Meshfree and particle methods and their applications

[+] Author and Article Information
Shaofan Li

Department of Civil & Environmental Engineering, University of California, Berkeley CA 94720; li@ce.berkeley.edu

Wing Kam Liu

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd, Evanston IL 60208; w-liu@northwestern.edu

Appl. Mech. Rev 55(1), 1-34 (Jan 01, 2002) (34 pages) doi:10.1115/1.1431547 History:
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Liu  WK, Belytschko  T, and Chang  H (1986), An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials. Comput. Methods Appl. Mech. Eng. 58, 227–246.
Liu  WK, Chang  H, Chen  JS, and Belytschko  T (1988), Arbitrary Lagrangian and Eulerian Petrov-Galerkin finite elements for nonlinear problems, Comput. Methods Appl. Mech. Eng. 68, 259–310.
Huerta  A and Liu  WK (1988), Viscous flow with large free surface motion, Comput. Methods Appl. Mech. Eng. 9, 277–324.
Liu  WK, Chen  JS, Belytschko  T, and Zhang  YF (1991), Adaptive ALE finite elements with particular reference to external work rate on frictional interface, Comput. Methods Appl. Mech. Eng. 93, 189–216.
Belyschko T, Liu WK, and Moran B (2000), Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons, New York.
Needleman  A (1988), Material rate dependent and mesh sensitivity in localization problems, Comput. Methods Appl. Mech. Eng. 67, 68–85.
Needleman  A (1989), Dynamic shear band development in plane strain, ASME J. Appl. Mech. 56, 1–9.
Benz W (1990), Smooth particle hydrodynamics: a review. In: Numerical Modeling of Non-linear Stellar Pulsation: Problems and Prospects, Kluwer Academic, Boston.
Gingold  RA and Monaghan  JJ (1977), Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181, 375–389.
Lucy  LB (1977), A numerical approach to the testing of the fission hypothesis, Astrophys. J. 82, 1013.
Monaghan  JJ (1982), Why particle methods work (Hydrodynamics), SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 3, 422–433.
Monaghan  JJ (1985), Particle methods for hydrodynamics, Comput. Phys. Rep. 3, 71–124.
Bernard  PS (1995), A deterministic vortex sheet method for boundary layer flow, J. Comput. Phys. 117, 132–145.
Chorin  AJ (1973), Numerical study of slightly viscous flow, J. Fluid Mech. 57, 785–796.
Chorin  AJ (1973), Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys. 13, 423–429.
Chorin  AJ (1978), Vortex sheet approximation of boundary layers, J. Comput. Phys. 27, 428–442.
Leonard  A (1980), Vortex methods for flow simulation, J. Comput. Phys. 37, 289–335.
Leonard  A (1985), Computing three-dimensional incompressible flows with vortex elements, Annu. Rev. Fluid Mech. 17, 523–529.
Liszka  T, and Orkisz  J (1980), The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct. 11, 83–95.
Liszka  T (1984), An interpolation method for an irregular net of nodes, Int. J. Numer. Methods Eng. 20, 1599–1612.
Feldneier H and Schnack J (2000). Molecular dynamics for fermions. Technical report, Gesellschaft fur Schwerionenforschung mbH.
Kobrak  MN, and Bittner  ER (2000), Quantum molecular dynamics study of polaron recombination in conjugated polymers, Phys. Rev. B 62, 11473–11486.
Krumrine  JR, Jang  S, Alexander  MH, and Voth  GA (2000), Quantum molecular dynamics and spectral simulation of a boron impurity in solid para-hydrogen, J. Chem. Phys. 113, 9079–9089.
Kihe  C, Yildirim  T, Mehrez  H, and Ciraci  S (2000), A first-principles study of the structure and dynamics of C8H8,Si8H8, and Ge8H8 moleculars, J. Phys. Chem. A 104, 2724–2728.
Hedman  F, and Laaksonen  A (2000), Parallel aspects of quantum molecular dynamics simulations of liquids, Comput. Phys. Commun. 128, 284–294.
