0
REVIEW ARTICLES

Numerical simulation of finite dimensional multibody nonsmooth mechanical systems

[+] Author and Article Information
B Brogliato

INRIA Rho⁁ne-Alpes, ZIRST Monbonnot, 655 avenue de l’Europe, 38334 Saint Ismier, France; Bernard.Brogliato@inrialpes.fr

AA ten Dam

National Aerospace Laboratory NLR, Department of Mathematical Models and Methods, Information and Communication Technology Division, PO Box 90502, 1006 Amsterdam, The Netherlands; tendam@nlr.nl

L Paoli

Université Jean Monnet-St Etienne, Equipe d’Analyse Numérique UMR CNRS 5585, 23 rue du Dr Michelon, 42023 Saint Etienne cedex 2, France; paoli@anumsun1.univ-st.etienne.fr

F Génot

INRIA Rocquencourt, BP 105, 78153 Le Chesnay cedex, France; Frank.Genot@inria.fr

M Abadie

Schneider Electric, Avenue des Jeux Olympiques, S2E, bureau 204 38000 Grenoble, France

Appl. Mech. Rev 55(2), 107-150 (Apr 03, 2002) (44 pages) doi:10.1115/1.1454112 History: Online April 03, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schiehlen  W (1997), Multibody system dynamics: Roots and perspectives, Multibody Syst. Dyn. 1(2), 149–188.
Ambrosio  JAC (2000), Rigid and flexible multibody dynamics tools for the simulation of systems subjected to contact and impacts conditions, Eur. J. Mech. A/Solids 19, Special Issue, S23–S44.
Euromech Colloquium 404 (1999), Advances in Computational Multibody Dynamics, European Mechanics Society, Lisboa, Sept 20–23, http://www.lemac.ist.utl.pt/EUROMECH
Abadie M (1998), Simulation dynamique de mécanismes: Prise en compte du contact frottant, PhD Thesis, Univ of Montpellier 2, France, Sept.
Abadie M (2000), Dynamic simulation of rigid bodies: Modeling of frictional contact, In: Impacts in Mechanical Systems: Analysis and Modeling, B Brogliato (ed). Springer Verlag, Berlin, Lecture Notes in Physics, 62–144.
Babitsky VI (1998), Theory of Vibro-Impact Systems and Applications, Springer-Verlag, Foundations of Engineering Mechanics.
Pfeiffer F and Glocker Ch (1996), Multibody Dynamics with Unilateral Contacts, Wiley Interscience, Series in Non-linear Dynamics.
Studny  D, Rittel  D, and Zussman  E (1999), Impact fracture of screws for disassembly, ASME J. Manuf. Sci. Eng. 121, 118–125.
Balandin  DV, Bolotnik  NN, and Pilkey  WD (2000), Optimal protection from impact and shock: Theory and methods, Appl. Mech. Rev. 53(9), p 237.
Brilliantov  NV, Spahn  F, Hertzsch  JM, and Pöschel  T (1996), Model for collisions in granular gases, Phys. Rev. E 53(5), 5382–5392.
Radjai  F, Jean  M, Moreau  JJ, and Roux  S (1996), Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett. 77, 274.
Radjai  F and Wolf  DE (1998), Features of static pressure in dense granular media, Granular Matter 1(1), 3–8.
Acary V and Jean M (1999), Numerical simulation of monuments by the contact dynamics method, available at http://chimay.esm2.imt-mrs.fr/Vince/Publi/texteHTML/texteHTML.html
Brogliato  B and Zavala-Rio  A (2000), On the control of complementary-slackness mechanical juggling systems, IEEE Trans. Autom. Control 45(2), 235–246.
Hurmulzu Y, Génot F, and Brogliato B (2001), Modelling, stability and control of bipedal locomotion systems—A general framework, Internal Report, Laboratoire d’Automatique de Grenoble, INRIA Research Report No 4290.
Mata Jimenez M and Brogliato B (2002), Analysis of PD and nonlinear control of mechanical systems with dynamic backlash, submitted to Journal of Control and Vibrations, in press.
Awrejcewicz  J, Tomczak  K, and Lamarque  CH (1999), Controlling systems with impacts, Int. J. Bifurcation Chaos Appl. Sci. Eng. 9(36), 547–553.
Brogliato B (1999), Nonsmooth Mechanics, Second Edition, Springer Verlag, Communications and Control Engineering Series, London (first edition in LNCIS 220, 1996), Erratum and addenda available at http://www-lag.ensieg.inpg.fr/publications.html
Brogliato  B, Niculescu  SI, and Monteiro Marques  MDP (2000), On the tracking control of a class of complementary slackness mechanical systems, Syst. Control Lett. 39(4), 255–266.
Brogliato  B, Niculescu  SI, and Orhant  P (1997), On the control of finite-dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Control 42(2), 200–215.
Kos J, ten Dam AA, Pruis GW, and Vankan WJ (1998), Efficient harmonisation of simulation competence in a CACE working environment, Proc 5th Int Workshop on Simulation for European Space Programmes, SESP’98, 3–5 Nov, ESTEC, NL.
van Woerkom PThLM, de Boer A, Ellenbroek MHM, and Wijker JJ (1994), Developing algorithms for efficient simulation of flexible space manipulator operations, IAF-94-A.4.032, 45th Congress of the Int Astronautical Federation, Oct 9–14, 1994, Israel.
