Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions*

[+] Author and Article Information
BA Schrefler

Department of Structural and Transportation Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Bernhard.schrefler@unipd.it

Appl. Mech. Rev 55(4), 351-388 (Jul 30, 2002) (38 pages) doi:10.1115/1.1484107 History: Online July 30, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Svendsen  B and Hutter  K (1995), On the thermodynamics of a mixture of isotropic materials with constraints, Int. J. Eng. Sci. 33, 2021–2054.
de Boer  R (1996), Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory, Appl. Mech. Rev. 49(4), 201.
Woltman R (1794), Beitraege zur Hydraulischen Architektur, Dritter Band, Johann Christian Dietrich, Goettingen.
Delesse  A (1848), Pour determiner la composition des roches, Annales des Mines, 3 série 13, 379–388.
Fick  A (1855), Ueber diffusion, Annalen der Physik und Chemie 94, 59–86.
Darcy H (1856), Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris.
Stefan   J (1871), Ueber das Gleichgewicht und die Bewegung, insbesondere die Diffusion von Gasmengen, Sitzungsber Akad Wiss Math-Naturwiss KI Abt II a, Wien 63, 63–124.
Fillunger  P (1913), Der Auftrieb in Talsperren, Oesterr. Wochenschrift fuer den oeffentl. Baudienst, 19, 532–556, 191319567–570.
von Terzaghi  K (1923), Die Berechnung der Durchlaessigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen, Sitzungsber Akad Wiss, Math-Naturwiss KI Abt IIa, 132, No. 3/4, pp. 125–138.
Biot  MA (1941), General theory of three-dimensional consolidation, J. Appl. Phys. 12, 155–164.
Biot  MA (1956), General solution of the equation of elasticity and consolidation for a porous material, ASME J. Appl. Mech. 23, 91–96.
Coussy O (1995), Mechanics of Porous Continua, J Wiley, Chichester.
Morland  LW (1972), A simple constitutive theory for fluid saturated porous solids, J. Geophys. Res. 77, 890–900.
Goodman  MA and Cowin  SC (1972), A continuum theory for granular materials, Arch. Ration. Mech. Anal. 44, 249–266.
Sampaio  R and Williams  WO (1979), Thermodynamics of diffusing mixtures, J. Mec. 18, 19–45.
Bowen  RM (1982), Compressible porous media models by use of theories of mixture, Int. J. Eng. Sci. 20, 697–735.
Bowen  RM (1980), Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci. 18, 1129–1148.
Passman SL, Nunziato JW, and Walsh EK (1984), A theory of multiphase mixtures Rational Thermodynamics, C Truesdell (ed), Springer Verlag, Berlin.
Hassanizadeh  M and Gray  WG (1979), General conservation equations for multiphase systems: 1 Averaging procedure, Adv. Water Resour. 2, 131–144.
Hassanizadeh  M and Gray  WG (1979), General conservation equations for multiphase systems: 2 Mass, momenta, energy and entropy equations, Adv. Water Resour. 2, 191–203.
Whitaker S (1980), Heat and mass transfer in granular porous media, Advances in Drying1 , Hemisphere, New York.
Auriault  JL (1987), Non saturated deformable porous media: Quasistatics, Transp. Porous Media 2, 45–64.
Auriault JL (1991) Dynamic behavior in porous media, Transport Processes in Porous Media, J Bear and MY Corsapcioglu (eds), Kluwer, Dordrecht, 471–519.
Hassanizadeh  M and Gray  WG (1980), General conservation equations for multiphase systems: 3 Constitutive theory for porous media flow, Adv. Water Resour. 3, 25–40.
Hassanizadeh  SM and Gray  WG (1990), Mechanics and thermodynamics of multiphase flow in porous media including interphase transport, Adv. Water Resour. 13, 169–186.
Zienkiewicz OC, Chan A, Pastor M, Schrefler BA, and Shiomi T (1999), Computational Soil Dynamics with Special Reference to Earthquake Engineering, J Wiley, Chichester.
de Groot SR and Mazur P (1984), Non-Equilibrium Thermodynamics, Dover, New York.