Hong  J and Zhao  XS (2000), New propagators for quantum-classical molecular dynamics simulations, J. Chem. Phys. 113, 930–935.
Rapaport DC (1995), The Art of Molecular Dynamics Simulation, Cambridge Univ Press, Cambridge, UK.
Allen MP and Tildesley DJ (1987), Computer Simulation of Liquids, Oxford Univ Press, Oxford, UK.
Allen MP and Tildesley DJ ed, (1993) Computer Simulation of Chemical Physics, Kluwer Academic Pub, Dordrecht.
Catlow CRA, Parker SC, and Allen MP ed, (1990), Computer Modelling of Fluids Polymers and Solids, Kluwer Academic Pub, Dordrecht.
Ciccotti G and Hoover WG (eds) (1986), Molecular Dynamics Simulation of Statistical Mechanical Systems, North-Holland, Amsterdam.
Ciccotti G, Frenkel D, and McDonald IR (eds) (1987), Simulation of Liquids and Solids. Molecular Dynamics and Monte Carlo Methods in Statistical Mechanics, North-Holland, Amsterdam.
Bird GA (ed) (1994), Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Oxford Univ Press, Oxford, UK.
Oran  ES, Oh  CK, and Cybyk  BZ (1998), Direct simulation Monte Carlo: Recent advances and applications, Annu. Rev. Fluid Mech. 30, 403–441.
Tunon  I, Martins-Costa  MTC, Millot  C, Ruiz-Lopez  MF, and Rivail  JL (1996), A coupled density functional-molecular mechanics Monte Carlo simulation: the water molecule in liquid water, J. Comput. Chem. 17, 19–29.
Gross  WJ, Vasileska  D, and Ferry  DK (1999), A novel approach for introducing the electron-electron and electron-impurity interactions in particle-based simulations, IEEE Electron Device Lett. 20, 463–465.
Drovetsky  BY, Chu  JC, and Mak  CH (1998), Computer simulations of self-avoiding polymerized membranes, J. Chem. Phys. 108, 6554–6557.
Acioli  PH (1997), Review of quantum monte carlo methods and their applications, J. Mol. Struct. 394, 75–85.
Binder K (ed) (1988), The Monte Carlo Method in Condensed Matter Physics, Springer, Berlin, Heidelberg.
Binder K (ed) (1992), The Monte Carlo Simulation in Statistical Physics, Springer, Berlin, Heidelberg.
Baer  R (2000), Ab-initio molecular deformation barriers using auxiliary-field quantum Monte Carlo with application to the inversion barrier of water, Chem. Phys. Lett. 324, 101–107.
Liu  WK, Belytschko  T, and Mani  A (1986), Probabilistic finite elements for nonlinear structural dynamics, Comput. Methods Appl. Mech. Eng. 56, 61–81.
Liu  WK, Belytschko  T, and Mani  A (1986), Random field finite elements, Int. J. Numer. Methods Eng. 23, 1831–1845.
Liu  WK, Chen  YJ, and Belytschko  T (1996), Three reliability methods for fatigue crack growth, Eng. Fract. Mech. 53, 733–752.
Frisch  U, Hasslacher  B, and Pomeau  Y (1986), Lattice gas cellular automata for the Navier-Stokes equations, Phys. Rev. Lett. 56, 1505.
Kadanoff  L (1986), On two levels, Phys. Today 39, 7–9.
Kadanoff  L, McNamara  GR, and Zanetti  G (1987), A Poiseuille viscometer for lattice gas automata, Complex Syst. 1, 791.
Kadanoff  L, McNamara  GR, and Zanetti  G (1989), From automata to fluid flow: comparisons of simulation and theory, Phys. Rev. A 40, 4527.
Henon  M (1987), Viscosity of a lattice gas, Complex Syst. 1, 763.
Qian  YH, d’Humiéres  D, and Lallemand  P (1992), Lattice BGK models for the Navier-Stokes equation, Europhys. Lett. 17, 479–484.