van Sterkenburg RP and ten Dam AA (1999), The scenario management tool SMARTFED for real-time interactive high performance networked simulations, High-Performance Computing and Networking, Proc 7th Int Conf HPCN Europe 99, Amsterdam, The Netherlands, Lecture Notes in Computer Science, vol 1593, Springer.
Chatterjee A and Ruina AL (1998), Two interpretations of rigidity in rigid body collisions, ASME Winter Annual meeting, November, Dallas, TX, 1997. Also in ASME J. App. Mech65 , 894–901, December.
Hairer E and Wanner G (1996), Solving Ordinary Differential Equations II; Stiff and Differential-Algebraic Problems, 2nd Edition, Springer-Verlag, Series in Computational Mathematics.
Garcia de Jalon J and Bayo E (1994), Kinematic and Dynamic Simulation of Multibody Systems: The Real-time Challenge, Springer Verlag, Mechanical Engineering Series.
Lötstedt  P (1984), Numerical simulation of time dependent contact and friction problems in rigid body mechanics, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 5, 370–393.
Moreau JJ (1986), Dynamique de systèmes à liaisons unilatérales avec frottement sec éventuel; essais numériques, Tech Note 85-1, LMGC, Montpellier, France.
Brenan KE, Campbell SL, and Petzold LR (1989), Numerical Solutions of Initial-Value Problems in Differential-Algebraic Equations, Elsevier Science Publ, NY.
Rockafellar RT (1970), Convex Analysis, Princeton Landmarks in Mathematics, Princeton Univ Press, 10th printing 1997.
Bressan A (1959), Questioni di regolarita e di unicita del moto in presenza di vincoli olonomi unilaterali, Rend. Sem. Mat. Univ. Padova29 , 271–315.
Monteiro-Marques MDP (1993), Differential Inclusions in Non-smooth Mechanical Problems: Shocks and Dry Friction, Birkhauser, Boston, PNLDE 9.
Stewart  DE (1998), Convergence of a time-stepping scheme for rigid-body dynamics and resolution of Painlevé’s problem, Arch. Ration. Mech. Anal. 145, 215–260.
Stewart  DE (1997), Existence of solutions to rigid body dynamics and the Painlevé paradoxes, C. R. Acad. Sci. Paris 325, Série I, 689–693.
Mabrouk  M (1998), A unified variational model for the dynamics of perfect unilateral constraints, Eur. J. Mech. A/Solids, 17(5), 819–842.
Mabrouk  M (1998), Liaisons unilatérales et chocs élastiques quelconques: Un résultat d’existence, C. R. Acad. Sci Paris 326, Série I, 1353–1357.
Carriero  M and Pascali  E (1982), Uniqueness of the one-dimensional bounce problem as a generic property in L1([0,T],R ), Bolletino U.M.I. 6(1-A), 87–91.
Carriero  M and Pascali  E (1985), Uniqueness for the elastic one-dimensional bounce problem, Proc of Nonlinear Variational Problems, Res. Notes Math., 127, 88–91.
Heemels WPMH (1999), Linear Complementarity Systems: A study in hybrid dynamics, PhD Thesis, Electrical Eng Dept, Eindhoven Univ of Technology, The Netherlands, ISBN 90-386-1690-2.
Heemels  WPMH, Schumacher  JM, and Weiland  S (2000), Linear complementarity systems, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 60(4), 1234–1269.
van der Schaft  A and Schumacher  JM (1998), Complementarity modeling of hybrid systems CWI Report, Dept Operations Research, Statistics and Systems Theory, BS-R9611, August, NL. Also in IEEE Trans. Autom. Control 43(4), 483–490.
van der Schaft A and Schumacher JM (2000), An Introduction to Hybrid Dynamical Systems, Springer Verlag, London, LNCIS 251.
Lötstedt  P (1982), Mechanical systems of rigid bodies subject to unilateral constraints, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 42(2), 281–296.
Percivale  D (1985), Uniqueness in the elastic bounce problem, J. Diff. Eqns. 56, 206–215.
Percivale  D (1991), Uniqueness in the elastic bounce problem II, J. Diff. Eqns. 90, 304–315.
Percivale  D (1986), Bounce problem with weak hypotheses of regularity, Ann. Mat. Pura. Appl. 143(4), 259–274.
Buttazo  G and Percivale  D (1981), The bounce problem on n-dimensional Riemannian manifolds, Atti. Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 70, 246–250.
Buttazo  G and Percivale  D (1983), On the approximation of the elastic bounce problem on Riemannian manifolds, J. Diff. Eqns. 47(2), 227–245.
Ballard  P (2000), The dynamics of discrete mechanical systems with perfect unilateral constraints, Arch. Ration. Mech. Anal. 154(3), 199–274.
Ballard  P (1999), Dynamique des systèmes mécaniques avec liaisons unilatérales parfaites, C. R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 327, 953–958.
Schatzman  M (1978), A class of nonlinear differential equations of second order in time, Nonlinear Analysis, Theory, Methods and Applications 2(3), 355–373.
