methods Appl. Mech. Eng. 76, 17–40.
Sadler  JP and Sandor  GN (1973), A lumped parameter approach to vibration and stress analysis of elastic linkages, ASME J. Eng. Ind. May, 95(2), 549–557.
Sadler  JP and Sandor  GN (1974), Nonlinear vibration analysis of elastic four-bar linkages, ASME J. Eng. Ind. May, 96(2), 411–419.
Song  JO and Haug  EJ (1980), Dynamic analysis of planar flexible mechanisms, Comput. Methods Appl. Mech. Eng. 24, 359–381.
Sunada  W and Dubowsky  S (1981), The application of finite-element methods to the dynamic analysis of flexible spatial and co-planar linkage systems, ASME J. Dyn. Syst., Meas., Control 103, 643–651.
Sunada  W and Dubowsky  S (1983), On the dynamic analysis and behavior of industrial robotic manipulators with elastic members, ASME J. Mech., Transm., Autom. Des. 105, 42–51.
Shabana  AA and Wehage  RA (1983), A coordinate reduction technique for transient analysis of spatial substructures with large angular rotations, J of Struct Mech 11(3), 401–431.
Singh  RP, vaan der Voort  RJ, and Likins  PW (1985), Dynamics of flexible bodies in tree topology: A computer oriented approach, J. Guid. Control Dyn. 8(5), 584–590.
Turcic  DA and Midha  A (1984), Generalized equations of motion for the dynamic analysis of elastic mechanism systems, ASME J. Dyn. Syst., Meas., Control 106, 243–248.
Agrawal  OP and Shabana  AA (1985), Dynamic analysis of multibody systems using component modes, Comput. Struct. 21(6), 1303–1312.
Changizi  K and Shabana  AA (1988), A recursive formulation for the dynamics analysis of open loop deformable multibody systems, J of Appl Acoust 55, 687–693.
Ider  SK and Amirouche  FML (1989), Influence of geometric nonlinearities on the dynamics of flexible tree-like structures, J. Guid. Control Dyn. 12, 830–837.
Ider  SK and Amirouche  FML (1989), Nonlinear modeling of flexible multibody systems dynamics subjected to variable constraints, ASME J. Appl. Mech. 56, 444–450.
Ider  SK and Amirouche  FML (1989), Numerical stability of the constraints near singular positions in the dynamics of multibody systems, Comput. Struct. 33(1), 129–137.
Chang  B and Shabana  AA (1990), Nonlinear finite element formulation for the large displacement analysis of plates, ASME J. Appl. Mech. 57, 707–717.
Modi  VJ, Suleman  A, Ng  AC, and Morita  Y (1991), An approach to dynamics and control of orbiting flexible structures, Int. J. Numer. Methods Eng. 32, 1727–1748.
Shabana  AA and Hwang  YL (1993), Dynamic coupling between the joint and elastic coordinates in flexible mechanism systems, Int. J. Robot. Res. 12, 299–306.
Hwang  YL and Shabana  AA (1994), Decoupled joint-elastic coordinate formulation for the analysis of closed-chain flexible multibody systems, ASME J. Mech. Des. 116(3), 961–963.
Pereira  MS and Nikravesh  PE (1996), Impact dynamics of multibody systems with frictional contact using joint coordinates and canonical equations of motion, Nonlinear Dyn. 9(1–2), 53–72.
Milne  RD (1968), Some remarks on the dynamics of deformable bodies, AIAA J. 6, 556–558.
McDonough  TB (1976), Formulation of the global equations of motion of a deformable body, AIAA J. 14, 656–660.
Fraejis de Veubeke  B (1976), The dynamics of flexible bodies, Int. J. Eng. Sci. 14, 895–913.
Canavin  JR and Likins  PW (1977), Floating reference frames for flexible spacecraft, J. Spacecr. Rockets 14(12), 724–732.
Cavin  RK and Dusto  AR (1977), Hamilton’s principle: Finite element methods and flexible body dynamics, AIAA J. 15, 1684–1690.
Agrawal  OP and Shabana  AA (1986), Application of deformable-body mean axis to flexible multibody system dynamics, Comput. Methods Appl. Mech. Eng. 56, 217–245.
Koppens  WP, Suaren  AAHJm, Veldpaus  FE, and van Campen  DH (1988), The dynamics of deformable body experiencing large displacements, ASME J. Appl. Mech. 55, 676–680.
Yoo  WS and Haug  EJ (1986), Dynamics of articulated structures, Part I: Theory, J of Struct Mech 14(1), 105–126.
Yoo  WS and Haug  EJ (1986), Dynamics of articulated structures, Part II: Computer implementation and applications, J of Struct Mech 14(2), 177–189.
Bakr  EM and Shabana  AA (1986), Geometrically nonlinear analysis of multibody systems, Comput. Struct. 23(6), 739–751.
Bakr  EM and Shabana  AA (1987), Timoshenko beams and flexible multibody systems dynamics, J. Sound Vib. 22, 213–224.
Chace  MA (1967), Analysis of the time dependence of multi-freedom mechanical systems in relative coordinates, ASME J. Eng. Ind. 89(1), 119–125.
Wittenburg J (1977), Dynamics of Systems of Rigid Bodies, BF Teubner, Stuttgart.
Roberson  RE (1984), The path matrix of graph, its construction and its use in evaluating certain products, Comput. Methods Appl. Mech. Eng. 24, 47–56.
Hughes  PC (1979), Dynamics of a chain of flexible bodies, J Astronaut Soc 27(4), 259–380.
Hughes  PC and Sincarsin  GB (1989), Dynamics of an elastic multibody chain, Part B: Global dynamics, Dyn and Stability of Syst 4(3–4), 227–243.
Book  WJ (1984), Recursive Lagrangian dynamics of flexible manipulator arms, Int. J. Robot. Res. 3(3), 87–101.
Usoro  PB, Nadira  R, and Mahil  SS (1986), A finite element/Lagrange approach to modeling light weight flexible manipulators, ASME J. Dyn. Syst., Meas., Control 108(3), 198–205.
Benati  M and Morro  A (1988), Dynamics of chain of flexible links, ASME J. Dyn. Syst., Meas., Control 110, 410–415.
Kim  SS and Haug  EJ (1988), A recursive formulation for flexible multibody dynamics, Part I: Open loop systems, Comput. Methods Appl. Mech. Eng. 71(3), 293–311.
Han  PS and Zhao  ZC (1990), Dynamics of general flexible multibody systems, Int. J. Numer. Methods Eng. 30, 77–97.
Shabana  AA (1990), Dynamics of flexible bodies using generalized Newton-Euler equations, ASME J. Dyn. Syst., Meas., Control 112, 496–503.
Shabana  AA (1991), Constrained motion of deformable bodies, Int. J. Numer. Methods Eng. 32, 1813–1831.
Shabana  AA, Hwang  YL, and Wehage  RA (1992), Projection methods in flexible multibody dynamics, Part I: Kinematics, Part II: Dynamics and recursive projection methods, Int. J. Numer. Methods Eng. 35, 1927–1966.
Shareef  NH and Amirouche  FML (1991), Implementation of a 3-D isoparametric finite element on supercomputer for the formulation of recursive dynamical equations of multibody systems, J of Nonlinear Dyn 2, 319–334.
Amirouche  FML and Xie  M (1993), Explicit matrix formulation of the dynamical equations for flexible multibody systems: A recursive approach, Comput. Struct. 46(2), 311–321.
Surdilovic  D and Vukobratovic  M (1996), One method for efficient dynamic modeling of flexible manipulators, Mech. Mach. Theory 31(3), 297–316.
Znamenacek  J and Valasek  M (1998), An efficient implementation of the recursive approach to flexible multibody dynamics, Multibody Syst. Dyn. 2(3), 227–251.
Kim  SS and Haug  EJ (1989), A recursive formulation for flexible multibody dynamics, Part II: Closed loop systems, Comput. Methods Appl. Mech. Eng. 74, 251–269.
Keat  JE (1990), Multibody system order N dynamics formulation based on velocity transform method, J. Guid. Control Dyn. 13(2), 207–212.
Nagarajan  S and Turcic  DA (1990), Lagrangian formulation of the equations of motion for elastic mechanisms with mutual dependence between rigid body and elastic motions, Part I: Element level equations, Part 2: System equations, ASME J. Dyn. Syst., Meas., Control 112(2), 203–224.
Lai  HJ, Haug  EJ, Kim  SS, and Bae  DS (1991), A decoupled flexible-relative co-ordinate recursive approach for flexible multibody dynamics, Int. J. Numer. Methods Eng. 32, 1669–1689.
Ider  SK (1991), Finite element based recursive formulation for real time dynamic simulation of flexible multibody systems, Comput. Struct. 40(4), 939–945.
Pereira  MS and Proenca  PL (1991), Dynamic analysis of spatial flexible multibody systems using joint coordinates, Int. J. Numer. Methods Eng. 32, 1799–1821.
Nikravesh  PE and Ambrosio  AC (1991), Systematic construction of equations of motion for rigid-flexible multibody systems containing open and closed kinematic loops, Int. J. Numer. Methods Eng. 32, 1749–1766.
Jain  A and Rodriguez  G (1992), Recursive flexible multibody system dynamics using spatial operators, J. Guid. Control Dyn. 15(6), 1453–1466.
Hwang YL (1992), Projection and recursive methods in flexible multibody dynamics, PhD Thesis, Dept of Mechanical Engineering, Univ of Illinois at Chicago.
Hwang  YL and Shabana  AA (1992), Dynamics of flexible multibody space cranes using recursive projection methods, Comput. Struct. 43(3), 549–564.
Verlinden  O, Dehombreux  P, Conti  C, and Boucher  S (1994), A new formulation for the direct dynamic simulation of flexible mechanisms based on the Newton-Euler inverse method, Int. J. Numer. Methods Eng. 37, 3363–3387.
Tsuchia  K and Takeya  S (1996), Recursive formulations of a flexible multibody system by the method of weighted residuals, JSME Int. J., Ser. C 39(2), 257–264.
Fisette  P, Jhonson  DA, and Samin  JC (1997), A fully symbolic generation of the equations of motion of multibody systems containing flexible beams, Comput. Methods Appl. Mech. Eng. 142, 123–152.
Pradhan  S, Modi  VJ, and Misra  AK (1997), Order N formulation for flexible multibody systems in tree topology: Lagrangian approach, J. Guid. Control Dyn. 20(4), 665–672.
Choi  HH, Lee  JH, and Shabana  AA (1998), Spatial dynamics of multibody tracked vehicles, Part I: Spatial equations of motion, Veh. Syst. Dyn. 29(1), 129–138.
Nagata  T, Modi  VJ, and Matsuo  H (2001), Dynamics and control of flexible multibody systems, Part I: General formulation with an order N forward dynamics, Part II: Simulation code and parametric studies with nonlinear control, Acta Astronaut. 49(11), 581–610.
Du  H and Ling  F (1995), A nonlinear dynamics model for three-dimensional flexible linkages, Comput. Struct. 56(1), 15–23.
Nikravesh  PE, Wehage  RA, and Kwon  OK (1985), Euler parameters in computational kinematics and dynamics, Part I, ASME J. Mech., Transm., Autom. Des. 107, 258–365.
Geradin M, Robert G, and Buchet P (1986), Kinematic and dynamic analysis of mechanisms: A finite element approach based on Euler parameters, Finite Element Methods for Nonlinear Problems, P Bergan et al. (eds), Springer-Verlag, Berlin.
Haug EJ, Wu SC, and Kim SS (1985), Dynamics of flexible machines: A variational approach, IUTAM/IFToMM Symp Udine/Italy, G Bianchi and W Schielen (eds), Springer-Verlag, 55–68.
Wu  SC and Haug  EJ (1988), Geometric non-linear substructuring to dynamics of flexible mechanical systems, Int. J. Numer. Methods Eng. 22, 2211–2226.
Wu  SC, Haug  EJ, and Kim  SS (1989), A variational approach to dynamics of flexible mechanical systems, Mech. Struct. Mach. 17(1), 3–32.
Chang  B and Shabana  AA (1990), Total Lagrangian formulation for the large displacement analysis of rectangular plates, Int. J. Numer. Methods Eng. 29(1), 73–103.
Chang  CW and Shabana  AA (1990), Spatial dynamics of deformable multibody systems with variable kinetic structure, Part 1: Dynamic model, Part 2: Velocity transformation, ASME J. Mech. Des. 112, 153–167.
Ambrosio  JAC and Goncalaves  JPC (2001), Complex flexible multibody systems with application to vehicle dynamics, Multibody Syst. Dyn. 6, 163–182.
Vukasovic  N, Celigueta  JT, Garcia de Jalon  GJ, and Bayo  E (1993), Flexible multibody dynamics based on a fully Cartesian system of support coordinates, ASME J. Mech. Des. 115(2), 294–305.
Metaxas  D and Koh  E (1996), Flexible multibody dynamics and adaptive finite element techniques for model synthesis estimation, Comput. Methods Appl. Mech. Eng. 136, 1–25.
Garcia de Jalon  J, Unda  J, and Avello  A (1985), Natural coordinates for the computer analysis of three-dimensional multibody systems, Comput. Methods Appl. Mech. Eng. 56, 309–327.
Garcia de Jalon  GJ and Avello  A (1991), Dynamics of flexible multibody systems using Cartesian coordinates and large displacement theory, Int. J. Numer. Methods Eng. 32, 1543–1563.
Friberg  O (1988), A set of parameters for finite rotations and translations, Comput. Methods Appl. Mech. Eng. 66, 163–171.
Bayo  E, Garcia de Jalon  J, and Avello  A (1991), An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates, Comput. Methods Appl. Mech. Eng. 92(3), 377–395.
Sadler  JP (1975), On the analytical lumped-mass model of an elastic four-bar mechanism, ASME J. Eng. Ind. May 97(2), 561–565.
Chu  SC and Pan  KC (1975), Dynamic response of a high-speed slider-crank mechanism with an elastic connecting rod, ASME J. Eng. Ind. 97(2), 542–550.
Shabana  AA and Wehage  RA (1983), Variable degree of freedom component mode analysis of inertia variant flexible mechanical systems, ASME J. Mech., Transm., Autom. Des. 105, 371–378.
Turcic  DA and Midha  A (1984), Dynamic analysis of elastic mechanism systems, Part I: Applications, ASME J. Dyn. Syst., Meas., Control 106, 249–254.
Shabana  AA (1985), Automated analysis of constrained inertia-variant flexible systems, ASME J. Vib., Acoust., Stress, Reliab. Des. 107, 431–440.
Hsu  WC and Shabana  AA (1992), Passive and active inertia forces in flexible body dynamics, ASME J. Dyn. Syst., Meas., Control 114, 571–578.
El-Absy  H and Shabana  A (1996), Coupling between rigid body and deformation modes, J. Sound Vib. 198(5), 617–638.
Yigit  A, Scott  RA, and Ulsoy  AG (1988), Flexural motion of a radially rotating beam attached to a rigid body, J. Sound Vib. 121(2), 201–210.
Dado  M and Soni  AH (1987), Complete dynamic analysis of elastic linkages, ASME J. Mech., Transm., Autom. Des. 109, 481–486.
Naganathan  G and Soni  AH (1988), Nonlinear modeling of kinematic and flexibility effects in manipulator design, ASME J. Mech., Transm., Autom. Des. 110, 254–243.
Silverberg  LM and Park  S (1990), Interaction between rigid-body and flexible-body motions in maneuvering spacecraft, J. Guid. Control Dyn. 13(1), 73–80.
Liu  TS and Liu  JC (1993), Forced vibrations of flexible multibody systems: A dynamic stiffness method, J. Vibr. Acoust. 115, 468–476.
Huang  SJ and Wang  TY (1993), Structural dynamics analysis of spatial robots with finite element method, Comput. Struct. 46(4), 703–716.
Jablokow  AG, Nagarajan  S, and Turcic  DA (1993), A modal analysis solution technique to the equations of motion for elastic mechanism systems including the rigid-body and elastic motion coupling terms, ASME J. Mech. Des. 115, 314–323.
Lieh  J (1994), Separated-form equations of motion of controlled flexible multibody systems, ASME J. Dyn. Syst., Meas., Control 116(4), 702–712.
Hu  FL and Ulsoy  AG (1994), Dynamic modeling of constrained flexible robot arms for controller design, ASME J. Dyn. Syst., Meas., Control 116, 56–65.
Fang  Y and Liou  FW (1995), Dynamics of three-dimensional multibody systems with elastic components, Comput. Struct. 57(2), 309–316.
Damaren  C and Sharf  I (1995), Simulation of flexible-link manipulators with inertial and geometric nonlinearities, ASME J. Dyn. Syst., Meas., Control 117(2), 74–87.