Qian  YH and Orszag  SA (1993), Lattice BGK models for the Navier-Stokes equation: Nonlinear deviation in compressible regimes, Europhys. Lett. 21, 255–259.
Qian YH, Succi S, and Orszag SA (2000), Recent advances in lattice Boltzmann computing, In: Annual Reviews of Computational Physics, Volume III, D Stauffer (ed) World Scientific, Singapore, 195–242.
Chen  S, Wang  Z, Shan  XW, and Doolen  GD (1992), Lattice Boltzmann computational fluid dynamics in three dimensions, J. Stat. Phys. 68, 379–400.
Chen  S and Doolen  GD (1998), Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30, 329–364.
Nayroles  B, Touzot  G, and Villon  P (1992), Generalizing the finite element method: Diffuse approximation and diffuse elements, Computational Mech., Berlin 10, 307–318.
Breitkopf  P, Touzot  G, and Villon  P (1998), Consistency approach and diffuse derivation in element free methods based on moving least squares approximation, Comp. Assist. Mech. Eng. Sci. 5, 479–501 ISSN:1232-308X.
Breitkopf  P, Touzot  G, and Villon  P (2000), Double grid diffuse collocation method. Computational Mech., Berlin 25, 199–206.
Breitkopf  P, Rassineux  A, Touzot  G, and Villon  P (2000), Explicit form and efficient computation of MLS shape function and their derivatives, Int. J. Numer. Methods Eng. 48, 451–466.
Belytschko  T, Lu  YY, and Gu  L (1994), Element free galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256.
Belytschko  T, Krongauz  Y, Organ  D, Fleming  M, and Krysl  P (1996), Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Eng. 139, 3–48.
Belytschko  T, Krongauz  Y, Dolbow  J, and Gerlach  C (1998), On the completeness of meshfree particle methods, Int. J. Numer. Methods Eng. 43, 785–819.
Belytschko  T, Organ  D, and Gerlach  C (2000), Element-free Galerkin methods for dynamic fracture in concrete, Comput. Methods Appl. Mech. Eng. 187, 385–399.
Lu  YY, Belytschko  T, and Tabbara  M (1995), Element-free Galerkin method for wave propagation and dynamic fracture, Comput. Methods Appl. Mech. Eng. 126, 131–153.
Liu WK, Adee J, and Jun S (1993), Reproducing kernel and wavelets particle methods for elastic and plastic problems, In: Advanced Computational Methods for Material Modeling, AMD 180/PVP 268 ASME, 175–190.
Liu WK and Oberste-Brandenburg C (1993), Reproducing kernel and wavelets particle methods, In: Aerospace Structures: Nonlinear Dynamics and System Response, AD 33 ASME, 39–56.
Liu  WK, Jun  S, and Zhang  YF (1995), Reproducing kernel particle methods, Int. J. Numer. Methods Eng. 20, 1081–1106.
Liu  WK, Jun  S, Li  S, Adee  J, and Belytschko  T (1995), Reproducing kernel particle methods for structural dynamics, Int. J. Numer. Methods Eng. 38, 1655–1679.
Liu  WK, Chen  Y, Chang  CT, and Belytschko  T (1996), Advances in multiple scale kernel particle methods, Computational Mech., Berlin 18, 73–111.
Liu  WK, Chen  Y, Jun  S, Chen  JS, Belytschko  T, Uras  RA, and Chang  CT (1996), Overview and applications of the reproducing kernel particle methods, Arch. Comput. Mech. Eng.: State of Rev. 3, 3–80.
Liu  WK, Li  S, and Belytschko  T (1997), Moving least square reproducing kernel method Part I: Methodology and convergence, Comput. Methods Appl. Mech. Eng. 143, 422–453.
Chen  JS, Pan  C, Wu  CT, and Liu  WK (1996), Reproducing kernel particle methods for large deformation analysis of nonlinear structures, Comput. Methods Appl. Mech. Eng. 139, 195–227.
Chen  JS, Wu  CT, Yoon  S, and You  Y (2001), A stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Numer. Methods Eng. 50, 435–466.