Schatzman  M (1998), Uniqueness and continuous dependence on data for one-dimensional impact problem, Math. Comput. Modell. 28(4–8), 1–18.
Paoli  L and Schatzman  M (1993), Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie, Modèl. Math. Anal. Numér. 27(6), 673–717.
Paoli L (1993), Analyse numérique de vibrations avec contraintes unilatérales, PhD Thesis, Univ Claude Bernard-Lyon 1, Laboratoire d’Analyse Numérique, France.
Paoli L and Schatzman M (2002), A numerical scheme for impact problems, preprint de l’Equipe d’Analyse Numérique, UMR 5585, June, SIAM on Numerical Analysis, in press. (Available at http://numerix.univ-lyon1.fr/publis/publiv/1999/publis.html)
Paoli  L and Schatzman  M (1999), Approximation et existence en vibro-impact, C. R. Acad. Sci., Ser. I: Math. 329, Série I, 1103–1107.
Paoli  L (2000), An existence result for vibrations with unilateral constraints: case of a non-smooth set of constraints, Math. Methods Appl. Sci. 10(10), 815–832.
Ivanov  AP (1995), On multiple impacts, Prikl. Mat. Mekh. 59 (6), 930–946; (Transl. in ASME J. Appl. Mech. 59(6), 887–902).
Schatzman  M, Lamarque  CH, and Bastien  J (1999), An ill-posed mechanical problem with friction, Eur. J. Mech. A/Solids 18, 415–420.
Hilding  D, Klarbring  A, and Peterson  J (1999), Optimization of structures in unilateral contact, Appl. Mech. Rev. 52(4), 139–160.
Featherstone R (1987), Robot Dynamics Algorithms, Kluwer Academic Publ, Boston.
Wehage  RA and Haug  EJ (1982), Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J. Mech. Des. 104, 247–255.
Baraff D (1996), Linear-time dynamics using Lagrange multipliers, Computer Graphics Proc, Annual Conference Series, 137–146.
Mattsson SE, Otter M, and Elmqvist H (1999), Modelica hybrid modeling and efficient simulation, Proc of 38th IEEE Conf on Decision and Control, Phoenix AZ, Dec, 3502–3507.
ten Dam AA (1997), Unilaterally constrained dynamical systems, PhD Thesis, Rijksuniversiteit Groningen, NL, http://www.ub.rug.nl/eldoc/dis/science/a.a.ten.dam/
ten Dam  AA (1992), Stable numerical integration of dynamical systems subject to equality state-space constraints, J. Eng. Math. 26, 315–337.
Gear  CW, Leimkuhler  B, and Gupta  GK (1985), Automatic integration of Euler-Lagrange equations with constraints, J. Comput. Appl. Math. 12-13, 77-90.
ten Dam  AA, Dwarshuis  KF, and Willems  JC (1997), The contact problem for linear continuous-time dynamical systems, a geometric approach, IEEE Trans. Autom. Control 42(4), 458–472.
Delassus  E (1923), Sur les lois du frottement de glissement, Bull. Soc. Math. France 51, 22–33.
Moreau  JJ (1963), Les liaisons unilatérales et le principe de Gauss, C. R. Acad. Sciences Paris 256, 871–874.
Moreau  JJ (1966), Quadratic programming in mechanics: Dynamics of one sided constraints, SIAM J. Control 4(1), 153–158.
Gear  CW and Petzold  LR (1984), ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal. 21(4), 716–728.
Ivanov  AP (1987), Impacts in a system with certain unilateral couplings, Prikl. Mat. Mekh. 51(4), 559–566 (Transl. in J. Appl. Math. Mech. 51(4), 436–442 (1998)).
Paoli L and Schatzman M (1999), Moreau’s rule and the penalty method, Proc of IUTAM Symp on Unilateral Multibody Contacts, Kluwer, F Pfeiffer and Ch Glocker (eds), 35–44.
Paoli  L and Schatzmann  M (2001), Penalty approximation for non smooth constraints in vibroimpact, to J. Diff. Eqs. 177, 375–418. (Preprint de l’Equipe d’Analyse Numèrique, UMR 5585 Maply, available at http://numerix.univ-lyonl.fr/publis/publiv/2000/publis.html)
Carnot L (1803), Principes Fondamentaux de l’Equilibre et du Mouvement, Paris, Bachelier.
Chatterjee  A (1999), On the realism of complementarity conditions in rigid body collisions, Nonlinear Dyn., 20, 159–168.
Moreau  JJ (1994), Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids 13(4), 93–114.
Klarbring  A (1986), A mathematical programming approach to three dimensional contact problems with friction, Comput. Methods Appl. Mech. Eng. 58, 175–200.
Klarbring  A and Björkman  G (1988), A mathematical programming approach to contact problems with friction and varying contact surface, Comput. Struct. 30(5), 1185–1198.
Lootsma  YJ, van der Schaft  AJ, and Camlibe  MK (1999), Uniqueness of solutions of relay systems, Automatica 35(3), 467–478.
Pang  JS and Trinkle  JC (1996), Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction, Math. Program. 73, 199–226.
Glocker  Ch (1999), Formulation of spatial contact situations in rigid multibody systems, Comput. Methods Appl. Mech. Eng. 177, 199–214.
Anitescu  M, Potra  FA, and Stewart  DE (1999), Time-stepping for three-dimensional rigid body dynamics, Comput. Methods Appl. Mech. Eng. 177, 183–197.