Eu BC (1992), Kinetic Theory and Irreversible Thermodynamics, J Wiley, New York.
Kuiken GDC (1994), Thermodynamics of Irreversible Processes, J Wiley, Chichester, (UK).
Burshtein AI (1996), Introduction to Thermodynamics and Kinetic Theory of Matter, J Wiley, New York.
Bear J (1988), Dynamics of Fluids in Porous Media, Dover, New York.
Bachmat  Y and Bear  J (1986), Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach, Transp. Porous Media 1, 213–240.
Bear  J and Bachmat  Y (1986), Macroscopic modeling of transport phenomena in porous media. 2: Applications to mass, momentum and energy transport, Transp. Porous Media 1, 241–269.
Kaviany M (1991), Principles of Heat Transfer in Porous Media, Springer Verlag, New York.
Nozad  I, Carbonell  RG, and Whitaker  S (1985), Heat conduction in multiphase systems-I: Theory and experiment for two-phase systems, Chem. Eng. Sci. 40(5), 843–855.
Auriault  JL (1983), Effective macroscopic description for heat conduction in periodic composites, Int. J. Heat Mass Transf. 26(6), 861–869.
Auriault  JL and Rover  P (1993), Double conductivity media: a comparison between phenomenological and homogenization approaches, Int. J. Heat Mass Transf. 36(10), 2613–2621.
Stauffer D and Aharony A (1992), Introduction to the Percolation Theory, 2nd edition, Taylor & Francis, London.
Coleman  BD and Noll  W (1963), The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal. 13, 168–178.
Gray  WG and Hassanizadeh  SM (1991), Paradoxes and realities in unsaturated flow theory, Water Resour. Res. 27, 1847–1854.
Gray  WG and Hassanizadeh  SM (1991), Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27, 1855–1863.
Baggio  P, Bonacina  C, and Schrefler  BA (1997), Some considerations on modelling heat and mass transfer in porous media, Transp. Porous Media 28, 233–281.
de Boer R, Ehlers W, Kowalski S, and Plischka J (1991), Porous media, a survey of different approaches, Forschungsbericht aus dem Fachbereich Bauwesen54 , Universität-Gesamthochschule Essen.
Achanta  S, Cushman  JH, and Okos  MR (1994), On multicomponent, multiphase thermomechanics with interfaces, Int. J. Eng. Sci. 32, 1717–1738.
Lewis RW and Schrefler BA (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation in Porous Media, J Wiley, Chichester.
Bennethum  LS and Cushman  JH (1996), Multiscale, hybrid mixture theory for swelling systems-I: Balance laws, Int. J. Eng. Sci. 34(2), 125–145.
Bennethum  LS and Cushman  JH (1996), Multiscale, hybrid mixture theory for swelling systems-II: Constitutive theory, Int. J. Eng. Sci. 34(2), 147–169.
Bennethum  LS and Cushman  JH (1999), Coupled solvent and heat transport of a mixture of swelling porous particles and fluids: single time-scale problem, Transp. Porous Media 36, 211–244.
Wilmanski  K (1995), Lagrangean model of two phase porous material, J. Non-Equil. Thermodyn. 20, 50–77.
Gray  WG and Schrefler  BA (2001), Thermodynamic approach to effective stress in partially saturated porous media, Eur. J. Mech. A/Solids 20, 521–538.
Gray WG (1999), Element of a systematic procedure for the derivation of macroscale conservation equations for multiphase flow in porous media, Kinetic and Continuum Theories of Granular and Porous Media, K Hutter and K Wilmanski (eds), CISM Courses and Lectures, No 400, Springer Verlag Wien, 67–129.
Gray  WG (1999), Thermodynamics and consitutive theory for multiphase porous-media flow considering internal geometric constraints, Adv. Water Resour. 22(5), 521–547.