Duarte  CA, and Oden  JT (1996), hp Clouds—an hp meshless method, Numer. Methods Partial Diff. Eqs. 12, 673–705.
Duarte  CA, and Oden  JT (1996), An hp adaptive method using clouds, Comput. Methods Appl. Mech. Eng. 139, 237–262.
Liszka  T, Duarte  CAM, and Tworzydlo  WW (1996), hp-meshless cloud method, Comput. Methods Appl. Mech. Eng. 139, 263–288.
Oden  JT, Duarte  CAM, and Zienkiewicz  OC (1998), A new Cloud-based hp finite element method, Comput. Methods Appl. Mech. Eng. 153, 117–126.
Babuška  I and Melenk  JM (1997), The partition of unity method, Int. J. Numer. Methods Eng. 40, 727–758.
Babuška  I and Zhang  Z (1998), The partition of unity method for the elastically supported beam, Comput. Methods Appl. Mech. Eng. 152, 1–18.
Melenk  JM and Babuška  I (1996), The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng. 139, 289–314.
Atluri  SN, and Zhu  T (1998), A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Comput. Model. Simul. Eng. 3, 187–196.
Atluri  SN, Kim  HG, and Cho  JY (1999), A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods, Computational Mech., Berlin 24, 348–372.
Atluri  SN, Cho  JY, and Kim  HG (1999), Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least square interpolations, Computational Mech., Berlin 24, 334–347.
Atluri  SN and Zhu  T (2000), The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Computational Mech., Berlin 25, 169–179.
Furukawa  T, Yang  C, Yagawa  G, and Wu  CC (2000), Quadrilateral approaches for accurate free mesh method, Int. J. Numer. Methods Eng. 47, 1445–1462.
Shirazaki  M and Yagawa  G (1999), Large-scale parallel flow analysis based on free mesh method: A virtually meshless method, Comput. Methods Appl. Mech. Eng. 174, 419–431.
Yagawa  G and Yamada  T (1996), Free mesh method: A new meshless finite element method, Computational Mech., Berlin 18, 383–386.
Yagawa  G and Yamada  T (1998), Meshless method on massively parallel processors with application to fracture mechanics, Key Eng. Mater. 145–149, 201–210.
Yagawa  G and Furukawa  T (2000), Recent development of free mesh method, Int. J. Numer. Methods Eng. 47, 1419–1417.
Cushman-Roisin  B, Esenkov  OE, and Mathias  BJ (2000), A particle-in-cell method for the solution of two-layer shallow-water equations, Int. J. Numer. Methods Fluids 32, 515–543.
Munz  CD, Schneider  R, Sonnendrücker  E, Stein  E, Voss  U, and Westermann  T (1999), A finite-volume particle-in-cell method for the numerical treatment of Maxwell-Lorentz equations on boundary-fitted meshes, Int. J. Numer. Methods Eng. 44, 461–487.
Munz  CD, Schneider  R, and Voss  U (1999), A finite-volume particle-in-cell method for the numerical simulation of devices in pulsed-power technology, Surv. Math. Ind. 8, 243–257.
Bardenhagen  SG, Brackbill  JU, and Sulsky  D (2000), The material-point method for granular materials, Comput. Methods Appl. Mech. Eng. 187, 529–541.
Brackbill  JU and Ruppel  HM (1986), FLIP: A method for adaptively zoned, particle-in-cell calculations in two dimensions, J. Comput. Phys. 65, 314–343.
Brackbill  JU (1987), On modeling angular momentum and velocity in compressible fluid flow, Comput. Phys. Commun. 47, 1.
Sulsky  D and Schreyer  HL (1996), Axisymmetric form of the material point with applications to upsetting and Taylor impact problems, Comput. Methods Appl. Mech. Eng. 139, 409–429.
Aluru  NR (2000), A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Eng. 47, 1083–1121.
Anderson  C and Greengard  C (1985), On vortex methods, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 22, 413–440.