Xianmin  Z, Hongzhao  L, and Yunwen  S (1996), Finite dynamic element analysis for high-speed flexible linkage mechanisms, Comput. Struct. 60(5), 787–796.
Shigang  Y, Yueqing  Y, and Shixian  B (1997), Flexible rotor beam element for the manipulators with joint and link flexibility, Mech. Mach. Theory 32(2), 209–220.
Al-Bedoor  BO and Khulief  YA (1996), Finite element dynamic modeling of a translating and rotating flexible link, Comput. Methods Appl. Mech. Eng. 131(1/2), 173–190.
Langlois  RG and Anderson  RJ (1999), Multibody dynamics of very flexible damped systems, Multibody Syst. Dyn. 3(2), 109–136.
Vigneron  FR (1975), Comment of mathematical modeling of spinning elastic bodies for modal analysis, AIAA J. 13, 126–127.
Levinson  DA and Kane  TR (1976), Spin stability of a satellite equipped with four booms, J. Spacecr. Rockets 13, 208–213.
Kaza  KR and Kvaternik  RG (1977), Nonlinear flap-lag-axial equations of a rotating beam, Acta Astronaut. 15(6), 1349–1360.
Cleghorn  WL, Fenton  RG, and Tabarrok  B (1981), Finite element analysis of high speed flexible mechanisms, Mech. Mach. Theory 16, 407–424.
Wright  A, Smith  C, and Thresher  R (1982), Vibration modes of centrifugally stiffened beams, ASME J. Appl. Mech. 49, 197–202.
Kane  TR, Ryan  RR, and Banerjee  AK (1987), Dynamics of a cantilever beam attached to a moving base, J of Guidance 10(2), 139–151.
Kammer  DC and Schlack  AL (1987), Effects of nonconstant spin rate on the vibration of a rotating beam, ASME J. Appl. Mech. 54, 305–310.
Ryan RR (1988), Flexible multibody dynamics: problems and solutions, Proc of Workshop on Multibody Simulation, 1(3), JPL D-5190, Pasadena, CA, 103–190.
Trindade MA and Sampaio R (2001), The role of nonlinear strain-displacement relation on the geometric stiffening of rotating flexible beams, Paper No DETC2001/VIB-21614, Proc of ASME DETC.
Peterson LD (1989), Nonlinear finite element simulation of a large angle motion of flexible bodies, Proc of 30th AIAA/ASME Struct, Struct Dyn and Materials Conf, AL, 396–403.
Banerjee  AK and Dickens  JM (1990), Dynamics of an arbitrary flexible body in large rotation and translation, J. Guid. Control Dyn. 13(2), 221–227.
Banerjee  AK and Lemak  ME (1991), Multi-flexible body dynamics capturing motion-induced stiffness, ASME J. Appl. Mech. 58, 766–775.
Banerjee  AK (1993), Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints, J. Guid. Control Dyn. 16(6), 1092–1100.
Wallrapp O, Santos J, and Ryu J (1990), Superposition method for stress stiffening in flexible multibody dynamics, Dynamics of Flexible Structures in Space, CL Kirk and JL Junkins (eds), Computational Mechanics Publications, Springer-Verlag, London, 233–247.
Wallrapp  O (1991), Linearized flexible multibody dynamics including geometric stiffness effects, Mech. Struct. Mach. 19(3), 105–129.
Boutaghou  ZE and Erdman  AG (1991), A unified approach for the dynamics of beams undergoing arbitrary spatial motion, ASME J. Vibr. Acoust. 113, 494–502.
Sharf  I (1995), Geometric stiffening in multibody dynamics formulations, J. Guid. Control Dyn. 18(4), 882–890.
Sharf  I (1996), Geometrically non-linear beam element for dynamics simulation of multibody systems, Int. J. Numer. Methods Eng. 39(5), 763–786.
Yoo  HH, Ryan  RR, and Scott  RA (1995), Dynamics of flexible beams undergoing overall motion, J. Sound Vib. 181(2), 261–278.
Tadikonda  SSK and Chang  HT (1995), On the geometric stiffness matrices in flexible multibody dynamics, ASME J. Vibr. Acoust. 117(4), 452–461.
Pascal  M (2001), Some open problems in dynamic analysis of flexible multibody systems, Multibody Syst. Dyn. 5, 315–334.
Wallrapp  O and Schwertassek  R (1991), Representation of geometric stiffening in multibody system simulation, Int. J. Numer. Methods Eng. 32, 1833–1850.
Padilla  CE and Von Flotow  AH (1992), Nonlinear strain-displacement relations and flexible multibody dynamics, J of Guidance 15, 128–136.
Zhang  DJ, Liu  CQ, and Huston  RL (1995), On the dynamics of an arbitrary flexible body with large overall motion: an integrated approach, Mech. Struct. Mach. 23(3), 419–438.
Zhang  DJ and Huston  RL (1996), On dynamic stiffening of flexible bodies having high angular velocity, Mech. Struct. Mach. 24(3), 313–329.
Spanos J and Laskin RA (1988), Geometric nonlinear effects in simple rotating systems, Proc of Workshop on Multibody Simulation, JPL, Pasadena CA, JPL D-5190, 1, 191–218.
Mayo  J, Dominguez  J, and Shabana  AA (1995), Geometrically nonlinear formulations of beams in flexible multibody dynamics, ASME J. Vibr. Acoust. 117(4), 501–509.
Mayo  J and Dominguez  J (1996), Geometrically nonlinear formulation flexible multibody systems in terms of beam elements: Geometric stiffness, Comput. Struct. 59(6), 1039–1050.
Du  H, Lim  MK, and Liew  KM (1996), Nonlinear dynamics of multibodies with composite laminates, I: Theoretical formulation, Comput. Methods Appl. Mech. Eng. 133, 15–24.
Sharf  I (1999), Nonlinear strain measures, shape functions and beam elements for dynamics of flexible beams, Multibody Syst. Dyn. 3(2), 189–205.
Meirovitch L (1980), Computational Methods in Structural Dynamics, Sqthoff-Noordhof, The Netherlands.
Ruzicka GC and Hodges DH (2001), A unified development of basis reduction methods for rotor blades, Paper No DETC2001/VIB-21316, Proc of ASME 2001 DETC.
Imam  I, Sandor  GN, and Kramer  SN (1973), Deflection and stress analysis in high speed planar mechanisms with elastic links, ASME J. Eng. Ind. 95(2), 541–548.
Hablani  HB (1982), Constrained and unconstrained modes: Some modeling aspects of flexible spacecraft, J. Guid. Control Dyn. 5, 164–173.
Amirouche  FML and Huston  RL (1985), Collaborative technique in modal analysis, J. Guid. Control Dyn. 8(6), 782–784.
Hablani  HB (1990), Hinges-free and hinges-locked modes of a deformable multibody space station—A continuum approach, J. Guid. Control Dyn. 13(2), 286–296.
Hablani  HB (1991), Modal identities for multibody elastic spacecraft, J. Guid. Control Dyn. 14(2), 294–303.
Yoo  WS and Haug  EJ (1986), Dynamics of flexible mechanical systems using vibration and static correction modes, ASME J. Mech., Transm., Autom. Des. 108, 315–321.
Tsuchiya  K, Kashiwase  T, and Yamada  K (1989), Reduced-order models of a large flexible spacecraft, AIAA J of Guidance 12(6), 845–850.
Chadhan  B and Agrawal  OP (1989), Dynamic analysis of flexible multi-body systems using mixed modal and tangent coordinates, Comput. Struct. 31(6), 1041–1050.
Nikravesh  PE (1990), Systematic reduction of multibody equations of motion to a minimal set, Int. J. Non-Linear Mech. 25, 143–151.
Jonker  JB (1991), Linearization of dynamic equations of flexible mechanisms—A finite element approach, Int. J. Numer. Methods Eng. 31(7), 1375–1392.
Ramakrishnan  J, Rao  S, and Koval  L (1991), Control of large space structures using reduced order models, Control-Theory and Advanced Technology 7(1), 73–100.
Wang H (1992), Tabulated mode calculations for chained flexible multibody systems, Dyn of Flexible Multibody Systems: Theory and Experiment, SC Sinha et al. (eds), ASME, 77–86.
Ramakrishnan J (1993), Multibody model reduction, AIAA-Houston 18th Technical Symp, Univ of Houston, Clear Lake.
Yao  YL, Korayem  MH, and Basu  A (1993), Maximum allowable load of flexible manipulators for given dynamic trajectory, Int J of Robotics and Comput-Integrated Manuf 10(4), 301–309.
Wu  HT and Mani  NK (1994), Modeling of flexible bodies for multibody dynamics systems using Ritz vectors, ASME J. Mech. Des. 116, 437–444.
Hsieh  SR and Shaw  SW (1994), The dynamic stability and non-linear resonance of a flexible connecting rod: Single-mode model, J. Sound Vib. 170(1), 25–49.
Korayem  MH, Yao  YL, and Basu  A (1994), Application of symbolic manipulation to inverse dynamics and kinematics of elastic robots, Int J for Adv Manuf Tech 9(5), 343–350.
Hu  TG, Tadikonda  SSK, and Mordfin  TG (1995), Assumed modes method and articulated flexible multibody dynamics, J. Guid. Control Dyn. 18(3), 404–410.
Tadikonda  SSK (1995), Modeling of translational motion between two flexible bodies connected via three points, J. Guid. Control Dyn. 18(6), 1392–1397.
Nakanishi  T, Yin  X, and Shabana  AA (1996), Dynamics of multibody tracked vehicles using experimentally identified modal parameters, ASME J. Dyn. Syst., Meas., Control 118(3), 499–507.
Lee  JH (1996), On the application of the modal integration method to flexible multibody systems, Comput. Struct. 59(3), 553–559.
Cuadrado  J, Cardenal  J, and Garcia de Jalon  J (1996), Flexible mechanisms through natural coordinates and component synthesis: An approach fully compatible with the rigid case, Int. J. Numer. Methods Eng. 39(20), 3535–3551.
Subrahmanyan  PK and Seshu  P (1997), Dynamics of a flexible five bar manipulator, Comput. Struct. 63(2), 283–294.
Pan  W and Haug  EJ (1999), Dynamic simulation of general flexible multibody systems, Mech. Struct. Mach. 27(2), 217–251.
Craig RR (2000), Coupling of substructure for dynamic analysis: An overview, 41st AIAA/ASMA/ASCE/AHS/ASC Struct, Struct Dyn and Materials Conf, AIAA-2000–1573.
Laurenson  RM (1976), Modal analysis of rotating flexible structures, AIAA J. 14, 1444–1450.
Hoa  SV (1979), Vibration of a rotating beam with tip mass, J. Sound Vib. 63(3), 369–381.
Kobayashi N, Sugiyama H, and Watanabe M (2001), Dynamics of flexible beam using a component mode synthesis based formulation, Paper No DETC2001/VIB-21351, Proc of ASME 2001 DETC, Pittsburgh PA.
Mbono Samba YC and Pascal M (2001), Nonlinear effect in dynamic analysis of flexible multibody systems, Paper No DETC2001/VIB-21353, Proc of ASME 2001 DETC, Pittsburgh PA.
Kim  SS and Haug  EJ (1990), Selection of deformation modes for flexible multibody dynamics, Mech. Struct. Mach. 18(4), 565–585.
Friberg  O (1991), A method for selecting deformation modes in flexible multibody dynamics, Int. J. Numer. Methods Eng. 32, 1637–1655.
Spanos  JT and Tsuha  WS (1991), Selection of component modes for flexible multibody simulation, J. Guid. Control Dyn. 14(2), 278–286.
Tadikonda  SSK and Schubele  HW (1994), Outboard body effects on flexible branch body dynamics in articulated flexible multibody systems, J. Guid. Control Dyn. 17, 417–424.
Gofron  M and Shabana  AA (1995), Equivalence of the driving elastic forces in flexible multibody systems, Int. J. Numer. Methods Eng. 38, 2907–2928.
Shabana  AA (1996), Resonance conditions and deformable body coordinate systems, J. Sound Vib. 192(1), 389–398.
Shi  P, McPhee  J, and Heppler  G (2000), Polynomial shape functions and numerical methods for flexible multibody dynamics, Mech. Struct. Mach. 29(1), 43–64.
Carlbom  PF (2001), Combining MBS with FEM for rail vehicle dynamics analysis, Multibody Syst. Dyn. 6, 291–300.
Shabana  AA (1986), Transient analysis of flexible multibody systems, Part I: dynamics of flexible bodies, Comput. Methods Appl. Mech. Eng. 54, 75–91.
Shabana AA (1982), Dynamic analysis of large scale inertia-variant flexible systems, Doctoral Dissertation, Dept of Mechanical Engineering, Univ of Iowa.
Hu A and Skelton R (1990), Model reduction with weighted modal cost analysis, AIAA GNC Conf, Portland OR.
Craig  RR and Bampton  MC (1968), Coupling of sub-structures for dynamic analysis, AIAA J. 6, 1313–1319.
Ryu J, Kim SS, and Kim SS (1992), Mode-acceleration method in flexible multibody dynamics, Dyn of Flexible Multibody Syst: Theory and Experiment, SC Sinha et al. (eds), ASME, 157–164.
Ryu  J, Kim  H-S, and Wang  S (1998), A method for improving dynamic solutions in flexible multibody dynamics, Comput. Struct. 66(6), 765–776.
Cardona  A (2000), Superelements modeling in flexible multibody dynamics, Multibody Syst. Dyn. 4(2/3), 245–266.
Siciliano  B and Book  W (1988), A singular perturbation approach to control of lightweight flexible manipulators, Int. J. Robot. Res. 7(4), 79–90.
Jonker  JB and Aarts  RG (2001), A perturbation method for dynamic analysis and simulation of flexible manipulators, Multibody Syst. Dyn. 6, 245–266.
Subbiah  M, Sharan  AM, and Jain  J (1988), A study of dynamic condensation techniques for machine tools and robotic manipulators, Mech. Mach. Theory 23(1), 63–69.
Shabana  AA (1985), Substructure synthesis methods for dynamic analysis of multi-body systems, Comput. Struct. 20(4), 737–744.
Shabana  AA and Chang  CW (1989), Connection forces in deformable multibody dynamics, Comput. Struct. 33, 307–318.
Wu  SC and Haug  EJ (1990), A substructure technique for dynamics of flexible mechanical systems with contact-impact, ASME J. Mech. Des. 112, 390–398.
Cardona  A and Geradin  M (1991), Modeling of superelements in mechanism analysis, Int. J. Numer. Methods Eng. 32, 1565–1593.
Liu  AQ and Liew  KM (1994), Non-linear substructure approach for dynamic analysis of rigid flexible multibody systems, Comput. Methods Appl. Mech. Eng. 114(3/4), 379–390.
Lim  SP, Liu  AQ, and Liew  KM (1994), Dynamics of flexible multibody systems using loaded-interface substructure synthesis approach, Computational Mech., Berlin 15, 270–283.
Mordfin  TG (1995), Articulating flexible multibody dynamics, substructure synthesis and finite elements, Adv. Astronaut. Sci. 89(2), 1097–1116.
Haenle  U, Dinkler  D, and Kroeplin  B (1995), Interaction of local and global nonlinearities of elastic rotating structures, AIAA J. 33(5), 933–937.
Liew  KM, Lee  SE, and Liu  AQ (1996), Mixed-interface substructures for dynamic analysis of flexible multibody systems, Eng. Struct. 18(7), 495–503.
Agrawal  OP and Chung  SL (1990), Superelement model based on Lagrangian coordinates for multibody system dynamics, Comput. Struct. 37(6), 957–966.
Agrawal  OP and Kumar  R (1991), A general superelement model on a moving reference frame for planar multibody system dynamics, ASME J. Vibr. Acoust. 113, 43–49.
Sharan  AM, Jain  J, and Kalra  P (1992), Efficient methods for solving dynamic problems of flexible manipulators, ASME J. Dyn. Syst., Meas., Control 114, 78–88.
Richard MJ and Tennich M (1992), Dynamic simulation of flexible multibody systems using vector network techniques, Dyn of Flexible Multibody Syst: Theory and Experiment, SC Sinha et al. (eds), ASME, 165–174.
Ghazavi  A, Gordaninejad  F, and Chalhoub  NG (1993), Dynamic analysis of composite-material flexible robot arm, Comput. Struct. 49(2), 315–327.
Du  H and Liew  KM (1996), A nonlinear finite element model for dynamics of flexible manipulators, Mech. Mach. Theory 31(8), 1109–1123.
Naganathan  G and Soni  AH (1987), Coupling effects of kinematics and flexibility in manipulators, Int. J. Robot. Res. 6(1), 75–83.