Galka  A, Telega  JJ, and Wojnar  R (1999), Macroscopic equations for nonstationary flow of stokesian fluid through porous elastic medium, Arch. Mech. 51, 243–274.
Bennethum  LS, Murad  MA, and Cushman  JH (2000), Macroscale thermodynamics and the chemical potential for swelling porous media, Transp. Porous Media 39(2), 187–225.
Bennethum SL (2001), private communication.
Hassanizzadeh  SM (1986), Derivation of basic equations of mass transport in porous media, Part 2: Generalized Darcy’s and Fick’s law, Adv. Water Resour. 9, 207–222.
Bishop  AW (1959), The principle of effective stress, Tek. Ukeblad 39, 859–863.
Hutter  K, Laloui  L, and Vulliet  L (1999), Thermodynamically based mixture models of saturated and unsaturated soils, Mech. Cohesive-Frict. Mater. 4, 295–338.
Schrefler  BA and Gawin  D (1996), The effective stress principle: Incremental or finite form?, I J Num Anal Methods Geom 20, 785–814.
Bolzon  G and Schrefler  BA (1995), State surfaces of partially saturated soils: an effective pressure approach, Appl. Mech. Rev. 48(10), 643–649.
Ehlers  W (1995), A single surface yield function for geomaterials, Arch. Appl. Mech. 65, 246–259.
Fredlund  DG, Morgenstern  NR, and Widger  RA (1978), The shear strength of unsaturated soil, Can. Geotech. J. 15, 313–321.
Gens  A (1996), Constitutive modelling, application to compacted soil, Proc 1st Int Conf on Unsaturated Soils, 3, EE Alonso and P Delage (eds), Balkema, 1179–1200.
Alonso  EE, Gens  A, and Josa  A (1990), A constitutive model for partially saturated soils, Geotechnique 40(3), 403–430.
Roscoe KH and Burland JB (1968), On the generalized stress-strain behavior of ‘wet’ clay, Engineering Plasticity, J Heyman and FA Leckie (eds) Cambridge Univ Press, Cambridge, 535–609.
Kogho  Y, Nakano  M, and Myazaki  T (1993), Theoretical aspects of constitutive modelling for unsaturated soils, Soils Found. 33(4), 49–63.
Modaressi A and Abou-Bekr N (1994), A unified approach to model the behavior of saturated and unsaturated soils, Proc of 8th Int Conf Computer Methods and Advances in Geomechanics, Balkema, 1507–1513.
Hujeux JC (1985), Une loi de comportment pour le chargement cyclique des sols, Génie parasismique V Davidouvici (ed) Presses de l’ENPC, 287–303.
di Prisco  C and Jommi  C (1994), Un semplice approccio teorico per la modellazione del comportamento meccanico dei terreni granulari parzialmente saturi. Convegno sul tema: Il ruolo dei fluidi nei problemi di Ingegneria Geotecnica, Mondovı̀ 6-7/9 1994 1, Parte II, pp. 167–188.
di Prisco C, Nova R, and Lanier J (1993), A mixed isotropic-kinematic hardening constitutive law for sand, Modern Approaches to Plasticity, D Kolymbas (ed), Elsevier App Sci, 83–124.
Cui  YP and Delage  P (1996), Yielding and plastic behavior of an unsaturated compacted silt, Geotechnique 46(2), 291–311.
Yasufuku  N, Murata  H, and Hyodo  M (1991), Yield characteristics of anisotropically consolidated sand under low and high stresses, Soils Found. 31(1), 95–109.
Pakzad M (1995), Modelisation du comportement hydro-mecanique des argiles gonflantes a faible porosité, PhD thesis, Université d’Orleans.
Wheeler  S and Sivakumar  V (1995), An elasto-plastic critical state framework for unsaturated soil, Geotechnique 45(1), 35–53.
Bolzon  G, Schrefler  BA, and Zienkiewicz  OC (1996), Elastoplastic soil constitutive laws generalized to semisaturated states, Geotechnique 46(2), 279–289.