Stewart  DE and Trinkle  JC (1996), An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. Numer. Methods Eng. 39(5), 2673–2691.
Anitescu M, Cremer JF, and Potra FA (1996), Formulating three-dimensional contact dynamics problems, Mech. Struct. Mach. 86 (4).
Stewart DE (1999), Time stepping methods and the mathematics of rigid body dynamics, in Impact and Friction A Guran (ed), Birkhauser (available at http://www.math.uiowa.edu/dstewart/).
Stewart DE (1998), Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problem; Summary, (available at http://www.math.uiowa.edu/dstewart/).
Trinkle  JC, Pang  JS, Sudarsky  S, and Lo  G (1997), On dynamic multi-rigid-body contact problems with Coulomb friction, Z. Angew. Math. Mech. 77, 267–279.
Pang  JS and Stewart  D (1999), A unified approach to discrete frictional contact problems, Int. J. Eng. Sci. 37, 1747–1768.
Stewart  DE (2000), Rigid-body dynamics with friction and impacts, SIAM Rev. 42(1), 3–39.
Wösle  M and Pfeiffer  F (1996), Dynamics of multibody systems containing dependent unilateral constraints with friction, J. Vib. Control 2, 161–192.
Brach RM (1991), Mechanical Impact Dynamics, John Wiley, New York.
Jean  M (1999), The non-smooth contact dynamics approach, Comput. Methods Appl. Mech. Eng. 177, 235–277.
Moreau JJ (1966–1967) Fonctionnelles Convéxes, Séminaire sur les Equations aux Dérivées Partielles, Collège de France, Paris.
Moreau JJ (1988), Unilateral contact and dry friction in finite freedom dynamics, in [233], 1–82.
Jean  M (1993), Simulation numérique des problèmes de contact avec frottement, Matériaux et Techniques 1,2,3, 22–32.
Moreau  JJ (1983), Liaisons unilatérales sans frottement et chocs inélastiques, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers 296(30 mai), série II, 1473–1476.
Cholet C (1998), Chocs de solides rigides, PhD Thesis, Laboratoire d’Analyse Numérique–Université Paris 6 and Laboratoire des Matériaux et des Structures du Génie Civil–LCPC-CNRS, March.
Moreau JJ (1985), Standard inelastic shocks and the dynamics of unilateral constraints, CISM Courses and Lectures, no 288, Springer-Verlag, 173–221.
Moreau  JJ (1999), Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng. 177, 329–349.
Kunze M and Monteiro Marques MDP (2000), An introduction to Moreau’s sweeping process, In Impacts in Mechanical Systems: Analysis and Modeling, Springer Verlag, Berlin, Lecture Notes in Physics, B. Brogliato (ed), 1–60.
Cartan H (1977), Cours de Calcul Différentiel, Hermann, Paris.
Moreau JJ (1979), Application of convex analysis to some problems of dry friction, in Trends in Applications of Pure Mathematics to Mechanics, Vol 2, H Zorski (ed), Pitman Publ, London, 263–280.
Panagiotopoulos  PD (1995), Modeling of nonconvex nonsmooth energy problems. Dynamics hemivariational inequalities with impact effects, J. Comput. Appl. Math. 63, 123–138.
Bressan  A (1959), Incompatibilità dei teoremi di esistenza e di unicità del moto per un tipo molto comune e regolare di sistemi meccanici, Rend. Scu. Norm. di Pisa, 333–348.
Hurmuzlu  Y (1998), An energy based coefficient of restitution for planar impacts of slender bars with massive external surfaces, ASME J. Appl. Mech. 65(4), 952–962.
Hurmuzlu Y and Ceanga V (2000), Impulse correlation ratio in solving multiple impact problems, Impacts in Mechanical Systems: Analysis and Modeling, Springer Verlag, Berlin, Lecture Notes in Physics, B Brogliato (ed), 235–273.
Paoli L and Schatzman M (1999), Dynamics of an impacting bar: A model and numerics, ECCM’99, European Congress on Computational Mechanics, W Wunderlich (ed), CD–Rom.
Cottle RW, Pang JS, and Stone RE (1992), The Linear Complementarity Problem, Academic Press, Boston.
Ferris  MC and Pang  JS (1997), Engineering and economic applications of complementarity problems, SIAM Rev. 39(4), 669–713.
Leine RI, Glocker Ch, and van Campen DH (2001), Nonlinear dynamics and modeling of some wooden toys with impact and friction, submitted to J. Vib. Control, in press.
Jourdan  F, Alart  P, and Jean  M (1998), A Gauss Seidellike algorithm to solve frictional contact problems, Comput. Methods Appl. Mech. Eng. 155, 31–47.
Raous  M, Chabrand  P, and Lebon  F (1988), Numerical methods for frictional contact problems and applications, J. Theo. Appl. Mech. 7, 111–128.
Raous M (1999), Quasistatic Signorini problem with Coulomb friction and coupling to adhesion, New Developments in Contact Problems, CISM 384, P Wriggers and P Panaglotiopoulos (eds) Springer Wien New York.