Smaili  AA (1993), A three-node finite beam element for dynamic analysis of planar manipulators with flexible joints, Mech. Mach. Theory 28(2), 193–206.
Meek  JL and Liu  H (1995), Nonlinear dynamics analysis of flexible beams under large overall motions and the flexible manipulator simulation, Comput. Struct. 56(1), 1–14.
Christensen  ER and Lee  SW (1986), Nonlinear finite element modeling of the dynamics of unrestrained structures, Comput. Struct. 23(6), 819–829.
Gordaninejad  F, Chalhoub  NG, Ghazavi  A, and Lin  Q (1992), Nonlinear deformation of a shear-deformable laminated composite-material robot arm, ASME J. Mech. Des. 114, 96–102.
Oral  S and Ider  SK (1997), Coupled rigid-elastic motion of filament-wound composite robotic arms, Comput. Methods Appl. Mech. Eng. 147, 117–123.
Bartolone  DF and Shabana  AA (1989), Effect of beam initial curvature on the dynamics of deformable multibody systems, Mech. Mach. Theory 24(5), 411–430.
Gau  WH and Shabana  AA (1990), Effect of shear deformation and rotary inertia on the nonlinear dynamics of rotating curved beams, ASME J. Vibr. Acoust. 112, 183–193.
Chen  DC and Shabana  AA (1993), Dynamics of initially curved plates in the analysis of spatial flexible mechanical systems, ASME J. Mech. Des. 115(3), 403–411.
Banerjee  AK and Kane  TR (1989), Dynamics of a plate in large overall motion, ASME J. Appl. Mech. 56, 887–891.
Chang  B, Chen  DC, and Shabana  AA (1990), Effect of the coupling between stretching and bending in the large displacement analysis of plates, Int. J. Numer. Methods Eng. 30(7), 1233–1262.
Boutaghou  ZE, Erdman  AG, and Stolarski  HK (1992), Dynamics of flexible beams and plates in large overall motions, ASME J. Appl. Mech. 59, 991–999.
Kremer  JM, Shabana  AA, and Widern  GEO (1993), Large reference displacement analysis of composite plates, Parts I and II, Int. J. Numer. Methods Eng. 36, 1–42.
Kremer  JM, Shabana  AA, and Widera  GO (1994), Application of composite plate theory and the finite element method to the dynamics and stress analysis of spatial flexible mechanical systems, ASME J. Mech. Des. 116(3), 952–960.
Madenci  E and Barut  A (1996), Dynamic response of thin composite shells experiencing non-linear elastic deformations coupled with large and rapid overall motions, Int. J. Numer. Methods Eng. 39, 2695–2723.
Chen  DC and Shabana  AA (1993), The rotary inertia effect in the large reference displacement analysis of initially curved plates, J. Sound Vib. 162(1), 97–121.
Turcic  DA, Midha  A, and Bosnik  JR (1984), Dynamic analysis of elastic mechanism systems, Part II: Experimental results, ASME J. Dyn. Syst., Meas., Control 106, 255–260.
Jiang  JJ, Hsiao  CL, and Shabana  AA (1991), Calculation of non-linear vibration of rotating beams by using tetrahedral and solid finite elements, J. Sound Vib. 148(2), 193–214.
Ryu  J, Kim  S-S, and Kim  SS (1992), An efficient computational method for dynamic stress analysis of flexible multibody systems, Comput. Struct. 42(6), 969–977.
Kerdjoudj  M and Amirouche  FML (1996), Implementation of the boundary element method in the dynamics of flexible bodies, Int. J. Numer. Methods Eng. 39(2), 321–354.
Feliu  V, Rattan  KS, and Brown  HB (1992), Modeling and control of single-link flexible arms with lumped masses, ASME J. Dyn. Syst., Meas., Control 114, 59–69.
Neubauer  AH , Cohen  R, and Hall  AS (1966), An analytical study of the dynamics of an elastic linkage, ASME J. Eng. Ind. 88(3), 311–317.
Thompson  BS and Barr  ADS (1976), A variational principle for the elastodynamic motion of planar linkages, ASME J. Eng. Ind. Nov, 1306–1312.
Badlani  M and Kleinhenz  W (1979), Dynamic stability of elastic mechanisms, ASME J. Mech. Des. 101(1), 149–153.
Low  KH (1987), A systematic formulation of dynamic equations for robot manipulators with elastic links, J. Rob. Syst. 4(30), 435–456.
Low  KH (1989), Solution schemes for the system equations of flexible robots, J. Rob. Syst. 6(4), 383–405.
Boutaghou  Z-E, Tamma  KK, and Erdman  AG (1991), Continuous/discrete modeling and analysis of elastic planar multibody systems, Comput. Struct. 38(6), 605–613.
Xu  T and Lowen  GG (1993), A new analytical approach for the determination of the transient response in elastic mechanisms, ASME J. Mech. Des. 115(1), 119–124.
Xu  T and Lowen  GG (1995), A closed solution for the elastic-dynamic behavior of an industrial press-feed mechanism and experimental verification, ASME J. Mech. Des. 117(4), 539–547.
Cetinkunt S and Book WJ (1987), Symbolic modeling of flexible manipulators, Proc of 1987 IEEE Int Conf on Robotics and Automation, 2074–2080.
Fisette  P, Samin  JC, and Willems  PW (1991), Contribution to symbolic analysis of deformable multibody systems, Int. J. Numer. Methods Eng. 32, 1621–1635.
Botz M and Hagedorn P (1993), Dynamics of multibody systems with elastic beam, Advanced Multibody Systems Dynamics, W Schiehlen (ed), Kluwer, Dordrecht, 217–236.
Botz  M and Hagedorn  P (1997), Dynamic simulation of multibody systems including planar elastic beams using Autolev, Eng. Comput. 14(4), 456–470.
Piedboeuf  JC (1996), SYMOFROS: Symbolic modeling of flexible robots and simulation, Adv. Astronaut. Sci. 90(1), 949.
Melzer  E (1996), Symbolic computations in flexible multibody systems, Nonlinear Dyn. 9(1–2), 147–163.
Oliviers  M, Campion  G, and Samin  JC (1998), Nonlinear dynamic model of a system of flexible bodies using augmented bodies, Multibody Syst. Dyn. 2(1), 25–48.
Shi  P and McPhee  J (2000), Dynamics of flexible multibody systems using virtual work and linear graph theory, Multibody Syst. Dyn. 4(4), 355–381.
Shi  P and McPhee  J (2002), Symbolic programming of a graph-theoretic approach to flexible multibody dynamics, Mech. Struct. Mach. 30(1), 123–154.
Shi  P, McPhee  J, and Heppler  GR (2001), A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics, Multibody Syst. Dyn. 5, 79–104.
Khulief  YA and Shabana  AA (1986), Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion, ASME J. Mech., Transm., Autom. Des. 108, 38–45.
Khulief  YA and Shabana  AA (1986), Dynamics of multibody systems with variable kinematic structure, ASME J. Mech., Transm., Autom. Des. 108, 167–175.
McPhee  JJ and Dubey  RN (1991), Dynamic analysis and computer simulation of variable-mass multi-rigid-body systems, Int. J. Numer. Methods Eng. 32, 1711–1725.
Hwang  KH and Shabana  AA (1995), Effect of mass capture on the propagation of transverse waves in rotating beams, J. Sound Vib. 186(3), 495–526.
Kovecses  J, Cleghorn  WL, and Fenton  RG (1999), Dynamic modeling and analysis of a robot manipulator intercepting and capturing a moving object, with the consideration of structural flexibility, Multibody Syst. Dyn. 3(2), 137–162.
Buffinton  KW and Kane  TR (1985), Dynamics of a beam moving over supports, Int. J. Solids Struct. 21(7), 617–643.
Pan YC (1988), Dynamic simulation of flexible robots with prismatic joints, PhD Thesis, Univ of Michigan.
Pan  YC, Ulsoy  GA, and Scott  RA (1990), Experiment model validation for a flexible robot with a prismatic joint, ASME J. Mech. Des. 112, 315–323.
Pan  YC, Scott  RA, and Ulsoy  GA (1990), Dynamic modeling and simulation of flexible robots with prismatic joints, ASME J. Mech. Des. 112, 307–314.
Hwang  RS and Haug  EJ (1990), Translational joints in flexible multibody dynamics, Mech. Struct. Mach. 18(4), 543–564.
Gordaninejad  F, Azhdari  A, and Chalhoub  NG (1991), Nonlinear dynamic modeling of a revolute-prismatic flexible composite robot arm, ASME J. Vibr. Acoust. 113, 461–468.
Buffinton  KW (1992), Dynamics of elastic manipulators with prismatic joints, ASME J. Dyn. Syst., Meas., Control 114, 41–49.
Al-Bedoor BO and Khulief YA (1994), Dynamic analysis of mechanical systems with elastic telescopic members, ASME DE-71, Proc of 23rd Mech Conf, Minneapolis MN, 337–342.
Theodore  RJ and Ghosal  A (1997), Modeling of flexible-link manipulators with prismatic joints, IEEE Trans. Syst. Sci. Cybern. 27(2), 296–305.
Cardona  A (1997), Three-dimensional gear modeling in multibody systems analysis, Int. J. Numer. Methods Eng. 40, 357–381.
Bagci C and Kurnool S (1994), Elastodynamics of horizontally body-guiding cam-driven linkages interacting with robots and elastic error compensation for robot positioning, ASME-94-DTC/FAS-5:1, 1–12.
Shabana  AA (1986), Dynamics of inertia-variant flexible systems using experimentally identified parameters, ASME J. Mech., Transm., Autom. Des. 108, 358–366.
Ider  SK and Oral  S (1996), Filament-wound composite links in multibody systems, Comput. Struct. 58(3), 465–469.
Thompson  BS, Zuccaro  D, Gamache  D, and Gandhi  MV (1983), An experimental and analytical study of the dynamic response of a linkage fabricated from a unidirectional fiber-reinforced composite laminate, ASME J. Mech., Transm., Autom. Des. 105, 526–533.
Thompson  BS and Sung  CK (1984), A variational formulation for the nonlinear finite element analysis of flexible linkages: Theory, implementation and experimental results, ASME J. Mech., Transm., Autom. Des. 106, 482–488.
Sung  CK, Thompson  BS, and Crowley  P (1986), An experimental study to demonstrate the superior response characteristics of mechanisms constructed with composite laminates, Mech. Mach. Theory 21(2), 103–119.
Azhdari  A, Chalhoub  NG, and Gordaninejad  F (1991), Dynamic modeling of a flexible revolute-prismatic composite-material arm, Nonlinear Dyn. 2, 171–186.
Chalhoub  NG, Gordaninejad  F, Lin  Q, and Ghazavi  A (1991), Dynamic modeling of a laminated composite-material flexible robot arm made of short beams, Int. J. Robot. Res. 10(5), 560–569.
Gordaninejad  F and Vaidyaraman  S (1994), Active and passive control of a revolute-prismatic, flexible, composite-materials robot arm, Comput. Struct. 53(4), 865–875.
Ambrosio JAC (1991), Elastic-plastic large deformation of flexible multibody systems in crash analysis, PhD Dissertation, Dept of Aerospace and Mechanical Engineering, Univ of Arizona.
Amirouche  FML and Xie  M (1996), Treatment of inelastic phenomena in multibody dynamics, Adv. Astronaut. Sci. 90, 1523–1535.
Xie  M and Amirouche  FML (1994), Treatment of material creep and nonlinearities in flexible multibody dynamics, AIAA J. 32(1), 190–197.
Gofron  M and Shabana  AA (1993), Control structure interaction in the nonlinear analysis of flexible mechanical systems, Nonlinear Dyn. 4, 183–206.
Gofron  M and Shabana  AA (1994), Effect of the deformation in the inertia forces on the inverse dynamics of planar flexible mechanical systems, Nonlinear Dyn. 6, 1–20.
Rose M and Sachau D (2001), Multibody systems with distributed piezoelectric actors and sensors in flexible bodies, Paper No DETC2001/VIB-21314, Proc of ASME DETC, 2001, Pittsburgh PA.
Shabana  AA (1986), Thermal analysis of viscoelastic multibody systems, Mech. Mach. Theory 21(3), 231–242.
Sung  CK and Thompson  BS (1987), A variational principle for hygrothermo-elastodynamic analysis of mechanism system, ASME J. Mech., Transm., Autom. Des. 109, 481–486.
Du  H, Hitchings  D, and Davies  GAO (1993), An aeroelasticity beam model for flexible multibody systems under large deflections, Comput. Struct. 48(3), 387–396.
Du  H, Hitchings  D, and Davies  GAO (1994), Application of an aeroelasticity beam model for flexible multibody systems, Comput. Struct. 53(2), 457–467.
Midha  A, Erdman  AG, and Forhib  DA (1977), An approximate method for the dynamic analysis of high-speed elastic linkages, ASME J. Eng. Ind. 99, 449–455.
Blejwas  TE (1981), The simulation of elastic mechanisms using kinematic constraints and Lagrange multipliers, Mech. Mach. Theory 16(4), 441–445.
Bricout  JN, Debus  JC, and Micheau  P (1990), A finite element model for the dynamics of flexible manipulators, Mech. Mach. Theory 25(1), 119–128.
Meirovitch  L and Kwak  MK (1990), Dynamics and control of spacecraft with retargeting flexible antennas, J. Guid. Control Dyn. 13(2), 241–248.
Fattah A, Angeles J, and Misra AK (1995), Dynamics of a 3-DOF spatial parallel manipulator with flexible links, IEEE Int Conf on Robotics and Automation, 627–632.
Pereira  MS, Ambrosio  JAC, and Dias  JP (1997), Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles, Int. J. Numer. Methods Eng. 40, 655–687.
Serna  MA (1989), A simple and efficient computational approach for the forward dynamics of elastic robots, J. Rob. Syst. 6(4), 363–382.
Fung  RF (1997), Dynamic analysis of the flexible connecting rod of slider-crank mechanism with time-dependent boundary effect, Comput. Struct. 63(1), 79–90.
Huang  Y and Lee  CSG (1988), Generalization of Newton-Euler formulations of dynamic equations to nonrigid manipulators, ASME J. Dyn. Syst., Meas., Control 110, 308–315.
Shabana  AA (1990), On the use of the finite element method and classical approximation techniques in the non-linear dynamics of multibody systems, Int. J. Non-Linear Mech. 25(2/3), 153–162.
Ambrosio  JAC (1996), Dynamics of structures undergoing gross Motion and nonlinear deformations: a multibody approach, Comput. Struct. 59(6), 1001–1012.
Lai  HJ and Dopker  B (1990), Influence of lumped rotary inertia in flexible multibody dynamics, Mech. Struct. Mach. 18(2), 47–59.
Pan  W and Haug  EJ (1999), Flexible multibody dynamic simulation using optimal lumped inertia matrices, Comput. Methods Appl. Mech. Eng. 173, 189–200.
Sadler JP (1972), A lumped parameter approach to kineto-elastodynamic analysis of mechanisms, Doctoral Dissertation, RPI, Troy NY.
Nath  PK and Gosh  A (1980), Steady-state response of mechanisms with elastic links by finite element methods, Mech. Mach. Theory 15, 199–211.
Bagci C and Abounassif JA (1982), Computer aided dynamic force, stress and gross-motion analyses of planar mechanisms using finite line element technique, ASME Paper No 82-DET-11.
Badlani  M and Midha  A (1982), Member initial curvature effects on the elastic slider-crank mechanism response, ASME J. Mech. Des. 104, 159–167.
Tadjbakhsh  IG and Younis  CJ (1986), Dynamic stability of the flexible connecting rod of a slider-crank mechanism, ASME J. Mech., Transm., Autom. Des. 108, 487–496.
Liou  FW and Peng  KC (1993), Experimental frequency response analysis of flexible mechanisms, Mech. Mach. Theory 28(1), 73–81.
Fallahi B, Lai S, and Venkat C (1994), A finite element formulation of flexible slider crank mechanism using local coordinates, Proc of 23rd ASME Mech Conf, Minneapolis MN, 309–317.
Chassapis  C and Lowen  GG (1994), The elastic-dynamic modeling of a press feed mechanism, ASME J. Mech. Des. 116(1), 238–247.
Sriram  BR and Mruthyunjaya  TS (1995), Synthesis of path generating flexible-link mechanisms, Comput. Struct. 56(4), 657–666.
Sriram  BR (1995), Dynamics of flexible-link mechanisms, Comput. Struct. 56(6), 1029–1038.
Farhang K and Midha A (1996), An efficient method for evaluating steady-state response of periodically time-varying linear systems, with application to an elastic slider-crank mechanism, Proc of 23rd ASME Mech Conf, Minneapolis MN, 319–326.
Yang  KH and Park  YS (1996), Dynamic stability analysis of a closed-loop flexible link mechanism, Mech. Mach. Theory 31(5), 545–560.