Pastor  M, Zienkiewicz  OC, and Chan  AHC (1990), Generalized plasticity and the modelling of soil behavior, Int. J. Numer. Analyt. Meth. Geomech. 14, 151–190.
Geiser F (1999), Comportement mécanique d’un limon non saturé, PhD thesis, 1942, Civil Eng, Dept, EPFL, Lausanne.
Delage P, Schroeder C, and Cui YJ (1996), Subsidence and capillary effects in chalk, Proc Eurock’96, Balkema, Rotterdam, 1291–1298.
Nova R (1982), A constitutive model for soil under monotonic and cyclic loading, from Soil Mechanics-Transient and Cyclic loads, GN Pande and OC Zienkiewicz (eds), Wiley, Chichester, 343–375.
Laloui L, Geiser F, Vulliet L, Li XL, Bolle A, and Charlier R (1997), Characterization of the mechanical behavior of an unsaturated sandy silt, Proc of XVI Int Conf on Soil Mech and Found Eng, Hamburg, 347–350.
Fredlund  DG and Morgenstern  NR (1977), Stress state variables for unsaturated soils, J. Geotech. Eng. 103, NoGT5, 447–466.
Gawin  D, Baggio  P, and Schrefler  BA (1995), Coupled heat, water and gas flow in deformable porous media, Int. J. Numer. Methods Fluids 20, 969–987.
Hassanizadeh SM and Gray WG (1997), Recent advance in theories of two-phase flow in porous media, Fluid Transport in Porous Media, J Prieur du Plessis (ed), Comput Mech Publ, Southampton-Boston, 105–160.
Sandhu  RS and Wilson  EL (1969), Finite element analysis of flow in saturated porous media, J. Eng. Mech. Div. 95(EM3), 641–5224.
Schiffman  RL, Chen  ATF, and Jordan  JC (1969), An analysis of consolidation theories, J. Soil Mech. Found. Div. 95(SM1), 285–312.
Christian  JT and Boehmer  JW (1970), Plane strain consolidation by finite elements, J. Soil Mech. Found. Div. 96(SM4), 1435–1457.
Hwang  CT, Morgenstern  NR, and Murray  DW (1971), On solution of plane strain consolidation problems by finite element methods, Can. Geotech. J. 8, 109–118.
Yokoo  Y, Yamagata  K, and Nagaoka  H (1971), Finite element method applied to Biot’s consolidation theory, soils and foundation, Japanese Soc. Soil Mech. Found. Eng. 11(10), 29–46.
Ghaboussi  J and Wilson  EL (1973), Flow of compressible fluid in porous elastic media, Int. J. Numer. Methods Eng. 5, 419–442.
Lewis  RW, Roberts  GK, and Zienkiewicz  OC (1976, A non-linear flow and deformation analysis of consolidation problems, Numerical Methods in Geomechanics, CS Desai (ed), ASCE 2, 1106–1118.
Schrefler  BA, Lewis  RW, and Norris  VA (1977), A case study of surface subsidence of the Polesine area, Int. J. Numer. Analyt. Meth. Geomech. 1, 377–86.
Small  JC, Booker  JR, and Davis  EH (1976), Elastoplastic consolidation of soil, Int. J. Solids Struct. 12, 431–448.
Runesson K (1978), On nonlinear consolidation of soft clay, Thesis, Dept of Struct Mech, Chalmers Univ of Tech, Goeteborg.
Desai CS and Siriwardane THJ (1979), Subsidence due to consolidation including nonlinear behavior, Evaluation and Prediction of Subsidence, SK Saxena (ed), ASCE, New York, 500–515.
Zienkiewicz OC, Humpheson C, and Lewis RW (1977), A unified approach to soil mechanics problems including plasticity and visco-plasticity, Ch 4, Finite Elements in Geomechanics, G Gudehus (ed), Wiley, London 151–177.
Prevost  JH (1981), Consolidation of anelastic porous media, J. Eng. Mech. Div. 107(EM1), 169–186.