Vola D, Pratt E, Jean M, and Raous M (1998), Consistent time discretization for a dynamical frictional contact problem and complementarity techniques, Revue Européenne des Eléments Finis 7 (1–3).
Lozano, R, Brogliato B, Egeland O, and Maschke B (2000), Dissipative Systems Analysis and Control: Theory and Applications, Springer Verlag, CCE Series, London.
Schiehlen W (1999), Unilateral contacts in machine dynamics, Proc of IUTAM Symp on Unilateral Multibody Contacts, F Pfeiffer and Ch Glocker (eds), Kluwer, 287–298.
Rückgauer  A and Schiehlen  W (1997), Simulation of modular mechatronic systems with application to vehicle dynamics, Acta Mech. 175, 183–195.
Eberhard, P, (1999) Collision detection and contact approaches for a hybrid multibody system/finite element simulation, Proc of IUTAM Symp on Unilateral Multibody Contacts, F Pfeiffer and Ch Glocker (eds), Kluwer, 193–202.
Ravn  P (1998), A continuous analysis method for planar multibody systems with joint clearance, Multibody Syst. Dyn. 2, 1–24.
Bliman PA and Sorine M (1996), Dry friction models for automatic control, Proc of Euromech Colloquium 351: Systems with Coulomb Friction, Vadstena (Sweden), August 5–7.
Sorine M and Szymanski J (2000), A new dynamic multi dof tire-model, IFAC Symp on Transportation Systems, Braunschweig, Germany, June 13–15.
Paoli L and Schatzman M (2000), Non convex aspects of dynamics with impacts, From Convexity to Non Convexity, R Gilbert and P Pardalos (eds), Kluwer Academic Publ, Boston.
Dupont  PE and Yamajako  SP (1997), Stability of rigid body dynamics with sliding frictional contacts, IEEE Trans. Rob. Autom. 13(2), 230–236.
Paoli L and Schatzman M (2000), Ill-posedness in vibro-impact and its numerical consequences, European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, Barcelona, 11–14 Sept.
Baraff D (1993), Non-penetrating rigid body simulation, Eurographics’93 State of the Art Reports, Barcelona, Sept 6–10.
Hori N, Morl T, and Nikiforuk PN (1994), Discrete-time models of continuous-time systems, Control and Dynamic Systems, CT Leondes (ed), 66 , 1–45.
Atkinson KE (1978), An Introduction to Numerical Analysis, John Wiley & Sons.
Stoer J and Burlisch R (1979), Introduction to Numerical Analysis, Springer Verlag.
Baumgarte  J (1972), Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng, 1, 1–16.
Bayo  E, Garcia de Jalon  J, and Serna  MA (1988), A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems, Comput. Methods Appl. Mech. Eng. 71, 183–195.
Park  KC and Chiou  JC (1988), Stabilization of computational procedures for constrained dynamical systems, Journal of Guidance 11(4), 365–370.
Sciacovelli D (1985), Flexible spacecraft: Computer oriented control analysis, Systems and Control Encyclopedia, Pergamon Press, 1649–1665.
Eich  E (1993), Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 30(5), 1467–1482.
Campbell SL (1990), Descriptor systems in the 90’s, Proc of 29th Conf on Decision and Control, December, Honolulu, Hawaii, 442–447.
Petzold L (1982), A description of DASSL: A differential/algebraic system solver, Proc of 10th IMACS World Congress, August 8–13, Montreal.
Führer C and Leimkuhler B (1989), Formulation and numerical solution of the equations of constrained mechanical motion, DVFLR Forschungsbericht 89-08, Institut für Dynamic der Flugsysteme, Oberpfaffenhofen, Germany.
Baumgarte  J (1983), A new method of stabilization for holonomic constraints, ASME J. Appl. Mech. 50, 869–870.
Chang  CO and Nikravesh  PE (1985), An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems, Journal of Mechanisms, Transmissions, and Automation in Design 107, 488–492.
Asher  UM, Chin  H, and Reich  S (1994), Stabilization of DAEs and invariant manifolds, Numer. Math. 67, 131–149.
Lin  ST and Hong  MH (1998), Stabilization method for numerical integration of multibody mechanical systems, ASME J. Mech. Des. 120, 565–572.
McClamroch  NH and Wang  D (1990), Linear feedback control of position and contact force of a nonlinear constrained mechanism, J. Dyn. Syst., Meas., Control 122, 640–645.
Veldman  AEP (1990), Missing boundary conditions? Discretise first, substitute next, combine later, SIAM Journal on Stat. Comp. 11, 82–91.
Hart  CW and Harlow  FH (1967), A general corrective procedure for the numerical solution of initial-value problems, J. Comput. Phys. 2, 114–119.
Gustafsson  K, Lundh  M, and Oderlind  S (1988), A PI step-size control for the numerical solution of ordinary differential equations, BIT 28, 270–287.
Gustafsson K (1990), Using control theory to improve step-size selection in numerical integration of ODE, 11th IFAC (preprint), 139–144.