Shabana  AA and Wehage  RA (1984), Spatial transient analysis of inertia variant flexible mechanical systems, ASME J. Mech., Transm., Autom. Des. 106, 172–178.
Ashley  H (1967), Observations on the dynamic behavior of large flexible bodies in orbit, AIAA J. 5, 460–469.
Kulla  P (1972), Dynamics of spinning bodies containing elastic rods, J. Spacecr. Rockets 9, 246–253.
Ho  JYL (1977), Direct path method for flexible multibody spacecraft dynamics, J. Spacecr. Rockets 14, 102–110.
Bodley CS, Devers AD, Park AC, and Frisch HP (1978), A digital computer program for the dynamic interaction of controls and structures (DISCOS), 1 & 2, NASA TP-1219.
Lips  KW and Modi  VJ (1980), General dynamics of a large class of flexible satellite systems, Acta Astronaut. 7(12), 1349–1360.
Kane  TR and Levinson  DA (1980), Formulation of equations of motion of complex spacecraft, J. Guid. Control 3, 99–112.
Kane  TR and Levinson  DA (1981), Simulations of large motions of nonuniform beams in orbit, Part I: The cantilever beam, Part II: The unrestrained beam, J. Astronaut. Sci. 29(3), 213–276.
Kane TR, Likins PW, and Levinson DA (1983), Spacecraft Dynamics, McGraw-Hill, NY.
Bainum  PM and Kumar  YK (1982), Dynamics of orbiting flexible beams and platforms in the horizontal orientation, Acta Astronaut. 9(3), 119–127.
Diarra  CM and Bainum  PM (1987), On the accuracy of modeling the dynamics of large space structures, Acta Astronaut. 15(2), 77–82.
Laskin  RA, Likins  PW, and Longman  RW (1983), Dynamical equations of a free-free beam subject to large overall motions, J of the Astronaut Soc XXXI, 507–528.
Modi  VJ and Ibrahim  AM (1984), A general formulation of librational dynamics of spacecraft with deploying appendages, J. Guid. Control Dyn. 7, 563–569.
Ibrahim  AM and Modi  VJ (1986), On the dynamics of beam type structural members during deployment, Acta Astronaut. 13(6/7), 319–331.
Ho  JYL and Herber  DR (1985), Development of dynamics and control simulation of large flexible space systems, J. Guid. Control Dyn. 8(3), 374–383.
Wang  KPC and Wei  J (1987), Vibrations in a moving flexible robot arm, J. Sound Vib. 116(1), 149–160.
Meirovitch  L and Quinn  RD (1987), Equations of motion of maneuvering flexible spacecraft, J. Guid. Control Dyn. 10, 453–465.
Meirovitch  L and Quinn  RD (1987), Maneuvering and vibration control of flexible spacecraft, J. Astronaut. Sci. 35(3), 301–328.
Man GK and Sirlin SW (1989), An assessment of multibody simulation tools for articulated spacecraft, Proc of 3rd Annual Conf on Aerospace Comput Control, 1(2), JPL, Publication 89-45, Pasadena CA, 12–25.
Hanagud  S and Sarkar  S (1989), Problem of the dynamics of a cantilever beam attached to a moving base, J. Guid. Control Dyn. 12(3), 438–441.
Kakad YP (1992), Dynamics and control of flexible multi-body space systems, Dyn of Flexible Multibody Systems, Theory and Experiment, SC Sinha et al. (eds), ASME, 23–34.
Wu SC and Chen GS (1993), Contact-impact analysis of deployable space systems, 34th AIAA/ASME/ASCE/AHS/ASC Struct, Struct Dyn and Materials Conf, 4, 2058–2068.
Wu SC, Mayo J, Schmidt, M, Fujii E, Hana T, and Siamak G (1995), Dynamic simulation of RMS-assisted shuttle/Mir docking, AIAA/ASME/ASCE/AHS Struct, Struct Dyn and Materials Conf, 1, 351–361.
Tadikonda  SSK, Singh  RP, and Stoornelli  S (1996), Multibody dynamics incorporating deployment of flexible structures, ASME J. Vibr. Acoust. 118(2), 237–241.
Tadikonda  SSK (1997), Articulated, flexible multibody dynamics modeling: geostationary operational environmental satellite-Case study, J. Guid. Control Dyn. 20(2), 276–283.
Judd  RP and Falkenburg  DR (1985), Dynamics of nonrigid articulated robot linkages, IEEE Trans. Autom. Control AC-30(5), 499–502.
Chang  LW and Hamilton  JF (1991), Kinematics of robotic manipulators with flexible links using and equivalent rigid link system (ERLS) model, ASME J. Dyn. Syst., Meas., Control 113, 48–54.
Chang  LW (1992), Dynamics and control of vertical-plane motion for an electrohydraulically actuated single-flexible link arm, ASME J. Dyn. Syst., Meas., Control 114, 89–95.
Chedmail  P, Aoustin  Y, and Chevallereau  Ch (1991), Modelling and control of flexible robots, Int. J. Numer. Methods Eng. 32(8), 1595–1619.
Geradin M, Robert G, and Bernardin C (1984), Dynamic modeling of manipulators with flexible members, Adv Software in Robotics, Elseiver Science Publishers BV, (North Holland).
Pascal  M (1990), Dynamical analysis of a flexible manipulator arm, Acta Astronaut. 21(3), 161–619.
Du  H, Hitchings  D, and Davies  GAO (1993), A finite element structure dynamic model of a beam with an arbitrary moving base, Part I: Formulations, Part II: Numerical examples and solutions, Finite Elem. Anal. Design 12, 117–150.
Bertogalli  V, Bittanti  S, and Lovera  M (1999), Simulation and identification of helicopter rotor dynamics using a general-purpose multibody code, J. Franklin Inst. 336, 783–797.
Kortum  W (1993), Review of multibody computer codes for vehicle system dynamics, Veh. Syst. Dyn. 22, 3–31.
Schwartz  W (1993), The multibody program MEDYNA, Veh. Syst. Dyn. 22, 91–94.
Kading  RR and Yen  J (1993), An introduction to DADS in vehicle system dynamics, Veh. Syst. Dyn. 22, 153–157.
Sharp  RS (1993), Testing and demonstrating the capabilities of multibody software systems in a vehicle dynamics context, Veh. Syst. Dyn. 22, 32–40.
Nakanishi  T and Shabana  AA (1994), Contact forces in the non-linear dynamic analysis of tracked vehicles, Int. J. Numer. Methods Eng. 37(8), 1251–1275.
Nakanishi T and Isogai K (2001), Comparison between flexible multibody tracked vehicle simulation and experimental data, Paper No DETC2001/VIB-21355, Proc of the ASME 2001 DETC, Pittsburgh PA.
Campanelli  M, Shabana  AA, and Choi  JH (1998), Chain vibration and dynamic stress in three-dimensional multibody tracked vehicles, Multibody Syst. Dyn. 2(3), 277–316.
Lee  HC, Choi  JH, and Shabana  AA (1998), Spatial dynamics of multibody tracked vehicles, Part II: Contact forces and simulation results, Int J of Vehicle Mech and Mobility 29, 113–137.
Assanis  DN, Bryzik  W, Castanie  MP, Darnell  IM, Filipi  ZS, Hulbert  GH, Jung  D, Ma  Z-D, Perkins  NC, Pierre  C, Scholar  CM, Wang  Y, and Zhang  G (1999), Modeling and simulation of an M1 abrams tank with advanced track dynamics and integrated virtual diesel engine, Mech. Struct. Mach. 27(4), 453–505.
Amirouche  FML and Ider  SK (1988), Simulation and analysis of a biodynamic human model subjected to low accelerations-a correlation study, J. Sound Vib. 123(2), 281–292.
Amirouche  FML, Xie  M, and Patwardtran  A (1994), Energy minimization to human body vibration response for seating/standing postures, ASME J. Biomech. Eng. 116(4), 413–420.
Nikravesh  P, Ambrosio  JAC, and Pereira  MS (1990), Rollover simulation and crashworthiness analysis of trucks, Forensic Eng 2(3), 387–401.
Hsiao  KM and Jang  JY (1989), Nonlinear dynamic analysis of elastic frames, Comput. Struct. 33, 1057–1063.
Hsiao  KM, Yang  RT, and Lee  AC (1994), A consistent finite element formulation for non-linear dynamic analysis of planar beam, Int. J. Numer. Methods Eng. 37, 75–89.
Rice  DL and Ting  EC (1993), Large displacement transient analysis of flexible structures, Int. J. Numer. Methods Eng. 36, 1541–1562.
Tsang TY (1993), Dynamic analysis of highly deformable bodies undergoing large deformations, PhD Dissertation, Univ of Arizona.
Tsang  TY and Arabyan  A (1996), A novel approach to the dynamic analysis of highly deformable bodies, Comput. Struct. 58(1), 155–172.
Iura  M (1994), Effects of coordinate system on the accuracy of corotational formulation for Bernoulli-Euler’s beam, Int. J. Solids Struct. 31(20), 2793–2806.
Mitsugi J (1995), Direct coordinate partitioning for multibody dynamics based on finite element method, AIAA/ASME/ASCE/AHS Struct Struct Dyn and Materials Conf, AIAA-95-14442-CP, 4, 2481–2487.
Hsiao  KM and Yang  RT (1995), A corotational formulation for nonlinear dynamic analysis of curved Euler beam, Comput. Struct. 54(6), 1091–1097.
Galvanetto  U and Crisfield  MA (1996), An energy-conserving co-rotational procedure for the dynamics of planar beam structures, Int. J. Numer. Methods Eng. 39(13), 2265–2282.
Shabana AA (1996), An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies, Tech Report # MBS96-1-UIC, Dept of Mechanical Engineering, Univ of Illinois at Chicago.
Shabana  AA and Schwertassek  R (1998), Equivalence of the floating frame of reference approach and finite element formulations, Int. J. Non-Linear Mech. 33(3), 417–432.
Banerjee  AK and Nagarajan  S (1997), Efficient simulation of large overall motion of beams undergoing large deflection, Multibody Syst. Dyn. 1(1), 113–126.
Behdinan  K, Stylianou  MC, and Tabarrok  B (1998), Co-rotational dynamic analysis of flexible beams, Comput. Methods Appl. Mech. Eng. 154, 151–161.
Takahashi Y and Shimizu N (2001), Study on derivation and application of mean axis for deformable beam by means of the absolute nodal coordinate multibody dynamics formulation, DETC20001/VIB-21340, Proc of the ASME DETC.
Berzeri  M, Campanelli  M, and Shabana  AA (2001), Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation, Multibody Syst. Dyn. 5, 21–54.
Belytschko  T and Glaum  LW (1979), Applications of higher order corotational stretch theories to nonlinear finite element analysis, Comput. Struct. 10, 175–182.
Iura  M and Atluri  SN (1995), Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames, Comput. Struct. 55(3), 453–462.
Argyris  JH, Dunne  PC, Malejannakis  GA, and Scharpf  DW (1978), On large displacement-small strain analysis of structures with rotational degrees of freedom, Comput. Methods Appl. Mech. Eng. 14, 401–451.
Rankin  CC and Brogan  FA (1986), An element independent corotational procedure for the treatment of large rotations, ASME J. Pressure Vessel Technol. 108, 165–174.
Rankin  CC and Nour-Omid  B (1988), The use of projectors to improve finite element performance, Comput. Struct. 30(1/2), 257–267.
Wu SC, Chang CW, and Housner JM (1989), Dynamic analysis of flexible mechanical systems using LATDYN, Proc of 3rd Annual Conf on Aerospace Comput Control, Oxnard, CA.
Crisfield MA (1991), Nonlinear Finite Element Analysis of Solids and Structures, Wiley, Chichester.
Hsiao  KM (1992), Corotational total Lagrangian formulation for three-dimensional beam element, AIAA J. 30(3), 797–804.
Wasfy TM (1994), Modeling continuum multibody systems using the finite element method and element convected frames, Proc of 23rd ASME Mechanisms Conf, Minneapolis MN, 327–336.
Quadrelli  BM and Atluri  SN (1996), Primal and mixed variational principals for dynamics of spatial beams, AIAA J. 34, 2395–2405.
Quadrelli  BM and Atluri  SN (1998), Analysis of flexible multibody systems with spatial beams using mixed variational principles, Int. J. Numer. Methods Eng. 42, 1071–1090.
Devloo  P, Géradin  M, and Fleury  R (2000), A corotational formulation for the simulation of flexible mechanisms, Multibody Syst. Dyn. 4(2/3), 267–295.
Peng  X and Crisfield  MA (1992), A consistent co-rotational formulation for shells using the constant stress/constant moment triangle, Int. J. Numer. Methods Eng. 35(9), 1829–1847.
Shabana  AA and Christensen  AP (1997), Three-dimensional absolute nodal co-ordinate formulation: Plate problem, Int. J. Numer. Methods Eng. 40(15), 2775–2790.
Meek  JL and Wang  Y (1998), Nonlinear static and dynamic analysis of shell structures with finite rotation, Comput. Methods Appl. Mech. Eng. 162, 301–315.
Belytschko  T and Tsay  C-S (1983), A stabilization procedure for the quadrilateral plate element with one-point quadrature, Int. J. Numer. Methods Eng. 19, 405–419.
Belytschko  T, Lin  JI, and Tsay  C-S (1984), Explicit algorithms for the nonlinear dynamics of shells, Comput. Methods Appl. Mech. Eng. 42, 225–251.
Belytschko  T, Stolarski  H, Liu  WK, Carptender  N, and Ong  JS (1985), Stress projection for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng. 51, 221–258.
Belytschko  T and Leviathan  I (1994), Physical stabilization of the 4-node shell element with one point quadrature, Comput. Methods Appl. Mech. Eng. 113, 321–350.
Belytschko  T and Leviathan  I (1994), Projection schemes for one-point quadrature shell elements, Comput. Methods Appl. Mech. Eng. 115, 277–286.
Bergan  PG and Nygard  MK (1984), Finite elements with increased freedom in choosing shape functions, Int. J. Numer. Methods Eng. 20, 643–663.
Bergan PG and Nygard MK (1986), Nonlinear shell analysis using free formulation finite elements, Finite Element Methods for Nonlinear Problems, PG Bergan, KJ Bathe, and W Wunderlich (eds), Springer Verlag.
Nygard MK and Bergan PG (1989), Advances in treating large rotations for nonlinear problems, States of the Arts Surveys on Computational Mechanics, AK Noor and JT Oden (eds), ASME, New York, 305–333.
Flanagan  DP and Taylor  LM (1987), An accurate numerical algorithm for stress integration with finite rotations, Comput. Methods Appl. Mech. Eng. 62, 305–320.
Crisfield  MA and Moita  GF (1996), A co-rotational formulation for 2-D continua including incompatible modes, Int. J. Numer. Methods Eng. 39, 2619–2633.
Moita  GF and Crisfield  MA (1996), A finite element formulation for 3-D continua using the co-rotational technique, Int. J. Numer. Methods Eng. 39(22), 3775–3792.
Jetteur  PH and Cescotto  S (1991), A mixed finite element for the analysis of large inelastic strains, Int. J. Numer. Methods Eng. 31, 229–239.
Park JH, Choi JH, and Bae DS (2001), A relative nodal coordinate formulation for finite element nonlinear analysis, Paper No DETC2001/VIB-21315, Proc of the ASME 2001 DETC, Pittsburgh, PA.
Cho HJ, Ryu HS, Bae DS, Choi JH, and Ross B (2001), A recursive implementation method with implicit integrator for multibody dynamics, Paper No DETC2001/VIB-21319, Proc of ASME 2001 DETC.
Hughes  TJR and Winget  J (1980), Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, Int. J. Numer. Methods Eng. 15(12), 1862–1867.
Banerjee  AK (1993), Dynamics and control of the WISP shuttle-antennae system, J. Astronaut. Sci. 41, 73–90.
Shabana  AA (1997), Definition of the slopes and the finite element absolute nodal coordinate formulation, Multibody Syst. Dyn. 1(3), 339–348.
Housner JM, McGowan PE, Abrahamson AL, and Powel PG (1986), The LATDYN User’s Manual, NASA TM 87635.
Belytschko T and Kennedy JM (1986), WHAMS-3D An Explicit 3D Finite Element Program, KBS2 Inc, Willow Springs IL 60480.
Hallquist JO (1983), Theoretical manual for DYNA3D, Report UCID-19401, Univ of California, LLNL.
Taylor LM and Flanagan DP (1987), PRONTO 2D, A two-dimensional transient solid dynamics program, SAND86-0594, Sandia.
Belytschko  T, Smolinski  P, and Liu  WK (1985), Stability of multi-time step partitioned integrators for first order finite element systems, Comput. Methods Appl. Mech. Eng. 49, 281–297.