Carter  JP, Booker  JR, and Small  JC (1979), The analysis of finite elastoplastic consolidation, Int. J. Numer. Analyt. Meth. Geomech. 2, 107–129.
Norris VA (1980), The elasto-plastic analysis of soil consolidation with special reference to kinematic hardening, PhD thesis, Univ College of Swansea.
Cividini A and Gioda G (1982), Compatible and equilibrium FE for soil consolidation: A preliminary comparison, Numerical Methods in Geomechanics Z Eisenstein (ed), AA Balkema, 297–306.
Zienkiewicz OC (1982), Basic formulation of static and dynamic behavior of soil and other porous materials, Numerical Methods in Geomechanics, JB Martins (ed), D Reidl Pub Co, 39–57.
Zienkiewicz  OC and Shiomi  T (1984), Dynamic behavior of saturated porous media: The generalized Biot formulation and its numerical solution, Int. J. Numer. Analyt. Meth. Geomech. 8, 71–96.
Prevost  JH, Abdel-Ghaffar  AM, and Lacy  SJ (1985), Nonlinear dynamic analysis of an earth dam, J. Geotech. Eng. 111(7), 882–897.
Ehlers  W and Kubik  J (1994), On finite dynamic equations for fluid-saturated soils, Acta Mech. 105, 101–117.
Safai  NM and Pinder  GF (1979), Vertical and horizontal land deformation in a desaturating porous medium, Adv. Water Resour. 2, 19–25.
Schrefler BA and Simoni L (1988), A unified approach to the analysis of saturated-unsaturated elastoplastic porous media, Numerical Methods in Geomechanics, G Swoboda (ed), A Balkema, 205–212.
Zienkiewicz  OC, Chan  AHC, Pastor  M, Paul  DK, and Shiomi  T (1990), Static and dynamic behavior of soils: a rational approach to quantitative solutions. I. Fully saturated problems, Proc. R. Soc. London, Ser. A 429, 285–309.
Zienkiewicz  OC, Xie  YM, Schrefler  BA, Ledesma  A, and Bicanic  N (1990), Static and Dynamic behavior of soils: A rational approach to quantitative solutions. II. Semi-saturated problems, Proc. R. Soc. London, Ser. A 429, 311–321.
Meroi  E, Schrefler  BA, and Zienkiewicz  OC (1995), Large strain static and dynamic semi-saturated soil behavior, Int. J. Numer. Analyt. Meth. Geomech. 19(2), 81–106.
Morgan  K, Lewis  RW, and White  IR (1980), The mechanism of ground surface subsidence above competing multiphase reservoirs and their analysis by the finite element method, Appl. Math. Model. 4, 215–224.
Li  X, Zienkiewicz  OC, and Xie  YM (1990), A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution, Int. J. Numer. Methods Eng. 30, 1195–1212.
Schrefler  BA and Zhan  XY (1993), A fully coupled model for water flow and airflow in deformable porous media, Water Resour. Res. 29, 155–167.
Simoni  L, Salomoni  V, and Schrefler  BA (1999), Elastoplastic subsidence models with and without capillary effects, Comput. Methods Appl. Mech. Eng. 171, 491–502.
Bear  J and Corapcioglu  MY (1981), Mathematical model for regional land subsidence due to pumping. 2. Integrated aquifer subsidence equations for vertical and horizontal displacements, Water Resour. Res. 17, 947–958.
Aboustit  BL, Advani  SH, and Lee  JK (1985), Variational principles and finite element simulations for thermo-elastic consolidation, Int. J. Numer. Analyt. Meth. Geomech. 9, 49–69.
Lewis  RW, Majorana  CE, and Schrefler  BA (1986), A coupled finite element model for the consolidation of non-isothermal elastoplastic porous media, Transp. Porous Media 1, 155–178.
Geraminegad  M and Saxena  SK (1986), A coupled thermoelastic model for saturated-unsaturated porous media, Geotechnique 36(4), 539–550.
Philip  JR and de Vries  DA (1957), Moisture movement in porous materials under temperature gradients, Trans., Am. Geophys. Union 38, 222–232.