von Herzen B, Barr AH, and Zatz HR (1990), Geometric collisions for time-dependent parametric surfaces, SIGGRAPH Conf Proc, ACM Press 39–48.
ten Dam AA and Willems JC (1997), A system theoretical framework to study unilaterally constrained dynamical systems, Proc of European Control Conf ECC’97, June 30-July 4, Brussels, Belgium.
Wang  Y (1993), Global analysis and simulation of mechanical systems with time-varying topologies, ASME J. Mech. Des. 115, 817–821.
Lamarque CH and Janin O (1999), Mechanical systems with impacts: comparison of several numerical methods, Euromech Colloquium 397 Impact in Mechanical Systems, Grenoble, LAG-CNRS, June-July.
Janin  O and Lamarque  CH (2001), Comparison of several numerical methods for mechanical systems with impacts, Int. J. Numer. Methods Eng., 51(9), 1101.
Janin O (2001), Contribution à l’identification, la modèlisation et l’analyse de systèmes dynamiques à non-linéarites irrégulieres, PhD Thesis, Univ of Lyon 1 C Bernard, July.
Towne  DH and Hadlock  CR (1977), One-dimensional collisions and Chebyshev polynomials, Am. J. Phys. 45(3), 255–259.
Nqi FZ (1997), Etude numérique de divers problémes dynamiques avec impact et de leurs propriétés qualitatives, PhD Thesis, Univ Claude Bernard Lyon 1, June.
Bainov DD and Simeonov PS (1989), Systems with Impulse Effects; Stability, Theory and Applications, Wiley.
Kunze  M and Neumann  J (1997), Linear complementarity problems and the simulation of the motion of rigid body systems subject to Coulomb friction, Z. Angew. Math. Mech. 77(11), 833–838.
Schmaedeke  WW (1965), Optimal control theory for nonlinear vector differential equations containing measures, SIAM J. Control 3(2), 231–280.
Camlibel MK, Heemels WPMH, and Schumacher JM (2000), Dynamical analysis of linear passive networks with ideal diodes. Part II: Consistency of a time-stepping method, Tech Report 00 I/03, Eindhoven Univ of Tech, Dept of Electrical Eng, Measurement, and Control Systems, Eindhoven, The Netherlands.
Leenaerts  DMW (1999), On linear dynamic complementarity systems, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 46(8), 1022–1026.
Petzold  L (1982), Differential/Algebraic equations are not ODEs, SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 3(3), 367–384.
Wu  SC, Yang  SM, and Haug  EJ (1986), Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion; II-planar systems, Mech. Mach. Theory 21(5), 407–416.
Wang  D, Conti  C, and Beale  D (1999), Interference impact analysis of multibody systems, ASME J. Mech. Des. 121, 128–135.
Tzitzouris JA and Pang J-S (2001), A time-stepping complementarity approach for frictionless systems of rigid bodies, (Draft Tech Report 600, John Hopkins Univ, Math Sci Dept), SIAM J. Optim., in press.
Mirtich BV (1997), Impulse-based dynamic simulation of rigid body systems, PhD Thesis, Univ of California at Berkeley.
Hubbard  PM (1996), Approximating polyhedra with spheres for time-critical collision detection, ACM Trans. Graphics 15(3), 181–210.
Ponamgi MK, Manosha D, and Lin MC (1995), Incremental algorithm for collision detection between solid models, Proc 3rd ACM Symp on Solid Modeling and Applications, ACM Press, NY, 293–304.
Conti  C, Corron  P, and Michotte  P (1992), A computer-aided kinematic analysis system for mechanism design and computer simulation, Mech. Mach. Theory 27(5), 563–574.
Goyal  S, Pinson  EN, and Sinden  FW (1994), Simulation of dynamics of interactiong rigid bodies including friction I: General problem and contact model, Eng. Comput. 10, 162–174.
Goyal  S, Pinson  EN, and Sinden  FW (1994), Simulation of dynamics of interactiong rigid bodies including friction II: Software system design and implementation, Eng. Comput. 10, 175–195.
Han  I, Gilmore  BJ, and Ogot  MM (1993), The incorporation of arc boundaries and stick/slip friction in a rule-based simulation algorithm for dynamic mechanical systems with changing topologies, ASME J. Mech. Des. 115, 423–434.
Wang  D, Conti  C, Dehombreux  P, and Verlinden  O (1997), A computer-aided simulation approach for mechanisms with time-varying topology, Comput. Struct. 64(14), 519–530.
Filip  D, Magedson  R, and Marhot  R (1986), Surface algorithms using bound derivatives, Computer Aided Geometric Design 3, 255–311.
Lin MC and Canny JF (1991), A fast algorithm for incremental distance calculation, 7th IEEE Conf on Robotics and Automaton, Sacramento, 1008–1014.
Cohen J, Lin M, Manocah D, and Ponamgi K (1995), I-Collide—An interactive and exact collision detection system for large scale environments, ACM Int 3D Graphics Conf, Monterey, 112–120.
Baraff D (1990), Curved surfaces and coherence for non-penetrating rigid body simulation, Computer Graphics (Proc SIGGRAPH) 24 , 19–28.