Belytschko  T and Lu  YY (1993), Explicit multi-time step integration for first and second order finite element semidiscretizations, Comput. Methods Appl. Mech. Eng. 108, 353–383.
Belytschko  T (1992), On computational methods for crashworthiness, Comput. Struct. 42(2), 271–279.
Gontier  C and Vollmer  C (1995), A large displacement analysis of a beam using a CAD geometric definition, Comput. Struct. 57(6), 981–989.
Gontier  C and Li  Y (1995), Lagrangian formulation and linearization of multibody system equations, Comput. Struct. 57(2), 317–331.
Meijaard  JP (1991), Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators, Int. J. Numer. Methods Eng. 32, 1691–1710.
Meijaard JP and Schwab AL (2001), A component mode synthesis look at planar beam elements, Paper No DETC2001/VIB-21313, Proc of the ASME 2001 DETC, Pittsburgh, PA.
Berzeri  M and Shabana  AA (2000), Development of simple models for the elastic forces in the absolute nodal coordinate formulation, J. Sound Vib. 235(4), 539–565.
Ibrahimbegovic  A and Frey  F (1993), Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams, Int. J. Numer. Methods Eng. 36(19), 3239–3258.
Stander  N and Stein  E (1996), An energy-conserving planar finite beam element for dynamics of flexible mechanisms, Eng. Comput. 13(6), 60–85.
Ibrahimbegovic  A (1995), On FE implementation of geometrically nonlinear Reissner beam theory: Three-dimensional curved beam finite elements, Comput. Methods Appl. Mech. Eng. 122, 10–26.
Rosen  R, Loewy  RG, and Mathew  MB (1987), Nonlinear dynamics of slender rods, AIAA J. 25, 611–619.
Vu-Quoc  L and Deng  H (1997), Dynamics of geometrically-exact sandwich beams: computational aspects, Comput. Methods Appl. Mech. Eng. 146, 135–172.
Iura  M and Atluri  SN (1989), On a consistent theory and variational formulation of finitely stretched and rotated 3-D space curved beams, Computational Mech., Berlin 4, 73–88.
Park  KC, Downer  JD, Chiou  JC, and Farhat  C (1991), A modular multibody analysis capability for high-precision, active control and real-time applications, Int. J. Numer. Methods Eng. 32, 1767–1798.
Downer  JD and Park  KC (1993), Formulation and solution of inverse spaghetti problem: application to beam deployment dynamics, AIAA J. 31(2), 339–347.
Borri  M and Bottasso  C (1994), An intrinsic beam model based on a helicoidal approximation, Part I: Formulation, Part II: Linearization and finite element implementation, Int. J. Numer. Methods Eng. 37, 2267–2289.
Bauchau  OA, Damilano  G, and Theron  NJ (1995), Numerical integration of non-linear elastic multibody systems, Int. J. Numer. Methods Eng. 38, 2727–2751.
Ibrahimbegovic  A and Frey  F (1995), Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity, Int. J. Numer. Methods Eng. 38, 1885–1900.
Ibrahimbegovic  A, Frey  F, and Kozar  I (1995), Computational aspects of vector-like parameterization of three-dimensional finite rotations, Int. J. Numer. Methods Eng. 38, 3653–3673.
Bauchau  OA and Hodges  DH (1999), Analysis of nonlinear multibody systems with elastic coupling, Multibody Syst. Dyn. 3(2), 163–188.
Cardona A and Huespe A (1996), Nonlinear path following with turning and bifurcation points in multibody systems analysis, Comput Methods in Appl Sci 96, 3rd ECCOMAS Comput Fluid Dyn Conf and the 2nd ECCOMAS Conf on Numer Methods in Eng, 440–446.
Cardona  A and Huespe  A (1998), Continuation methods for tracing the equilibrium path in flexible mechanism analysis, Eng. Comput. 15(2), 190–220.
Ibrahimbegovic  A and Mamouri  S (2000), On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model, Comput. Methods Appl. Mech. Eng. 188, 805–831.
Ibrahimbegovic  A, Mamouri  S, Taylor  RL, and Chen  AJ (2000), Finite element method in dynamics of flexible multibody systems: Modeling of holonomic constraints and energy conserving integration schemes, Multibody Syst. Dyn. 4(2/3), 195–223.
Borri  M, Bottasso  CL, and Trainelli  L (2001), Integration of elastic multibody systems by invariant conserving/dissipating algorithms, I: Formulation, II: Numerical schemes and applications, Comput. Methods Appl. Mech. Eng. 190, 3669–3733.
Wasfy TM (2001), Lumped-parameters brick element for modeling shell flexible multibody systems, Paper No DETC2001/VIB-21338, Proc of ASME 2001 DETC, Pittsburgh PA.
Rao  DV, Sheikh  AH, and Mukopadhyay  M (1993), Finite element large displacement analysis of stiffened plates, Comput. Struct. 47(6), 987–993.
Simo  JC and Fox  DD (1989), On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization, Comput. Methods Appl. Mech. Eng. 72, 267–304.
Simo JC, Fox DD, Rifai MS (1989), Geometrically exact stress resultant shell models: Formulation and computational aspects of the nonlinear theory, Analytical and Comput Models of Shells, ASME Winter Annual Meeting, San Fransisco CA, 161–190.
Simo  JC and Tarnow  N (1994), New energy and momentum conserving algorithm for the nonlinear dynamics of shells, Int. J. Numer. Methods Eng. 37(15), 2527–2549.
Vu-Quoc  L, Ebcioglu  IK, and Deng  H (1997), Dynamic formulation for geometrically-exact sandwich shells, Int. J. Solids Struct. 34(20), 2517–2548.
Ibrahimbegovic  A (1994), Stress resultant geometrically nonlinear shell theory with drilling rotations, Part I: A consistent formulation, Comput. Methods Appl. Mech. Eng. 118, 265–284.
Ibrahimbegovic  A and Frey  F (1994), Stress resultant geometrically nonlinear shell theory with drilling rotations, Part II: Computational aspects, Comput. Methods Appl. Mech. Eng. 118, 285–308.
Ibrahimbegovic  A (1997), Stress resultant geometrically exact shell theory for finite rotations and its finite element implementation, Appl. Mech. Rev. 50(4), 199–226.
Boisse  P, Gelin  JC, and Daniel  JL (1996), Computation of thin structures at large strains and large rotations using a simple C0 isoparametric three-node shell element, Comput. Struct. 58(2), 249–261.
Bauchau OA, Choi J-Y, and Bottasso CL (2001), On the modeling of shells in multibody dynamics, Paper No DETC2001/VIB-21339, Proc of ASME 2001 DETC, Pittsburgh PA.
Hughes  TJR and Liu  WK (1981), Nonlinear finite element analysis of shells, Part I: Three-dimensional shells, Comput. Methods Appl. Mech. Eng. 26, 331–362.
Mikkola AM and Shabana AA (2001), A new plate element based on the absolute nodal coordinate formulation, Paper No DETC20001/VIB-21341, Proc of ASME 2001 DETC, Pittsburgh PA.
Parisch  H (1995), A continuum-based shell theory for non-linear applications, Int. J. Numer. Methods Eng. 38, 1855–1883.
Wasfy  TM and Noor  AK (2000), Multibody dynamic simulation of the next generation space telescope using finite elements and fuzzy sets, Comput Methods in Appl Mech and Eng 190(5–7), 803–824.
Laursen  TA and Simo  JC (1993), A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems, Int. J. Numer. Methods Eng. 36(20), 3451–3485.
Bathe KJ (1996), Finite Element Procedures, Prentice Hall.
Kozar  I and Ibrahimbegovic  A (1995), Finite element formulation of the finite rotation solid element, Finite Elem. Anal. Design 20(2), 101–126.
Goicolea  JM and Orden  JGC (2000), Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes, Comput. Methods Appl. Mech. Eng. 188, 789–804.
Orden  JCG and Goicolea  JM (2000), Conserving properties in constrained dynamics of flexible multibody systems, Multibody Syst. Dyn. 4(2/3), 225–244.
Spring  KW (1986), Euler parameters and the use of quaternion algebra in the manipulation of finite rotation: A review, Mech. Mach. Theory 21(5), 365–373.
Ibrahimbegovic  A (1997), On the choice of finite rotation parameters, Comput. Methods Appl. Mech. Eng. 149, 49–71.
Lim  H and Taylor  RL (2001), An explicit-implicit method for flexible-rigid multibody systems, Finite Elem. Anal. Design 37, 881–900.
Nagarajan S and Sharifi P (1980), NEPSAP Theory Manual, Lockheed Missiles & Space Co, Sunnyvale CA.
Campanelli  M, Berzeri  M, and Shabana  AA (2000), Performance of the incremental and non-incremental finite element formulations in flexible multibody problems, ASME J. Mech. Des. 122, 498–507.
Hac  M (1991), Dynamics of planar flexible mechanisms by finite element method with truss-type elements, Comput. Struct. 39(1/2), 135–140.
Hac  M (1995), Dynamics of flexible mechanisms with mutual dependence between rigid body motion and longitudinal deformation of links, Mech. Mach. Theory 30(6), 837–848.
Hac  M and Osinski  J (1995), Finite element formulation of rigid body motion in dynamic analysis of mechanisms, Comput. Struct. 57(2), 213–217.
Vu-Quoc  L, Deng  H, and Ebcioglu  IK (1996), Multilayer beams: A geometrically exact formulation, J. Nonlinear Sci. 6(3), 239–270.
Vu-Quoc  L, Deng  H, and Tan  XG (2001), Geometrically-exact sandwich shells: the dynamic case, Comput. Methods Appl. Mech. Eng. 190(22–23), 2825–2873.
Ghiringhelli  GL, Masarati  P, and Mantegazza  P (2001), Analysis of an actively twisted rotor by multibody global modeling, Comput. Struct. 52, 113–122.
Geradin  M, Doan  DB, and Klapka  I (1993), MECANO: A finite element software for flexible multibody analysis, Veh. Syst. Dyn. 22, 87–90.
Park  KC, Chiou  JC, and Downe  JD (1989), Explicit-implicit staggered procedure for multibody dynamics analysis, J. Guid. Control Dyn. 13(3), 562–570.
Vu-Quoc  L and Olsson  M (1989), Formulation of a basic building-block model for interaction of high-speed vehicles on flexible structures, ASME J. Appl. Mech. 56(2), 451–458.
Vu-Quoc  L and Olsson  M (1989), A computational procedure for interaction of high-speed vehicles on flexible structures without assuming known vehicle nominal motion, Comput. Methods Appl. Mech. Eng. 76(3), 207–244.
Vu-Quoc  L and Olsson  M (1991), New predictor/corrector algorithms with improved energy balance for a recent formulation of dynamic vehicle/structure interaction, Int. J. Numer. Methods Eng. 32, 223–253.
Vu-Quoc  L and Olsson  M (1993), High-speed vehicle models based on a new concept of vehicle/structure interaction component: Part I: Formulation, Part II: Algorithmic treatment and results for multispan guideways, ASME J. Dyn. Syst., Meas., Control 115(1), 140–155.
Leamy MJ and Wasfy TM (2001), Dynamic finite element modeling of belt-drives Paper No DETC2001/VIB-21341, Proc of ASME 2001 DETC, Pittsburgh PA.
Leamy MJ and Wasfy TM (2001), Dynamic finite element modeling of belt-drives including one-way clutches, ASME 2001 Int Mech Eng Congress and Exposition, New York NY.
Wasfy TM and Leamy MJ (2002), Effect of bending stiffness on the dynamic and steady-state responses of belt-drives, Paper No DETC2002/MECH-34223, Proc of ASME 2002 DETC, Montreal Canada.
Vu-Quoc  L and Simo  JC (1987), Dynamics of earth-orbiting flexible satellites with multibody components, J. Guid. Control Dyn. 10, 549–448.
Leamy  M, Noor  AK, and Wasfy  TM (2001), Dynamic simulation of a space tethered-satellite system, Comput. Methods Appl. Mech. Eng. 190(37–38), 4847–4870.
Dignath  F and Schiehlen  W (2000), Control of the vibrations of a tethered satellite system, J. Appl. Math. Mech. 64(5), 715–722.
Bauchau  OA, Bottasso  CL, and Nikishkov  YG (2001), Modeling rotorcraft dynamics with finite element multibody procedures, Math. Comput. Modell. 33, 1113–1137.
Van der Werff K and Jonker JB (1984), Dynamics of flexible mechanisms, Computer Aided Analysis and Optimization of Mech Syst Dyn, EJ Haug (ed), Berlin, Springer-Verlag, 381–400.
Jonker  JB (1990), A finite element dynamic analysis of flexible manipulators, Int. J. Robot. Res. 9(4), 59–74.
Bauchau OA, Lee M, and Theron NJ (1995), Dynamic analysis of nonlinear elastic multibody systems using decaying schemes, AIAA-95-1452-CP, 2591–2601.
Vu-Quoc  L and Li  S (1995), Dynamics of sliding geometrically-exact beams: Large angle maneuver and parametric resonance, Comput. Methods Appl. Mech. Eng. 120(1–2), 65–118.
Argyris JH, Kelsey S, and Kaneel H (1964), Matrix Methods for Structural Analysis: A Precis of Recent Developments, MacMillan, New York.
Stolarski  H and Belytschko  T (1982), Membrane locking and reduced integration for curved elements, ASME J. Appl. Mech. 49, 172–176.
Hughes TJR (1987), The Finite Element Method, Prentice Hall, Englewood Cliffs NJ.
Ahmad  S, Irons  BM, and Zienkiewicz  OC (1970), Analysis of thick and thin shell structures by curved finite elements, Int. J. Numer. Methods Eng. 2, 419–451.
Lee  N-S and Bathe  KJ (1993), Effects of element distortions on the performance of isoparametric elements, Int. J. Numer. Methods Eng. 36, 3553–3576.
Macneal  RH and Harder  RL (1985), A proposed standard set of problems to test finite element accuracy, Finite Elem. Anal. Design 1, 3–20.
Chapelle  D and Bathe  KJ (1998), Fundamental considerations for the finite element analysis of shell structures, Comput. Struct. 66(1), 19–36.
Stolarski  H and Belytschko  T (1983), Shear and membrane locking in curved C0 elements, Comput. Methods Appl. Mech. Eng. 41, 279–296.
Briassoulis  D (1989), The C0 shell plate and beam elements freed from their deficiencies, Comput. Methods Appl. Mech. Eng. 72, 243–266.
Hauptmann  R, Doll  S, Harnau  M, and Schweizerhof  K (2001), Solid-shell elements with linear and quadratic shape functions at large deformations with nearly incompressible materials, Comput. Struct. 79, 1671–1685.
Flanagan  DP and Belytschko  T (1981), A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Eng. 17, 679–706.
Belytschko  T, Ong  J, Liu  WK, and Kennedy  JM (1984), Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Eng. 43, 251–276.
Belytschko  T and Bachrach  WE (1986), Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Comput. Methods Appl. Mech. Eng. 54, 279–301.
Harn  W-R and Belytschko  T (1998), Adaptive multi-point quadrature for elastic-plastic shell elements, Finite Elem. Anal. Design 30, 253–278.
Simo  JC and Rifai  MS (1991), A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng. 29, 1595–1638.
Simo  JC and Armero  F (1992), Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Eng. 33, 1413–1449.
Dvorkin  EN and Bathe  KJ (1984), A continuum mechanics based four-node shell element for general non-linear analysis, Eng. Comput. 1, 77–88.
Pian  T and Sumihara  K (1984), Rational approach for assumed stress finite elements, Int. J. Numer. Methods Eng. 20, 1685–1695.
Argyris  J and Tenek  L (1994), An efficient and locking-free flat anisotropic plate and shell triangular element, Comput. Methods Appl. Mech. Eng. 118(1–2), 63–119.
Argyris  J, Tenek  L, and Olofsson  L (1997), TRIC: A simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells, Comput. Methods Appl. Mech. Eng. 145, 11–85.
Argyris  JH, Papadrakakis  M, Apostolopoulou  C, and Koutsourelakis  S (2000), The TRIC shell element: Theoretical and numerical investigation, Comput. Methods Appl. Mech. Eng. 183, 217–245.
Atluri  SN and Cazzani  A (1995), Rotations in computational mechanics, Arch Comput Meth Eng, State of the Art Reviews 1(1), 49–138.
Betsch  P, Menzel  A, and Stein  E (1998), On the parameterization of finite rotations in computational mechanics a classification of concepts with application to smooth shells, Comput. Methods Appl. Mech. Eng. 155, 273–305.
Borri  M, Trainelli  L, and Bottasso  CL (2000), On representation and parameterizations of motion, Multibody Syst. Dyn. 4, 129–193.