Olivella  S, Carrera  J, Gens  A, and Alonso  EE (1994), Non-isothermal multiphase flow of brine and gas through saline media, Transp. Porous Media 15, 271–293.
Thomas  HR and He  Y (1995), Analysis of coupled heat, moisture, and air flow in a deformable unsaturated soil, Geotechnique 45(4), 677–689.
Maier G and Comi C (1997), Variational finite element modelling in poroplasticity, Proc of Recent Developments in Computational and Applied Mechanics, BD Reddy (ed), CIMNE, Barcelona, 180–198.
Cocchetti  G and Maier  G (1998), Static shake-down theorems in piecewise linearized poroplasticity, Arch. Appl. Mech. 68, 651–661.
Cocchetti  G and Maier  G (2000), Shake-down analysis in poroplasticity by linear programming, Int. J. Numer. Methods Eng. 47, 141–168.
Cocchetti G and Maier G (2000), Upper bounds on shake-down quantities in poroplasticity, Inelastic Analysis of Structures under Variable Repeated Loads, D Weichert and G Maier (ed), Kluwer Acad. Publ., 289–314.
Maier  G, Carvelli  V, and Cocchetti  G (2000), On direct methods for shake-down and limit analysis, Eur. J. Mech. A/Solids 19, S79–S100.
Rice  JR (1985), On the stability of dilatant hardening for saturated rock masses, J. Geophys. Res. 80, 1531–1536.
Rudnicki  JW (1984), Effect of dilatant hardening on the development of concentrated shear-deformation in fissured rock masses, J. Geophys. Res. 89(B11), 9259–9270.
Vardoulakis  I (1986), Dynamic stability analysis of undrained simple shear on water-saturated granular soils, Int. J. Numer. Analyt. Meth. Geomech. 10, 177–190.
Loret  B and Prevost  JH (1991), Dynamic strain localization in fluid-saturated porous media., J. Eng. Mech. 11, 907–922.
Schrefler  BA, Majorana  CE, and Sanavia  L (1995), Shear band localization in saturated porous media, Arch. Mech. 47, 577–599.
Schrefler  BA, Sanavia  L, and Majorana  CE (1996), A multiphase medium model for localization and postlocalization simulation in geomaterial, Mech. Cohesive-Frict. Mater. 1, 95–114.
Sluys LJ (1992), Wave propagation, localization and dispersion in softening solids, PhD thesis, Dept of Civil Eng, Delft Univ, Netherlands.
Zhang  HW, Sanavia  L, and Schrefler  BA (1999), An internal length scale in strain localisation of multiphase porous media, Mech. Cohesive-Frict. Mater. 4, 443–460.
Schrefler  BA, Zhang  HW, Pastor  M, and Zienkiewicz  OC (1998), Strain localization modelling and pore pressure in saturated sand samples, Comput. Mech. 22, 266–280.
Zienkiewicz OC and Taylor R (1991), The Finite Element Method, Vols 1 and 2, McGraw Hill, New York.
Park  KC (1980), Partitioned transient analysis procedures for coupled-field problems: stability analysis, ASME J. Appl. Mech. 47, 370–376.
Park KC and Felippa CA (1983), Partitioned analysis of coupled systems, Computational Methods for Transient Analysis, T Belytschko and TJR Hughes (eds), Elsevier, Amsterdam.
Zienkiewicz  OC, Paul  DK, and Chan  AHC (1980), Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Int. J. Numer. Methods Eng. 26, 1039–1055.
Thomas  HR and Li  CLW (1995), Modelling transient heat and moisture transfer in unsaturated soil using a parallel computing approach, Int. J. Numer. Analyt. Meth. Geomech. 19, 345–66.
Wang  XC, Gawin  D, and Schrefler  BA (1996), A parallel algorithm for thermo-hydro-mechanical analysis of deforming porous media, Comput. Mech. 19, 94–104.