Abraham FF (1996), Parallel simulations of rapid fracture, In: Fracture-Instability Dynamics, Scaling and Ductile/Brittle Behavior Symp., Mater. Res. Soc, Pittsburgh PA, 311–320.
Abraham  FF, Bernstein  N, Broughton  JQ, and Hess  D (2000), Dynamic fracture of silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid, MRS Bull. 25, 27–32.
Foiles  SM, Baskes  MI, and Daw  MS (1986), Embedded-atom-method functions for FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983–7991.
Falk  ML and Langer  JS (2000), From simulation to theory in the physics of deformation and fracture, MRS Bull. 25, 40–45.
Galli  G, Cygi  F, and Catellani  A (1996), Quantum mechanical simulations of microfracture in a complex material, Phys. Rev. Lett. 82, 3476–3479.
Galli  G (1996), Linear scaling methods for electronic structure calculations and quantum molecular dynamics simulations, Curr. Opin. Solid State Mater. Sci. 1, 864–874.
Monaghan  JJ (1992), Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys. 30, 543–574.
Hultman  J and Pharayn  A (1999), Hierarchical, dissipative formation of elliptical galaxies: Is thermal instability the key mechanism? Hydrodynamical simulations including supernova feedback multi-phase gas and metal enrichment in CDM: Structure and dynamics of elliptical galaxies, Astron. Astrophys. 347, 769–798.
Monaghan  JJ and Lattanzio  JC (1991), A simulation of the collapse and fragmentation of cooling molecular clouds, Astrophys. J. 375, 177–189.
Berczik  P and Kolesnik  IG (1993), Smoothed particle hydrodynamics and its application to astrophysical problems, Kinematics and Physics of Celestial Bodies 9, 1–11.
Berczik  P and Kolesnik  IG (1998), Gasdynamical model of the triaxial protogalaxy collapse, Astron. Astrophys. Trans. 16, 163–185.
Berczik  P (2000), Modeling the star formation in galaxies using the chemo-dynamical sph code, Astron. Astrophys. 360, 76–84.
Lee  WH (1998), Newtonian hydrodynamics of the coalescence of black holes with neutron stars ii. tidally locked binaries with a soft equation of state, Mon. Not. R. Astron. Soc. 308, 780–794.
Lee  WH (2000), Newtonian hydrodynamics of the coalescence of black holes with neutron stars iii. irrotational binaries with a stiff equation of state, Mon. Not. R. Astron. Soc. 318, 606–624.
Garcia-Senz  D, Bravo  E, and Woosley  SE (1999), Single and multiple detonations in white dwarfs, Astron. Astrophys. 349, 177–188.
Monaghan  JJ (1990), Modeling the universe, Proc. Astron. Soc. Aust. 18, 233–237.
Kum  O, Hoover  WG, and Posch  HA (1995), Viscous conducting flows with smooth-particle applied mechanics, Phys. Rev. E 109, 67–75.
Posch  HA, Hoover  WG, and Kum  O (1995), Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics, Phys. Rev. E 52, 1711–1719.
Monaghan  JJ and Gingold  RA (1983), Shock simulation by the particle method SPH, J. Comput. Phys. 52, 374–389.
Libersky  LD, Petschek  AG, Carney  TC, Hipp  JR, and Allahdadi  FA (1993), High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response, J. Comput. Phys. 109, 67–75.
Bonet  J and Kulasegaram  S (2000), Correction and stabilization of smooth particle hydrodynamic methods with applications in metal forming simulations, Int. J. Numer. Methods Eng. 47, 1189–1214.
Libersky LD and Petschek AG (1991), Smooth particle hydrodynamics with strength of materials, In: Advances in the Free-Lagrange Method, Springer, New York, 248–257.
Randles  PW and Libersky  LD (1996), Smoothed particle hydrodynamics: Some recent improvements and applications, Comput. Methods Appl. Mech. Eng. 139, 375–408.
Johnson  GR, Petersen  EH, and Stryk  RA (1993), Incorporation of an SPH option into EPIC code for a wide range of high velocity impact computations, Int. J. Impact Eng. 14, 385–394.