Jelenic  G and Crisfield  MA (1999), Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics, Comput. Methods Appl. Mech. Eng. 171, 141–171.
Jetteur  PH and Frey  F (1986), A four node Marguerre element for nonlinear shell analysis, Eng. Comput. 3, 276–282.
Iura  M and Atluri  SN (1992), Formulation of a membrane finite element with drilling degrees of freedom, Computational Mech., Berlin 9(6), 417–428.
Ibrahimbegovic  A, Taylor  RL, and Wilson  EL (1990), A robust quadrilateral membrane finite element with drilling degrees of freedom, Int. J. Numer. Methods Eng. 30(3), 445–457.
Shabana  AA (1996), Finite element incremental approach and exact rigid body inertia, ASME J. Mech. Des. 118, 171–178.
Shabana  AA (1998), Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics, Nonlinear Dyn. 16, 293–306.
Connelly  JD and Huston  RL (1994), The dynamics of flexible multibody systems: A finite segment approach, I: Theoretical aspects, II: Example problems, Comput. Struct. 50(2), 255–262.
Argyris JH, Balmer H, and Doltsinis ISt (1989), On shell models for impact analysis, Analytical and Computational Models of Shells, ASME Winter Annual Meeting, San Fransisco, CA, 443–456.
Hauptmann  R and Schweizerhof  K (1998), A systematic development of solid-shell element formulations for linear and nonlinear analyses employing only displacement degrees of freedom, Int. J. Numer. Methods Eng. 42, 49–70.
Sze  KY and Chan  WK (2001), A six-node pentagonal assumed natural strain solid-shell element, Finite Elem. Anal. Design 37, 639–655.
Sze  KY, Yao  L-Q, and Pian  THH (2002), An eighteen-node hybrid-stress solid-shell element for homogenous and laminated structures, Finite Elem. Anal. Design 38, 353–374.
Liu  WK, Guo  Y, Tang  S, and Belytschko  T (1998), A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis, Comput. Methods Appl. Mech. Eng. 154, 69–132.
Iura  M and Kanaizuka  J (2001), Flexible translational joint analysis by meshless method, Int. J. Solids Struct. 37, 5203–5217.
Bae DS, Hwang RS, and Haug EJ (1988), A recursive formulation for real-time dynamic simulation, Adv in Des Automation ASME, New York, 499–508.
Hwang RS, Bae DS, Haug EJ, and Kuhl JG (1988), Parallel processing for real-time dynamic system simulation, Adv in De Automation, ASME, New York, 509–518.
Yim HJ, Haug EJ, and Dopker B (1989), Computational methods for stress analysis of mechanical components in dynamic systems, Concurrent Eng of Mech Sys, 1, EJ Haug (ed), Univ of Iowa, 217–237.
Claus  H (2001), A deformation approach to stress distribution in flexible multibody systems, Multibody Syst. Dyn. 6, 143–161.
Gofron M (1995), Driving elastic forces in flexible multibody systems, PhD Thesis, Univ of Illinois at Chicago.
Butterfield AJ and Woodard SE (1993), Payload-payload interaction and structure-payload interaction observed on the upper atmosphere research satellite, AAS/AIAA Astrodynamics Specialist Conf, Victoria, BC, Canada, Paper AAS 93-551.
Larson CR, Woodardm S, Tischner L, Tong E, Schmidt M, Cheng J, Fujii E, and Ghofranian S (1995), UARS dynamic analysis design system (DADS) control structures interaction simulation development, AIAA 33rd Aerospace Sci Meeting and Exhibit, Reno NV.
Kamman  JW and Huston  RL (1984), Dynamics of constrained multibody systems, ASME J. Appl. Mech. 51(4), 899–903.
Wang  JT and Huston  RL (1989), A comparison of analysis methods of redundant multibody systems, Mech. Res. Commun. 16(3), 175–182.
Wang  Y and Huston  RL (1994), A lumped parameter method in the nonlinear analysis of flexible multibody systems, Comput. Struct. 50(3), 421–432.
Huston RL and Wang Y (1994), Flexibility effects in multibody systems, Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, M Pereira and T Ambrosio (eds), Dordrecht, 351–376.
Huston  RL (1989), Methods of analysis of constrained multibody systems, Mech. Struct. Mach. 17(2), 135–143.
Singh  RP and Likins  PW (1985), Singular value decomposition for constrained dynamical systems, ASME J. Appl. Mech. 52, 943–948.
Mani  NK and Haug  EJ (1985), Singular value decomposition for dynamic system design sensitivity analysis, Eng. Comput. 1, 103–109.
Wehage RA (1980), Generalized coordinate partitioning for dimension reduction in dynamic analysis of mechanical systems, PhD Thesis, Univ of Iowa.
Wehage  RA and Haug  EJ (1982), Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamical systems, ASME J. Mech. Des. 104(1), 247–255.
Wampler  C, Buffington  K, and Shu-hui  J (1985), Formulation of equations of motion for systems subject to constraints, ASME J. Appl. Mech. 52(2), 465–470.
Park  T (1986), A hybrid constraint stabilization-generalized coordinate partitioning method for machine dynamics, ASME J. Mech., Transm., Autom. Des. 108(2), 211–216.
Haug  EJ and Yen  J (1992), Implicit numerical integration of constrained equations of motion via generalized coordinate partitioning, ASME J. Mech. Des. 114, 296–304.
Fisette  P and Vaneghem  B (1996), Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme, Comput. Methods Appl. Mech. Eng. 135(1/2), 85–106.
Amirouche  FML and Jia  T (1988), A pseudo-uptriangular decomposition method for constrained multibody systems using Kane’s equations, J. Guid. Control Dyn. 10(7), 39–46.
Ider  SK and Amirouche  FML (1988), Coordinate reduction in constrained spatial dynamic systems-A new approach, ASME J. Appl. Mech. 55(4), 899–904.
Amirouche  FML, Jia  TJ, and Ider  SK (1988), A recursive householder transformation for complex dynamical systems with constraints, ASME J. Appl. Mech. 55(3), 729–734.
Amirouche  FML and Huston  RL (1988), Dynamics of large constrained flexible structures, ASME J. Dyn. Syst., Meas., Control 110(1), 78–83.
Bauchau  OA (1998), Computational schemes for flexible, nonlinear multi-body systems, Multibody Syst. Dyn. 2(2), 169–225.
Bauchau  OA (2000), On the modeling of prismatic joints in flexible multi-body systems, Comput. Methods Appl. Mech. Eng. 181, 87–105.
Avello  A, Bayo  E, and Garcia de Jalon  J (1993), Simple and highly parallelizable method for real-time dynamic simulation based on velocity transformations, Comput. Methods Appl. Mech. Eng. 107(3), 313–339.
Morais  PG, Silva  JMM, and Carvalhal  EJ (2001), A specialized element for finite element model updating of moveable joints, Multibody Syst. Dyn. 5, 375–386.
Jelenic  G and Crisfield  MA (2001), Dynamic analysis of 3D beams with joints in presence of large rotations, Comput. Methods Appl. Mech. Eng. 190, 4195–4230.
Samanta  B (1990), Dynamics of flexible multibody systems using bond graphs and Lagrange multipliers, ASME J. Mech. Des. 112, 30–35.
Cardona  A, Geradin  M, and Doan  JB (1991), Rigid and flexible joint modeling in multibody dynamics using finite elements, Comput. Methods Appl. Mech. Eng. 89, 395–418.
Wasfy TM (1995), Modeling contact/impact of flexible manipulators with a fixed rigid surface, Proc of 1995 IEEE Int Conf on Robotics and Automation, Japan, 621–626.
Dubowsky  S and Freudenstein  F (1971), Dynamic analysis of mechanical systems with clearances, Part 1: Formation of dynamic model, Part 2: Dynamic response, ASME J. Eng. Ind. 93(1), 305–316.
Winfrey RC, Anderson RV and Gnilka CW (1972), Analysis of elastic machinery with clearances, 12th ASME Mech Conf, San Fransisco CA, ASME Paper No 72-Mech-37.
Soong  K and Thompson  BS (1990), A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint, ASME J. Mech. Des. 112, 183–189.
Amirouche  FML and Jia  T (1988), Modeling of clearances and joint flexibility effects in multibody systems dynamics, Comput. Struct. 29(6), 983–991.
Liu  T and Lin  Y (1990), Dynamic analysis of flexible linkages with lubricated joints, J. Sound Vib. 141, 193–205.
Bauchau  OA and Rodriguez  J (2002), Modeling of joints with clearance in flexible multibody systems, Int. J. Solids Struct. 39, 41–63.
Wang  Y and Wang  Z (1996), Dynamic analysis of flexible mechanisms with clearances, ASME J. Mech. Des. 118(4), 592–601.
Cardona  A and Geradin  M (1993), Kinematic and dynamic analysis of mechanisms with cams, Comput. Methods Appl. Mech. Eng. 103(1/2), 115–134.
Chalhoub  NG and Ulsoy  AG (1986), Dynamic simulation of leadscrew driven flexible robot arm and controller, ASME J. Dyn. Syst., Meas., Control 108(2), 119–126.
Amirouche  FML, Shareef  NH, and Xie  M (1992), Dynamic analysis of flexible gear trains/transmissions-An automated approach, ASME J. Appl. Mech. 59(4), 976–982.
Zhong  ZH and Mackerle  J (1994), Contact-impact problems: a review with bibliography, Appl. Mech. Rev. 47(2), 55–76.
Wasfy  TM and Noor  AK (1997), Computational procedure for simulating the contact/impact response in flexible multibody systems, Comput. Methods Appl. Mech. Eng. 147, 153–166.
Zhong  ZH and Nilsson  L (1990), A contact searching algorithm for general 3-D contact-impact problems, Comput. Struct. 34(2), 327–335.
Zhong  ZH and Nilsson  L (1994), Lagrange multiplier approach for evaluation of friction in explicit finite-element analysis, Commun in Numer Methods in Eng 10(3), 249–255.
Zhong ZH (1993), Finite Element Procedures for Contact Impact Problems, Oxford Science Publications.
Choi JH, Park DC, Ryu HS, Bae DS, and Huh GS (2001), Dynamic track tension of high mobility tracked vehicles, Paper No DETC2001/VIB-21309, Proc of ASME 2001 DETC, Pittsburgh PA.
Yigit  AS (1995), On the use of an elastic-plastic impact law for the impact of a single flexible link, ASME J. Dyn. Syst., Meas., Control 117, 527–533.
Bauchau  OA (2000), Analysis of flexible multibody systems with intermittent contacts, Multibody Syst. Dyn.4(1), 23–54.
Escalona JL, Mayo J, and Dominguez J (2001), Influence of reference conditions in the analysis of the impact of flexible bodies, Paper No DETC2001/VIB-21330, Proc of ASME 2001 DETC, Pittsburgh PA.
Khulief  YA and Shabana  AA (1987), A continuous force model for the impact analysis of flexible multibody systems, Mech. Mach. Theory 22(3), 213–224.
Bauchau  OA (1999), On the modeling of friction and rolling in flexible multi-body systems, Multibody Syst. Dyn. 3, 209–239.
Goldsmith W (1960), Impact, Edward Arnold Publishers Ltd.
Bakr  EM and Shabana  AA (1987), Effect of geometric elastic nonlinearities on the impact response of flexible multibody systems, J. Sound Vib. 112, 415–432.
Rismantab-Sany  J and Shabana  AA (1990), On the use of the momentum balance in the impact analysis of constrained elastic systems, ASME J. Vibr. Acoust. 112, 119–126.
Yigit  AS, Ulsoy  AG, and Scott  RA (1990), Dynamics of a radially rotating beam with impact, Part 1: Theoretical and computational model, Part 2: Experimental and simulation results, ASME J. Vibr. Acoust. 112, 65–77.
Yigit  AS, Ulsoy  AG, and Scott  RA (1990), Spring-dashpot models for the dynamics of a radially rotating beam with impact, J. Sound Vib. 142(3), 515–525.
Palas  H, Hsu  WC, and Shabana  AA (1992), On the use of momentum balance and the assumed modes method in transverse impact problems, ASME J. Vibr. Acoust. 114(3), 364–373.
Huh  GJ and Kwak  BM (1991), Constrained variational approach for dynamic analysis of elastic contact problems, Finite Elem. Anal. Design 10(2), 125–136.
Ko  SH and Kwak  BM (1992), Frictional dynamic contact analysis of deformable multibody systems, Finite Elem. Anal. Design 12(1), 27–40.
Ko  SH and Kwak  BM (1992), Frictional dynamic contact analysis using finite element nodal displacement description, Comput. Struct. 42(5), 797–807.
Amirouche  FML, Xie  M, Shareef  NH, and Valco  M (1993), Finite element modeling of contact conditions in multibody dynamics, Nonlinear Dyn. 4, 83–102.
Dias  JP and Pereira  MS (1995), Dynamics of flexible mechanical systems with contact-impact and plastic deformations, Nonlinear Dyn. 8(4), 491–512.
Haug  EJ, Wu  SC, and Yang  SM (1986), Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion, I: Theory, II: Planar systems, III: Spatial systems, Mech. Mach. Theory 21(5), 401–406.
Lankarani  HM and Nikravesh  PE (1990), A contact force model with hysteresis damping for impact analysis of multibody systems, ASME J. Mech. Des. 112, 369–376.
Lee  Y, Hamilton  JF, and Sullivan  JW (1983), The lumped parameter method for elastic impact problems, ASME J. Appl. Mech. 50, 823–827.
Lee  SH (1993), Rudimentary considerations for adaptive gap/friction element based on the penalty method, Comput. Struct. 47(6), 1043–1056.
Lee  SS (1994), A computational method for frictional contact problem using finite element method, Int. J. Numer. Methods Eng. 37, 217–228.
Osmont  D (1985), A finite element code for the computation of the dynamic response of structures involving contact effects, Comput. Struct. 20(1–3), 555–561.
Sheth  PN, Hodges  TM, and Uicker  JJ (1990), Matrix analysis method for direct and multiple contact multibody systems, ASME J. Mech. Des. 112, 145–152.
De la Fuente  HM and Felipa  CA (1991), Ephemeral penalty functions for contact-impact dynamics, Finite Elem. Anal. Design 9, 177–191.
Ibrahimbegovic  A and Wilson  EL (1992), Unified computational model for static and dynamic frictional contact analysis, Int. J. Numer. Methods Eng. 34(1), 233–247.
Hunek  I (1993), On a penalty formulation for contact-impact problems, Comput. Struct. 48(2), 193–203.
Shao  CW, Liou  FW, and Patra  AK (1993), A contact phase model for the analysis of flexible mechanisms under impact loading, Comput. Struct. 49(4), 617–624.
Huang  W and Zou  Y (1995), Finite element analysis on collision between two moving elastic bodies at low velocities, Comput. Struct. 57(3), 379–382.
Qin  QH and He  XQ (1995), Variational principles, FE and MPT for analysis of non-linear impact-contact problems, Comput. Methods Appl. Mech. Eng. 122, 205–222.
Laursen  TA and Chawla  V (1997), Design of energy conserving algorithms for frictionless dynamic contact problems, Int. J. Numer. Methods Eng. 40, 863–886.
Bottasso  CL and Trainelli  L (2001), Implementation of effective procedures for unilateral contact modeling in multibody dynamics, Mech. Res. Commun. 28(3), 233–246.
Jia  T and Amirouche  FML (1989), Optimum impact force in motion control of multibody systems subject to intermittent constraints, Comput. Struct. 33(5), 1243–1249.
Belytschko  T and Neal  MO (1991), Contact-impact by the pinball algorithm with penalty and Lagrangian methods, Int. J. Numer. Methods Eng. 31, 547–572.
Taylor  RL and Papadopoulos  P (1993), On a finite element method for dynamic contact/impact problems, Int. J. Numer. Methods Eng. 36(12), 2123–2140.
Sha  D, Tamma  KK, and Maocheng  L (1996), Robust explicit computational developments and solution strategies for impact problems involving friction, Int. J. Numer. Methods Eng. 39, 721–739.
Wriggers  P, Vu Van  T, and Stein  E (1990), Finite element formulation of large deformation impact-contact problems with friction, Comput. Struct. 37(3), 319–331.
Hsu  WC and Shabana  AA (1993), Finite element analysis of impact-induced transverse waves in rotating beams, J. Sound Vib. 168(2), 355–369.
Gau  WH and Shabana  AA (1991), Use of the generalized impulse momentum equations in analysis of wave propagation, ASME J. Vibr. Acoust. 113(4), 532–542.
Gau  WH and Shabana  AA (1992), Effect of finite rotation on the propagation of elastic waves in constrained mechanical systems, ASME J. Mech. Des. 111, 384–393.