Wang  XC, Baggio  P, and Schrefler  BA (1999), A multi-level frontal algorithm for finite element analysis and its implementation on parallel computation, Eng. Comput. 16(4), 406–427.
Wang  XC and Schrefler  BA (1998), A multifrontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media, Int. J. Numer. Methods Eng. 43, 1069–1083.
Thomas  HR, Yang  HT, He  Y, and Jefferson  AD (1998), Solving coupled thermo-hydro-mechanical problems in unsaturated soil using a substructuring frontal technique, Commun. Numer. Meth. Eng. 14, 783–92.
Thomas  HR, Yang  HT, and He  Y (1999), A substructure based parallel solution of coupled thermo-hydro-mechanical modelling of unsaturated soil, Eng. Comput. 16(4), 428–442.
Gawin  D and Schrefler  BA (1996), Thermo-hydro-mechanical analysis of partially saturated porous materials, Eng. Comput. 13, 7, 113–143.
Schrefler  BA and Scotta  R (2001), A fully coupled dynamic model for two phase fluid flow in deformable porous media, Comput. Methods Appl. Mech. Eng. 190, 3223–3246.
Klubertanz G (1999), Zur hydromechanischen Kopplung in dreiphasigen poroesen Medien, PhD thesis, Dépt de Génie Civil, EPF Lausanne.
Dakshanamurthy  V, and Fredlund  EG (1981), A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients, Water Resour. Res. 17, 714–722.
Schrefler  BA, Zhang  HW, and Simoni  L (1995), A coupled model for water flow, airflow, and heat flow in deforming porous media, Int. J. Numer. Methods Heat Fluid Flow 5, 531–547.
Lambe TW and Whitman RV (1969), Soil Mechanics, John Wiley & Sons.
Brooks  RN and Corey  AT (1966), Properties of porous media affecting fluid flow, J. Irrig. Drain. Div. Am. Soc. Civ. Eng., 92(IR2), 61–68.
Krischer O and Kroell K (1978), Trocknungstechnik, Band. 1, 3rd ed. Die wissenschaftlichen Grundlagen der Trocknungstechnik, Springer Verlag, Berlin-Goettingen-Heidelberg.
Gawin  D and Klemm  P (1994), A model of coupled heat and moisture transfer with phase changes in porous building material, Arch. Civ. Eng. 40, 1, 89–104.
Giannuzzi M, Majorana CE, Pesavento F, and Schrefler BA (1999), Enhanced hydrothermo-mechanical analysis of HPC and UHPC concrete structures, Proc of XII Convegno Italiano di Meccanica Computazionale, AIMETA, GIMC 99, Napoli.
Brite Euram III (1996), BE-1158/BRPR-CT95-006, Hiteco Progress Report.
Gawin  D, Majorana  CE, and Schrefler  BA (1999), Numerical analysis of hygro-thermal behavior and damage of concrete at high temperature, Mech. Cohesive-Frict. Mater. 4, 37–76.
Mazars  J and Pijaudier-Cabot  G (1989), Continuum damage theory-application to concrete, J. Eng. Mech. 115(2), 345–365.
Briseghella L, Sanavia L, and Schrefler BA (1999), Seismic analysis of earth dams using a multiphase model. Proceedings of the IX Italian National Congress “L’Ingegneria Sismica in Italia,” Turin (Italy).
Desrues J and Mokni M, Drained and Undrained Biaxial Test Data on Hostun RF Sand, Data base Alert96, ALERT Web server.
Mokni M (1992), Relations entre déformations en masse et déformations localisées dans les matériaux granulaires, PhD Thesis, Inst de Mècanique de Grenoble, France.
Mcmanus  KJ and Davis  RO (1997), Dilatation induced pore fluid cavitation in sands, Geotechnique 47(1), 173–177.
Moricca G, Ripa G, Sanfilippo E, and Santarelli FJ (1994), Basin scale rock mechanics: Field observations of sand production, Proc of Eurock ’94, Balkema, Rotterdam, 317–328.