Allgower E and Georg K (1990), Numerical Continuation Methods: An Introduction, Springer Verlag, Berlin.
Chabrand  P, Dubois  F, and Raous  M (1998), Various numerical methods for solving unilateral contact problems with friction, Math. Comput. Modell. 28(4-8), 97–108.
Baraff  D (1993), Issues in computing contact forces for non-penetrating rigid bodies, Algorithmica 10, 292–352.
Mangasarian  OL (1976), Equivalence of the complementarity problem to a system of nonlinear equations, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 31(1), 89–92.
Leenaerts DMW and van Bokhoven WMG (1998), Piecewise Linear Modeling and Analysis, Kluwer Academic Publ.
Wösle M and Pfeiffer F (1999), Formulations and solution methods of the dynamical spatial contact problem, Proc of IUTAM Symp on Unilateral Multibody Contacts, F Pfeiffer and Ch Glocker (eds), Kluwer, 45–56.
Kojima M, Megiddo N, Noma T, and Yoshise A (1991), A unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science 538, Springer.
Chabrand P, Dubois F, and Raous M (1995), Programmation mathématique pour le contact avec frottement et comparison avec d’autres méthodes, Deuxième Colloque National en Calcul des Structures, 16–20 mai, Giens (France), Hermes.
Baraff D (1994), Fast contact force computation for nonpentrating rigid bodies, Proc SIG-GRAPH’94, July 24–29 Orlando, Computer Graphics Proc, 23–34.
Christensen  PW, Klarbring  A, Pang  JS, and Strömberg  N (1998), Formulation and comparison of algorithms for frictional contact problems, Int. J. Numer. Methods Eng. 42, 145–173.
Pang  JS and Qi  LQ (1993), Nonsmooth equations: Motivations and algorithms, SIAM J. Optim., 3, 443–465.
Yamashita  N (1998), Properties of restricted NCP functions for nonlinear complementarity problems, J. Optim. Theory Appl. 98(3), 701–717.
Facchine  F and Kanzow  C (1997), On unconstrained and constrained stationary points of the implicit Lagrangian, J. Optim. Theory Appl. 92(1), 99–115.
Press WH, Teukolsky SA, Vetterling WT, and Flannery BP (1992), Numerical Recipies in Fortran, 2nd Edition, Cambridge Univ Press, NY.
Klisch  T (1999), Contact mechanics in multibody systems, Mech. Mach. Theory34, 665–675.
Simpack (analysis and design of general mechanical systems), http://www.simpack.de
Haug  EJ, Wu  SC, and Yang  SM (1986), Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion; I-theory, Mech. Mach. Theory 21(5), 401–406.
Wu  SC, Yang  SM, Haug  EJ (1986), Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion; III-spatial systems, Mech. Mach. Theory 21(5), 417–425.
Han  I and Gilmore  BJ (1993), Multi-body impact motion with friction—Analysis, simulation, and experimental validation, ASME J. Mech. Des. 115, 412–422.
Pandy  MG and Bermé  N (1998), A numerical method for simulating the dynamics of human walking, J. Biomech. 21(12), 1043–1051.
Joli P, Pascal M, and Gibert JR (1993), Systéme avec changement de topolgie du⁁ à des liaisons de contact, Proc of 11th Congress Français de Mécanique Vol 5, pp. 429–432.
Escalona  JL, Mayo  J, and Dominguez  J (1999), A new numerical method for the dynamic analysis of impact loads in flexible beams, Mech. Mach. Theory 34, 765–780.
Ferretti  G, Maffezzoni  C, Magnani  G, and Rocco  P (1996), Simulating discontinuous phenomena affecting robot motion, J. Intell. & Robotic Syst. 15, 53–65.
Génot  F and Brogliato  B (1999), New results on Painlevé paradoxes, Eur. J. Mech. A/Solids 18, 653–677.
Génot F (1998), Contribution à la modélisation et à la commande des systémes mécaniques de corps rigides avec contraintes unilatérales, PhD Thesis, Inst Nat Polytech de Grenoble, Jan.
Lötstedt  P (1981), Coulomb friction in two-dimensional rigid body systems, Z. Angew. Math. Mech. 61, 605–615.
Moreau  JJ (1968), La notion de sur-potentiel et les liaisons unilatérales en élastostatique, CRAS Paris 271A, 954–957.
Moreau JJ (1974), On unilateral constraints, friction and plasticity, New Variational Techniques in Mathematical Physics, CIME II ciclo 1973, G Capriz and G Stampacchia (eds), Edizioni Cremonese, 175–322.
Moreau JJ (1994), Numerical experiments in granular dynamics: Vibration-induced size segregation, Proc of 2nd Contact Mechanics Int Symp, Carry-le-Rouet, France, M Raous, M Jean, and JJ Moreau (eds), Plenum Press, NY.
Jourdan  F, Jean  M, and Alart  P (1998), An alternative method between implicit and explicit schemes devoted to frictional contact problems in deep drawing simulation, J. Mater. Process. Technol. 80-81, 257–262.
Chertier  O and Chabrand  P (1998), Etude du frottement pour des problèmes de contact en grandes dèformations, Revue Européenne des Elements Finis 7(1-2-3), 163–176.