Lankarani  HM and Nikravesh  PE (1992), Canonical impulse momentum equations for impact analysis of multibody systems, ASME J. Mech. Des. 114, 180–186.
Marghitu  DB, Sinha  SC, and Diaconescu  C (1999), Control of a parametrically excited flexible beam undergoing rotation and impacts, Multibody Syst. Dyn. 3(1), 47–63.
Zakhariev EV (2001), A numerical method for multibody system frictional impact simulation, Paper No DETC2001/VIB-21367, Proc of ASME 2001 DETC, Pittsburgh PA.
Simeon  B (2001), Numerical analysis of flexible multibody systems, Multibody Syst. Dyn. 6, 305–325.
Gear  CW (1971), Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit Theory Ct-18, 89–95.
Simo  JC, Tarnow  N, and Doblare  M (1995), Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms, Int. J. Numer. Methods Eng. 38(9), 1431–1473.
Chung  J and Hulbert  GM (1997), A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized method, ASME J. Appl. Mech. 60(2), 371–375.
Bauchau  OA and Bottasso  CL (1999), On the design of energy preserving and decaying schemes for flexible, nonlinear multibody systems, Comput. Methods Appl. Mech. Eng. 169, 61–79.
Petzold  L and Lotstedt  P (1986), Numerical solution of nonlinear differential equations with algebraic constraints, II: Practical implementation, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7, 720–733.
Brameller A, Alen RN, and Haman YM (1976), Sparsity, Pitman Pub Corp, New York.
Ryan  RR (1993), ADAMS-mechanical system simulation software, Veh. Syst. Dyn. 22, 144–152.
Hughes  TJR and Belytschko  T (1983), A precis of developments in computational methods for transient analysis, ASME J. Appl. Mech. 50, 1033–1041.
Belytschko  T, Chiapetta  RL, and Bartel  HD (1976), Efficient large scale non-linear transient analysis by finite elements, Int. J. Numer. Methods Eng. 10, 579–596.
Malone  JG and Johnson  NL (1994), Parallel finite element contact/impact algorithm for non-linear explicit transient analysis, Part I: The search algorithm and contact mechanics, Int. J. Numer. Methods Eng. 37(4), 559–590.
Salveson MW and Taylor RL (1995), Explicit-implicit contact algorithm, Proc of 1995 Joint ASME Appl Mech and Materials Summer Meeting, AMD 204, 99–122.
Rismantab-Sany  J and Shabana  AA (1989), On the numerical solution of differential/algebraic equations of motion of deformable mechanical systems with nonholonomic constraints, Comput. Struct. 33(4), 1017–1029.
Geradin M (1996), Energy conserving time integration in flexible multibody dynamics, Computational Methods in Applied Sciences 96, 3rd ECCOMAS Comput Fluid Dyn Conf and 2nd ECCOMAS Conf on Numer Methods in Eng, 433–439.
Bauchau  OA and Theron  NJ (1996), Energy decaying scheme for nonlinear elastic multibody systems, Comput. Struct. 59(2), 317–332.
Ibrahimbegovic  A and Al Mikdad  M (1998), Finite rotations in dynamics of beams and implicit time-stepping schemes, Int. J. Numer. Methods Eng. 41(5), 781–814.
Neal  MO and Belytschko  T (1989), Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems, Comput. Struct. 31(6), 871–880.
Hughes  TJR and Liu  WK (1978), Implicit-explicit finite elements in transient analysis: stability theory, ASME J. Appl. Mech. 45, 371–374.
Belytschko  T, Yen  HJ, and Mullen  R (1979), Mixed methods for time integration, Comput. Methods Appl. Mech. Eng. 17/18, 259–275.
Sharf  I and D’Eleuterio  GMT (1992), Parallel simulation dynamics for elastic multibody chains, IEEE Trans. Rob. Autom. 8(5), 597–606.
Haug EJ (1993), Integrated tools and technologies for concurrent engineering of mechanical systems, Concurrent Eng Tools and Tech for Mech Syst Des, EJ Haug (ed), Springer-Verlag, Heidelberg.
Amirouche  FML and Shareef  NH (1991), Gain in computational efficiency by vectorization of general purpose code for multibody dynamic simulations, Comput. Struct. 41(2), 292–302.
Amirouche  FML, Shareef  NH, and Xie  M (1993), Time variant analysis of rotorcraft system dynamics: An exploitation of vector-processors, J. Guid. Control Dyn. 16(1), 96–110.
Balling  C (1997), Object-oriented analysis of spatial multibody systems based on graph theory, Eng. Comput. 13, 211–221.
Schiehlen W (1991), Prospects of the German multibody system research project on vehicle dynamics simulation, Vehicle Syst Dyn, 20(Suppl), Proc of the 12th IAVSD Symp on Dyn of Vehicles on Roads from Tracks, Lyon, France, 5337–5350.
Daberkow A, Kreuzer E, Leister G, and Schielen W (1993), CAD modeling, multibody system formalisms and visualization-an integrated approach, Adv Multibody Syst Dyn, W Schielen (ed), Kluwer Academic Publ, Dordrecht, Netherlands.
Otter M, Hocke M, Daberkow A, and Leister G (1993), An object oriented data model for multibody systems, Adv Multibody Syst Dyn, W Schiehlen (ed), Kluwer Academic Publ, Netherlands, 19–48.
Koh  AS and Park  JP (1994), Object oriented dynamics simulator, Computational Mech., Berlin 14, 277–287.
Daberkow A and Schiehlen W (1994), Concept, development and implementation of DAMOS-C: The object oriented approach to multibody systems, Proc of the 1994 ASME Int Comput in Eng Conf and Exhibition, 2, Minneapolis MN, 937–951.
Anantharaman  M (1996), Flexible multibody dynamics-an object-oriented approach, Nonlinear Dyn. 9(1–2), 205–221.
Kunz  DL (1998), An object-oriented approach to multibody systems analysis, Comput. Struct. 69, 209–217.
Wasfy TM and Leamy MJ (2002), An object-oriented graphical interface for dynamic finite element modeling of belt-drives, Paper No DETC2002/MECH-34224, Proc of ASME 2002 DETC, Montreal Canada.
Tisell  C and Osborn  K (2000), A system for multibody analysis based on object-relational database technology, Adv. Eng. Software 31, 971–984.
Tisell  C and Osborn  K (2001), Using an extensible object-oriented query language in multibody system analysis, Adv. Eng. Software 32, 769–777.
Wasfy  TM and Noor  AK (2001), Object-oriented virtual reality environment for visualization of flexible multibody systems, Adv. Eng. Software 32(4), 295–315.
Weber B and Wittenburg J (1993), Symbolical programming in system dynamics, Adv Multibody Syst Dyn, W Schiehlen (ed), Kluwer Academic Publ, Netherlands, 153–172.
Schaechter  DB and Levinson  DA (1988), Interactive computerized symbolic dynamics for the dynamicist, J. Astronaut. Sci. 36(4), 365–388.
Valembois  RE, Fisette  P, and Samin  JC (1997), Comparison of various techniques for modelling flexible beams in multibody dynamics, Nonlinear Dyn. 12(4), 367–397.
Oden JT and Demkowicz L (1989), Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics, State-of-the-Art Surveys on Computational Mechanics, AK Noor and JT Oden, ASME, New York, 13, 441–467.
Khulief  YA (2001), Dynamic response calculation of spatial elastic multibody systems with high-frequency excitation, Multibody Syst. Dyn. 5, 55–78.
Ma Z-D and Perkins NC (2001), Modeling of track-wheel-terrain interaction for dynamic simulation of tracked vehicles: Numerical implementation and further results, Paper No DETC2001/VIB-21310, Proc of ASME 2001 DETC, Pittsburgh PA.
Elishakoff  I (1995), Essay on uncertainties in elastic and viscoelastic structures: From AM Freudenthal’s criticism to modern convex modeling, Comput. Struct. 56(6), 871–895.
Qiu  Z and Elishakoff  I (1998), Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis, Comput. Methods Appl. Mech. Eng. 152(3/4), 361–372.
Wasfy  TM and Noor  AK (1998), Application of fuzzy sets to transient analysis of space structures, Finite Elem. Anal. Design 29(3–4), 153–171.
Wasfy  TM and Noor  AK (1998), Finite element analysis of flexible multibody systems with fuzzy parameters, Comput. Methods Appl. Mech. Eng. 160(3–4), 223–244.
Book  WJ (1993), Controlled motion in an elastic world, ASME J. Dyn. Syst., Meas., Control 115, 252–261.
Bernard DE and Man GK (1989), Proc of 3rd Annual Conf on Aerospace Comput Control, JPL, Pasedena, CA, Publication 89–45.
Rao  SS, Pan  TS, and Venkayya  VB (1990), Modeling, control and design of flexible structures: A survey, Appl. Mech. Rev. 43(5), 99–117.
Yang  B and Mote  CD (1992), On time delay in noncolocated control of flexible mechanical systems, ASME J. Dyn. Syst., Meas., Control 114(3), 409–415.
Park  JH and Asada  H (1994), Dynamic analysis of noncollocated flexible arms and design of torque transmission mechanisms, ASME J. Dyn. Syst., Meas., Control 116, 201–207.
Rai  S and Asada  H (1995), Integrated structure/control design of high speed flexible robots based on time optimal control, ASME J. Dyn. Syst., Meas., Control 117(4), 503–512.
Ledesma  R and Bayo  E (1993), A non-recursive Lagrangian solution of the non-causal inverse dynamics of flexible multi-body systems: The planar case, Int. J. Numer. Methods Eng. 36(16), 2725–2741.
Ledesma  R and Bayo  E (1994), A Lagrangian approach to the non-causal inverse dynamics of flexible multibody systems: The three-dimensional Case, Int. J. Numer. Methods Eng. 37(19), 3343–3361.
Kokkinis  T and Sahrajan  M (1993), Inverse dynamics of a flexible robot arm by optimal control, ASME J. Mech. Des. 115, 289–293.
Chen  DC, Shabana  AA, and Rismantab-Sany  J (1994), Generalized constraint and joint reaction forces in the inverse dynamics of spatial flexible mechanical systems, ASME J. Mech. Des. 116(3), 777–784.
Rubinstein  D, Galili  N, and Libai  A (1996), Direct and inverse dynamics of a very flexible beam, Comput. Methods Appl. Mech. Eng. 131(3/4), 241–262.
Asada  H, Ma  ZD, and Tokumaro  H (1990), Inverse dynamics of flexible robot arms: modeling and computation for trajectory control, ASME J. Dyn. Syst., Meas., Control 112(2), 117–185.
Book  WJ, Maizza-Neto  O, and Whitney  DE (1975), Feedback control of two beam, two joint systems with distributed flexibility, ASME J. Dyn. Syst., Meas., Control 97(4), 424–431.
Berbyuk  VE and Demidyuk  MV (1984), Controlled motion of an elastic manipulator with distributed parameters, Mech. Solids 19(2), 57–66.
Cannon  RH and Schmitz  E (1984), Initial experiments on the end-point control of a flexible one-link robot, Int. J. Robot. Res. 3(3), 62–75.
Goldenberg  AA and Rakhsha  F (1986), Feedforward control of a single-link flexible robot, Mech. Mach. Theory 21(4), 325–335.
Chalhoub  NG and Ulsoy  AG (1987), Control of a flexible robot arm: experiment and theoretical results, ASME J. Dyn. Syst., Meas., Control 109(4), 299–309.
Bayo  E (1987), A finite-element approach to control the end-point motion of a single-link flexible robot, J. Rob. Syst. 4(1), 63–75.
Bayo  E (1989), Timoshenko versus Bernoulli-Euler beam theories for the inverse dynamics of flexible robots, Int. J. Robot Autom. 4(1), 53–70.
Bayo E and Moulin H (1989), An efficient computation of the inverse dynamics of flexible manipulators in the time domain, IEEE Robotics and Automation Conf, 710–715.
Bayo  E, Papadopoulos  P, Stubbe  J, and Serna  MA (1989), Inverse dynamics and kinematics of multi-link elastic robots: An iterative frequency domain approach, Int. J. Robot. Res. 8(6), 49–62.
Nicosia  S, Tomei  P, and Torrambe  A (1989), Hamiltonian description and dynamic control of flexible robots, J. Rob. Syst. 6(4), 345–361.
De Luca  A, Lucibello  P, and Ulivi  G (1989), Inversion techniques for trajectory control of flexible robot arms, J. Rob. Syst. 6(4), 325–344.
Sasiadek  JZ and Srinvasan  R (1989), Dynamic modeling and adaptive control of a Single-link flexible manipulator, J. Guid. Control Dyn. 12, 838–844.
Yuan  BS, Book  WJ, and Siciliano  B (1989), Direct adaptive control of a one-link flexible arm with tracking, J. Rob. Syst. 6(6), 663–680.
Yuan  BS, Book  WJ, and Huggins  JD (1993), Dynamics of flexible manipulator arms: Alternative derivation, verification and characteristics for control, ASME J. Dyn. Syst., Meas., Control 115, 394–404.
Castelazo  IA and Lee  H (1990), Nonlinear compensation for flexible manipulators, ASME J. Dyn. Syst., Meas., Control 112, 62–68.
Shamsa  K and Flashmer  H (1990), A class of discrete-time stabilizing controllers for flexible mechanical systems, ASME J. Dyn. Syst., Meas., Control 112, 55–61.
Chen  JS and Menq  CH (1990), Modeling and adaptive control of a flexible one-link manipulator, Robotica 8, 339–345.
Aoustin Y and Chevallerau C (1993), The singular perturbation control of two-flexible-link robot, Proc of 1993 IEEE Int Conf on Robotics and Automation, Atlanta GA, 737–742.
Kubica E and Wang D (1993), A fuzzy control strategy for a flexible single link robot, Proc of 1993 IEEE Int Conf on Robotics and Automation1 , 236–241.
Eisler  GR, Robinett  RD, Segalman  DJ, and Feddema  JD (1993), Approximate optimal trajectories for flexible-link manipulator slewing using recursive quadratic programming, ASME J. Dyn. Syst., Meas., Control 115, 405–410.
Xia  JZ and Menq  CH (1993), Real time estimation of elastic deformation for end-point control of flexible two-link manipulators, ASME J. Dyn. Syst., Meas., Control 115, 385–393.
Levis FL and Vandergrift M (1993), Flexible robot arm control by a feedback linearization/singular perturbation approach, Proc of IEEE Int Conf on Robotics and Automation, Atlanta GA, 729–736.
Kwon  DS and Book  WJ (1994), A time-domain inverse dynamic tracking control of a single-link flexible manipulator, ASME J. Dyn. Syst., Meas., Control 116, 193–200.
Yigit  AS (1994), On the stability of PD control for a two-link rigid-flexible manipulator, ASME J. Dyn. Syst., Meas., Control 116, 208–215.
Hu  FL and Ulsoy  AG (1994), Force and motion control of a constrained flexible robot arm, ASME J. Dyn. Syst., Meas., Control 116, 336–343.
Meirovitch  L and Lim  S (1994), Maneuvering and control of flexible space robots, J. Guid. Control Dyn. 17(3), 520–528.
Choi  SB, Cheong  CC, Thompson  BS, and Gandhi  MV (1994), Vibration control of flexible linkage mechanisms using piezoelectric films, Mech. Mach. Theory 29(4), 535–546.
Cho  SB, Thompson  BS, and Gandhi  MV (1995), Experimental control of a single link flexible arm incorporating electro-rheological fluids, J. Guid. Control Dyn. 19(4), 916–919.
Chiu  HT and Cetinkunt  S (1995), Trainable neural network for mechanically flexible systems based on nonlinear filtering, J. Guid. Control Dyn. 18(3), 503–507.
Lammerts  IMM, Veldpaus  FE, and Kok  JJ (1995), Adaptive computed reference computed torques control of flexible robots, ASME J. Dyn. Syst., Meas., Control 117(1), 31–36.
Gawronski  W, Ih  CHC, and Wang  SJ (1995), On dynamics and control of multi-link flexible manipulators, ASME J. Dyn. Syst., Meas., Control 117, 134–142.
Meirovitch  L and Chen  Y (1995), Trajectory and control optimization for flexible space robots, J. Guid. Control Dyn. 18(3), 493–502.
Milford  RI and Asokanthan  SF (1996), Experimental on-Line frequency domain identification and adaptive control of a flexible slewing beam, ASME J. Dyn. Syst., Meas., Control 118, 59–65.
Yang  JH, Lian  FL, and Fu  LC (1997), Nonlinear adaptive control for flexible-link manipulators, IEEE Trans. Rob. Autom. 13(1), 140–147.
Aoustin  Y and Formalsky  A (1997), On the synthesis of a nominal trajectory for control law of a one-link flexible arm, Int. J. Robot. Res. 16(1), 36–46.