Gambolati  G, Ricceri  G, Bertoni  W, Brighenti  G, and Vuillermin  E (1991), Mathematical simulation of the subsidence of Ravenna, Water Res. 27, 2899–2918.
AGIP (1996), Progetto Alto Adriatico—Studio di impatto ambientale, (Project Upper Adriatic Sea—Environmental Impact Study, in Italian) AGIP, San Donato, Italy.
Simoni  L and Schrefler  BA (2001), Parameter identification for a suction dependent plasticity model, Int. J. Numer. Analyt. Meth. Geomech. 25, 273–288.
Bolzon G and Schrefler BA (1997), Compaction in gas reservoirs due to capillary effects, invited lecture, Proc of COMPLAS V, Barcelona, Computational Plasticity, DRJ OE Onate and E Hinton (eds), CIMNE, 1625–1630.


Grahic Jump Location
Typical averaging volume δV (two phase flow) of a porous medium consisting of three constituents
Grahic Jump Location
Partially saturated porous medium: top—pore space filled with air and water; bottom—detail with interfaces and common lines (redrawn from Gray and Schrefler 50)
Grahic Jump Location
A sample of porous media system at saturation where film effects are important. Note that in some regions the curvature of the fluid-fluid interface is impacted by the fact that a wetting film coats the solid (redrawn from Gray and Schrefler 50)
Grahic Jump Location
Assumed effects of capillary pressure
Grahic Jump Location
Volumetric strain of a silt sample under isotropic compression at different levels of capillary pressure (redrawn from Cui and Delage 71)
Grahic Jump Location
Yield surfaces in the p,q,pc space
Grahic Jump Location
Macroscopic external surface (thick solid line) where the boundary conditions are imposed
Grahic Jump Location
Temperature profiles during thermoelastic consolidation of clay: a) solved for boundary conditions of the first kind; b) solved for boundary conditions of the third kind (Redrawn from Lewis and Schrefler 45)
Grahic Jump Location
Capillary pressure profiles during thermoelastic consolidation of clay: a) solved for boundary conditions of the first kind; b) solved for boundary conditions of the third kind (Redrawn from Lewis and Schrefler 45)
Grahic Jump Location
Vertical displacement profiles during thermoelastic consolidation of clay: a) solved for boundary conditions of the first kind; b) solved for boundary conditions of the third kind (Redrawn from Lewis and Schrefler 45)
Grahic Jump Location
Nuclear waste container made of Ultra High Performance Concrete
Grahic Jump Location
Discretization of the container
Grahic Jump Location
a) temperature distribution at 10 min, b) vertical stress distribution at 10 min, c) damage distribution at 10 min
Grahic Jump Location
Acceleration histories of Nocera Umbra earthquake (measured)
Grahic Jump Location
Measured and computed displacements on the top of the dam
Grahic Jump Location
Equivalent plastic strain at 200 s
Grahic Jump Location
Water pressures at 200 s, pore water tractions are positive
Grahic Jump Location
Strain localization analysis: example and load function
Grahic Jump Location
Contours of effective plastic strain at different times for the symmetric load case a) 3.2E-03 s, b) 4.0E-03 s, c) 4.4E-03 s
Grahic Jump Location
Development of effective plastic strain in the cross section x = 0.051 m at different times
Grahic Jump Location
Water pressure distribution in the cross section x= 0.051 m at different times
Grahic Jump Location
Development of water pressure along the vertical direction in the central cross section of the sample for initial water pressure p0 = −200 kPa
Grahic Jump Location
a) Gas production and b) pore pressure decline versus time in the Ravenna gas field, c) surface settlement above the Ravenna Terra fields, as reconstructed from contour lines of equal subsidence (see Gambolati et al. 162) and successive surveys carried out by the Municipality of Ravenna
Grahic Jump Location
Water saturation time history used in the analysis
Grahic Jump Location
Comparison of real and calculated subsidence histories
Grahic Jump Location
Loading paths and corresponding evolution of the yield surface in the p,pc plane




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In