Pierrot F, Jean M, and Dauchez P (1994), Nonsmooth mechanics approach for robot simulations, IFAC SYROCO, Sept 19–21, Capri, Italy, preprints, 577–582.
Jean M and Moreau JJ (1987), Dynamics in the presence of unilateral contacts and dry friction: A numerical approach, in Unilateral Problems in Structural Analysis 2, G Del Piero and F Maceri, (ed), CISM courses and lectures 304, Springer Verlag, 151–196.
Galka  A and Telega  JJ (1998), Dynamic contact problems for systems with finite degrees of freedom: The case of piecewise regular constraints, Math. Comput. Modell. 28(4-8), 479–495.
Kim  J and Kwak  B (1996), Dynamic analysis of two-dimensional frictional contact by linear complementarity problem formulation, Int. J. Solids Struct. 33(30), 4605–4624.
Johansson  L (1999), A linear complementarity algorithm for rigid body impact with friction, Eur. J. Mech. A/Solids 18(4), 703–717.
Johansson  L and Klarbring  A (2000), Study of frictional impact using a nonsmooth equations solver, ASME J. Appl. Mech. 67, 267–273.
Alart  P and Curnier  A (1991), A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Eng. 92, 353–375.
Pang  JS (1990), Newton’s method for B-differentiable equations, Math. Op. Res. 15, 311–341.
Paoli  L and Schatzman  M (1993), Schéma numérique pour un modéle de vibrations avec contraintes unilatérales et perte d’énergie aux impacts, en dimension finite, C. R. Acad. Sci., Ser. I: Math. 317, 211–215.
Paoli L and Schatzman M (1998), Theoretical and numerical study for vibrations with unilateral constraints: Case of a non-convex set of constraints, Proc 4th World Congress on Computational Mechanics, •New Trends, and Applications, SR Idelsohn, E Onate, and EN Dvorkin (eds), CD-Rom.
Hubbard JH and West BH (1991), Differential Equations: A Dynamical Systems Approach, Ordinary Differential Equations, Springer Verlag TAM 5, NY.
Paoli L and Schatzman M (1995), Dynamical impact problem with loss of energy: Numerical study for large times. Application to a model of tight joints, Proc of Contact Mechanics 95, MH Aliabadi and C Alessandri (eds), Computational Mechanics Publications, Southampton, Boston, 233–240.
Panet M, Paoli L, and Schatzman M (1995), Theoretical and numerical study for a model of vibrations with unilateral constraints, Contact Mechanics Int Symp2 , 19–23 Sept 1994, M Raous, M Jean, JJ Moreau (eds), Plenum Press, NY London, 457–464.
Bokhoven WMG (1981), Piecewise Linear Modelling and Analysis, Kluwer, Deventer NL.
Sandberg  IW (1970), Theorems on the computation of the transient response of nonlinear networks containing transistors and diodes, Bell Syst. Tech. J. 49, 1739–1776.
Massarini  A, Reggiani  U, and Kazimierczuk  K (1997), Analysis of networks with ideal switches by state equations, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 44(8), 692–697.
Bedrosian  D and Vlach  J (1992), Time-domain analysis of networks with internally controlled switches, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 39(3), 199–212.
Lin M and Canny F (1992), Efficient collision detection for animation, Third Eurographics Workshop on Animation and Simulation, Sept.
An  Le Suan (1990), The Painlevé paradoxes and the law of motion of mechanical systems with Coulomb friction, Prikl. Math. Mekh.54 (4), 520-529 (Transl. in J. Appl. Math. Mech. 54(4), 430–438.
Stewart DE (1999), Painlevé’s problem and its implication for rigid-body dynamics, Euromech Colloquium 397 Impact in Mechanical Systems, Grenoble, 30 June-02 July.
Wood  LA and Byrne  KP (1981), Analysis of a random repeated impact process, J. Sound Vib. 82, 329–345.
Holmes  PJ (1982), The dynamics of repeated impacts with a sinusoidally vibrating table, J. Sound Vib. 84, 173–189.
Brach RM and Brach RM (1987), A review of impact models for vehicle collision, SAE Paper No. 870048.
Pfeiffer F and Glocker Ch (eds) (1999), Unilateral multibody contacts, Proc of IUTAM Symp, Munich, Aug 1998, Kluwer, Dordrecht.
Son W, Trinkle JC, and Amato NM (2001), Hybrid dynamic simulation of rigid-body contact with Coulomb friction, Proc of IEEE Int Conf on Robotics and Automation, May 21–26, COEX Seoul, Korea, CD-Rom.
Moreau JJ and Panagiotopoulos PD (eds) (1988), Nonsmooth Mechanics and Applications, CISM Courses and Lectures no 302, Int Centre for Mechanical Sciences, Springer-Verlag.

Figures

Grahic Jump Location
Tangent and normal cones, and the corner law
Grahic Jump Location
Collision detection methods    
Grahic Jump Location
Examples of tangential contact force approximations

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In