Mordfin TG and Tadikonda SSK (2001), Modeling controlled articulated flexible systems, Part I: Theory, Part II: Numerical investigation, Paper No DETC2001/VIB-21344,21345, Proc of ASME 2001 DETC, Pittsburgh PA.
Mimmi  G and Pennacchi  P (2001), Pre-shaping motion input for a rotating flexible link, Int. J. Solids Struct. 38, 2009–2023.
Book  WJ (1979), Analysis of massless elastic chains with servo controlled joints, ASME J. Dyn. Syst., Meas., Control 101, 187–192.
Pfeiffer  F (1989), A feedforward decoupling concept for the control of elastic robots, J. Rob. Syst. 6(4), 407–416.
Jiang  L, Chernuka  MW, and Pegg  NG (1994), Numerical simulation of spatial mechanisms and manipulators with flexible links, Finite Elem. Anal. Design 18(1/3), 121–128.
Ghazavi  A and Gordaninejad  F (1995), A comparison between the control of a flexible robot arm constructed from advanced composite materials versus aluminum, Comput. Struct. 54(4), 621–632.
Baruh  H and Tadikonda  SSK (1989), Issues in the dynamics and control of flexible robot manipulators, J. Guid. Control Dyn. 12(5), 659–671.
Cetinkunt  S and Wen-Lung  Y (1991), Closed-loop behavior of a feedback-controlled flexible arm: A comparative study, Int. J. Robot. Res. 10(3), 263–275.
Zuo  K, Drapeau  V, and Wang  D (1995), Closed loop shaped-input strategies for flexible robots, Int. J. Robot. Res. 14(5), 510–529.
Ge  SS, Lee  TH, and Zhu  G (1996), Energy-based robust controller design for multi-link flexible robots, Mechatronics 6(7), 779–798.
Ghanekar  M, Wang  DWL, and Heppler  GR (1997), Scaling laws for linear controllers of flexible link manipulators characterized by nondimensional groups, IEEE Trans. Rob. Autom. 13(1), 117–127.
Banerjee  AK and Singhose  WE (1998), Command shaping in tracking control of a two-link flexible robot, J. Guid. Control Dyn. 21(6), 1012–1015.
Xu  WL, Yang  TW, and Tso  SK (2000), Dynamic control of a flexible macro-micro manipulator based on rigid dynamics with flexible state sensing, Mech. Mach. Theory 35(1), 41–53.
De Luca  A and Siciliano  B (1993), Regulation of flexible arms under gravity, IEEE Trans. Rob. Autom. 9(4), 463–467.
Yim  W and Singh  SN (1995), Inverse force and motion control of constrained elastic robots, ASME J. Dyn. Syst., Meas., Control 117(3), 374–383.
Ider  SK (1995), Open-loop flexibility control in multibody systems dynamics, Mech. Mach. Theory 30(6), 861–870.
Schafer  BE and Holzach  H (1985), Experimental research on flexible beam modal control, J of Guidance 8(5), 597–604.
Yen GG (1995), Optimal tracking control in flexible pointing structures, Proc of IEEE Int Conf on Syst, Man and Cybernetics, 5 , 4440–4445.
Yen  GG (1996), Distributive vibration control in flexible multibody dynamics, Comput. Struct. 61(5), 957–965.
Krishma  R and Bainum  PM (1985), Dynamics and control of orbiting flexible structures exposed to solar radiation, J of Guidance 8(5), 591–596.
Kwak  MK and Meirovitch  L (1992), New approach to the maneuvering and control of flexible multibody systems, J. Guid. Control. Dyn. 15(6), 1342–1353.
Bennett  WH, LaVigna  C, Kwatny  HG, and Blankenship  G (1993), Nonlinear and adaptive control of flexible space structures, ASME J. Dyn. Syst., Meas., Control 115(1), 86–94.
Kelkar  AG, Joshi  SM, and Alberts  TE (1995), Passivity-based control of nonlinear flexible multibody systems, IEEE Trans. Autom. Control 40(5), 910–915.
Kelkar  AG, Joshi  SM, and Alberts  TE (1995), Dissipative controllers for nonlinear multibody flexible space systems, J. Guid. Control Dyn. 18(5), 1044–1052.
Singhose  WE, Banerjee  AK, and Seering  WP (1997), Slewing flexible spacecraft with deflection-limiting input shaping, J. Guid. Control Dyn. 20(2), 291–298.
Fisher  S (1989), Application of actuators to control beam flexure in a large space structure, J. Guid. Control Dyn. 12(6), 874–879.
Li  Z and Bainum  PM (1992), Momentum exchange: feedback control of flexible spacecraft maneuvers and vibration, J. Guid. Control Dyn. 15(6), 1354–1360.
Su  TJ, Babuska  V, and Craig  RR (1995), Substructure-based controller design method for flexible structures, J. Guid. Control Dyn. 18(5), 1053–1061.
Kelkar  AG and Joshi  SM (1996), Global stabilization of flexible multibody spacecraft using quaternion-based nonlinear law, J. Guid. Control Dyn. 19(5), 1186–1188.
Maund M, Helferty J, Boussalis J, and Wang S (1992), Direct adaptive control of flexible space structures using neural networks, Proc of Int Joint Conf on Neural Networks, 3, 844–849.
Cooper PA, Garrison Jr, JL, Montgomery C, Wu SC, Stockwell AE, and Demeo ME (1994), Modelling and simulation of space station freedom berthing dynamics and control, NASA TM 109151.
Mosier G, Femiano M, Kong H, Bely P, Burg R, Redding D, Kissil A, Rakoczy J, and Craig L (1999), An integrated modeling environment for systems-level performance analysis of the next generation space telescope, Space Telescopes and Instruments V, SPIE 3356.
Liao  CY and Sung  CK (1993), An elastodynamic analysis and control of flexible linkages using piezoceramic sensors and actuators, ASME J. Mech. Des. 115, 658–665.
Liao  WH, Chou  JH, and Horng  IR (1997), Robust vibration control of flexible linkage mechanisms using piezoelectric films, Smart Mater. Struct. 6, 457–463.
Tu  Q, Rastegar  J, and Singh  JR (1994), Trajectory synthesis and inverse dynamics model formulation and control of tip motion of a high performance flexible positioning system, Mech. Mach. Theory 29(7), 929–968.
Yang JH, Liu FC, and Fu LC (1994), Nonlinear control of flexible link manipulators, Proc IEEE Int Conf on Robotics and Automation, 1, 327–332.
Zeinoum I and Khorrami F (1994), Fuzzy based adaptive control for flexible-link manipulators actuated by piezoceramics, Proc of IEEE Int Conf on Robotics and Automation, 1, 643–648.
Bayo  E, Movaghar  R, and Medus  M (1988), Inverse dynamics of a single-link flexible robot: analytical and experimental results, IEEE Trans. Rob. Autom. 3, 150–157.
Williams  DW and Turcic  DA (1992), An inverse kinematic analysis procedure for flexible open-loop mechanisms, Mech. Mach. Theory 27(6), 701–714.
Pham  CM, Khalil  W, and Chevallereau  C (1992), A nonlinear model-based control of flexible robots, Robotica 11, 73–82.
Modi VJ, Lakshmanan PK, and Misra AK (1990), Dynamics and control of tethered spacecraft: A brief overview, AIAA Dyn Specialist Conf, Long Beach CA, 42–57.
Thompson  BS and Tao  X (1995), A note on the experimentally-determined elastodynamic response of a slider-crank mechanism featuring a macroscopically-smart connecting-rod with ceramic piezoelectric actuators and strain gauge sensors, J. Sound Vib. 187(4), 718–723.
Maiber  P, Enge  O, Freudenberg  H, and Kielau  G (1997), Electromechanical interactions in multibody systems containing electromechanical drives, Multibody Syst. Dyn. 1(3), 201–302.
Cardona  A and Geradin  M (1990), Modeling of a hydraulic actuator in flexible machine dynamics simulation, Mech. Mach. Theory 25(2), 193–208.
Sluzalec A (1992), Introduction to Nonlinear Thermomechanics: Theory and Finite Element Solutions, Springer-Verlag, London.
Krishma  R and Bainum  PM (1984), Effect of solar radiation disturbance on a flexible beam in orbit, AIAA J. 22, 677–682.
Done  GTS (1996), Past and future progress in fixed and rotary wing aeroelasticity, Aeronaut. J. 100, 269–279.
Conca  C, Osses  A, and Planchard  J (1997), Added mass and damping in fluid-structure interaction, Comput. Methods Appl. Mech. Eng. 146(3/4), 387–405.
Ortiz  JL, Barhorst  AA, and Robinett  RD (1998), Flexible multibody systems-fluid interaction, Int. J. Numer. Methods Eng. 41, 409–433.
Rumold  W (2001), Modeling and simulation of vehicles carrying liquid cargo, Multibody Syst. Dyn. 5, 351–374.
Nomura  T (1994), ALE finite element computations of fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng. 112, 291–308.
Johnson  AA and Tezduyar  TE (1994), Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng. 119, 73–94.
Mittal  S and Tezduyar  TE (1994), Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. Methods Appl. Mech. Eng. 112, 253–282.
Casadei  F and Halleux  JP (1995), An algorithm for permanent fluid-structure interaction in explicit transient dynamics, Comput. Methods Appl. Mech. Eng. 128, 231–289.
Benek JA, Bunning PG, and Steger JL (1985), A 3-D chimera grid embedding technique, AIAA-85-1523, AIAA 7th Comput Fluid Dyn Conf, Cincinnati OH.
Ahmad JU, Shanks SP, and Buning PG (1993), Aerodynamics of powered missile separation from F/A-18 aircraft, AIAA-93-0766, AIAA 31st Aerospace Sci Meeting, Reno NV.
Buning  PG, Wong  T-C, Dilley  AD, and Pao  JL (2001), Computational fluid dynamics prediction of hyper-x stage separation aerodynamics, J. Spacecr. Rockets 38(6), 820–827.
Loewy  RG (1997), Recent developments in smart structures with aeronautical applications, Smart Mater. Struct. 6, 11–42.
Matsuzak  Y (1997), Smart structures research in Japan, Smart Mater. Struct. 6, 1–10.
Kral  R and Kreuzer  E (1999), Multibody systems and fluid-structure interactions with application to floating structures, Multibody Syst. Dyn. 3(1), 65–83.
Sankar  S, Ranganathan  R, and Rakheja  S (1992), Impact of dynamic fluid slosh loads on the directional response of tank vehicles, Veh. Syst. Dyn. 21, 385–404.
Noor  AK and Wasfy  TM (2001), Simulation of physical experiments in virtual environments, Eng. Comput. 18(3–4), 515–538.
Lynch JD and Vanderploeg MJ (1993), “Interactive environment for multibody simulation,” Proc of 19th Annual ASME Des Automation Conf, Part 2, DEv65, Albuquerque NM, 569–582.
Hardell  C (1996), An integrated system for computer aided design and analysis of multibody systems, Eng. Comput. 12, 23–33.
Haug EJ (1987), Design sensitivity analysis of dynamic systems, Computer Aided Design: Structural and Mechanical Systems, CA Mota-Soares (ed), Springer-Verlag, Berlin.
Bestle  D and Eberhard  P (1992), Analyzing and optimizing multibody systems, Mech. Struct. Mach. 20(1), 67–92.
Bestle D (1996), State of the art and new trends in multibody dynamics, Computational Methods in Applied Sciences 96, 3rd ECCOMAS Computational Fluid Dynamics Conf and 2nd ECCOMAS Conf on Numerical Methods in Eng, 426–432.
Thornton  WA, Willmert  KD, and Khan  MR (1979), Mechanism optimization via optimality criterion techniques, ASME J. Mech. Des. 101, 392–397.
Cleghorn  WL, Fenton  RG, and Tabarrok  B (1981), Optimum design of high-speed flexible mechanisms, Mech. Mach. Theory 16(4), 399–406.
Zhang  C and Grandin  HT (1983), Optimum design of flexible mechanisms, ASME J. Mech., Transm., Autom. Des. 105, 267–272.
Hill  TC and Midha  A (1990), A graphical, user-driven Newton-Raphson technique for use in the analysis and design of compliant mechanisms, ASME J. Mech. Des. 112, 123–130.
Liou  FW and Lou  CJ (1992), An efficient design approach for flexible mechanisms, Comput. Struct. 44(5), 965–971.
Liou  FW and Liu  JD (1992), Optimal design of flexible mechanisms using a parametric approach, Comput. Struct. 45(5/6), 965–971.
Liou  FW and Liu  JD (1994), A parametric study on the design of multibody systems with elastic members, Mech. Mach. Theory 29(8), 1219–1232.
Liou  FW and Patra  AK (1994), Advisory system for the analysis and design of deformable beam-type multibody systems, Mech. Mach. Theory 29(8), 1205–1218.
Woytowitz  PJ and Hight  TK (1994), Optimization of controlled flexible mechanisms using dynamic nonlinear finite element analysis, Mech. Mach. Theory 29(7), 941–958.
Liu  X (1996), Sensitivity analysis of constrained flexible multibody systems with stability considerations, Mech. Mach. Theory 31(7), 859–864.
Dias  JMP and Pereira  MS (1997), Sensitivity analysis of rigid-flexible multibody systems, Multibody Syst. Dyn. 1(3), 303–322.
Ider  SK and Oral  S (1996), Optimum design of flexible multibody systems with dynamic behavior constraints, Eur. J. Mech. A/Solids 15(2), 351–359.
Oral  S and Ider  SK (1997), Optimum design of high-speed flexible robotic arms with dynamic behavior constraints, Comput. Struct. 65(2), 255–259.
Dias  JP and Pereira  MS (1994), Design for vehicle crashworthiness using multibody dynamics, Int. J. Veh. Des. 15, 563–577.
Hulbert  GM, Michelena  N, Ma  Z-D, Tseng  F-C, Fellini  R, Scheffer  C, Choi  KK, Tang  J, Orgarevic  V, and Hardee  E (1999), Case study for network-distributed collaborative design and simulation: extended life optimization for M1 Abrams tank road arm, Mech. Struct. Mach. 27(4), 423–451.
Alexander  RM and Lawrence  KL (1974), An experimental investigation of the dynamic response of an elastic mechanism, ASME J. Eng. Ind. Feb, 268–274.
Sung  CK, Thompson  BS, Xing  TM, and Wang  CH (1986), An experimental study on the nonlinear elastodynamic response of linkage mechanisms, Mech. Mach. Theory 21(2), 121–133.
Sinha SC, Waites HB, and Book WJ (1992), Dynamics of flexible multibody systems: Theory and experiment, ASME Publication, AMD-141, DSC-37.
Giovagnomi  M (1994), Numerical and experimental analysis of a chain of flexible bodies, ASME J. Dyn. Syst., Meas., Control 116(1), 73–80.
Caracciolo R, Gasparetto A, and Trevisani A (2001), Experimental validation of a dynamic model for flexible link mechanisms, DETC2001/VIB-21354, Proc of the ASME DETC.
Lovekin  D, Heppler  G, and McPhee  J (2000), Design and analysis of a facility for free-floating flexible manipulators, Trans. Can. Soc. Mech. Eng. 24(2), 375–390.
Gu M and Piedboeuf J-C (2002), Three-dimensional kinematic analysis and verification for a flexible robot arm, Paper No DETC2002/MECH-34260, ASME Computers and Information in Eng Conf, Proc of ASME 2002 DETC.
Gu M and Piedboeuf J-C (2002) Determination of endpoint position and force of flexible manipulator via strain measurement, Queen’s Univ, Kingston, Ontario Canada, CSME Forum.
Mitsugi  J, Ando  K, Senbokuya  Y, and Meguro  A (2000), Deploymentanalysis of large space antenna using flexible multibody dynamics simulation, Acta. Astron. 47(1), 19–26.
Dai  H, Hafner  JH, Rinzler  AG, Colbert  DT, and Smalley  RE (1996), Nanotubes as nanoprobes in scanning probe microscopy, Nature (London) 384, 147–151.
Srivastava  D, Menon  M, and Cho  K (2001), Computational nanotechnology with carbon nanotubes and fullerenes, Comput. Sci. Eng. Jul/Aug 42–55.
Srivastava  D (1997), A phenomenological model of the rotation dynamics of carbon nanotube gears with laser electric fields, Nanotechnology 8, 186–192.
Metaxas D (1997), Physics-based Deformable Models: Applications to Computer Vision, Graphics and Medical Imaging, Kluwer Academic Publ, Dordrecht.
Adams  GG and Nosonovsky  M (2000), Contact modeling-forces, Tribol. Int. 33(5–6), 431–442.
Karpenko  YA and Akay  A (2001), A numerical model of friction between rough surfaces, Tribol. Int. 34(8), 531–545.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In