Johnson  GR, Stryk  RA, and Beissel  SR (1996), SPH for high velocity impact computations, Comput. Methods Appl. Mech. Eng. 139, 347–374.
Johnson  GR and Beissel  SR (1996), Normalized smoothing functions for SPH impact computations, Int. J. Numer. Methods Eng. 39, 2725–2741.
Attaway  SW, Heinstein  MW, and Swegle  JW (1994), Coupling of smooth particle hydrodynamics with the finite element method, Nucl. Eng. Des. 150, 199–205.
Taylor LM and Flanagan DP (1987), PRONTO 2D—A two-dimensional transient solid dynamics program, Tech Report SAND 86-0594, Sandia National Labs.
Cummins  SJ and Rudman  M (1999), An SPH projection method, J. Comput. Phys. 152, 584–607.
Monaghan  JJ (1989), On the problem of penetration in particle methods, J. Comput. Phys. 82, 1–15.
Morris  JP, Fox  PJ, and Zhu  Y (1997), Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys. 136, 214–226.
Monaghan  JJ (1994), Simulating free surface flow with SPH, J. Comput. Phys. 110, 399.
Monaghan  JJ and Kocharyan  A (1995), SPH simulation of multi-phase flow, Comput. Phys. Commun. 87, 225.
Takeda  H, Miyama  SM, and Sekiya  M (1994), Numerical simulation of viscous flow by smoothed particle hydrodynamics, Prog. Theor. Phys. 116, 123–134.
Welton  WC and Pope  SB (1997), PDF model calculations of compressible turbulent flows using smoothed particle hydrodynamics, J. Comput. Phys. 134, 150–168.
Welton  WC (1998), Two-dimensional PDF/SPH simulations of compressible turbulent flows, J. Comput. Phys. 139, 410–443.
Cleary  PW and Monaghan  JJ (1999), Conduction modelling using smoothed particle hydrodynamics, J. Comput. Phys. 148, 227–264.
Bateson  W and Hewett  DW (1998), Grid and particle hydrodynamics, J. Comput. Phys. 144, 358–378.
Chow  E and Monaghan  JJ (1997), Ultrarelativistic SPH, J. Comput. Phys. 134, 296–305.
Faber  JA and Rasio  FA (2000), Post-Newtonian SPH calculations of binary neutron star coalescence: Method and first results, Phys. Rev. D 62, 064012 (1–23).
Siegler  S and Riffert  H (2000), Smoothed particle hydrodynamics simulations of ultrarelativistic shocks, Astrophys. J. 531, 1053–1066.
Chen  JK, Beraun  JE, and Jih  TC (1999), A corrective smoothed particle method for boundary value problems in heat conduction, Int. J. Numer. Methods Eng. 46, 231–252.
Chen  JK and Beraun  JE (2000), A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput. Methods Appl. Mech. Eng. 190, 225–239.
Benz  W and Asphaug  E (1995), Simulations of brittle solids using smooth particle hydrodynamics, Comput. Phys. Commun. 87, 253–265.
Gingold  RA and Monaghan  JJ (1982), Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys. 46, 429–453.
Monaghan  JJ and Lattanzio  JC (1985), A refined particle method for astrophysical problems, Astron. Astrophys. 149, 135–143.
Monaghan  JJ and Pongracic  H (1985), Artificial viscosity for particle methods, Appl. Numer. Math. 1, 187–194.
Monaghan  JJ (1988), An introduction to SPH, Comput. Phys. Commun. 48, 89–96.
Monaghan  JJ (1997), SPH and riemann solvers, J. Comput. Phys. 136, 298–307.
Monaghan  JJ (1999), Implicit SPH drag and dust gas dynamics, J. Comput. Phys. 138, 801–820.
Monaghan  JJ (2000), SPH without a tensile instability, J. Comput. Phys. 159, 290–311.
Petschek  AG and Libersky  LD (1993), Cylindrical smoothed particle hydrodynamics, J. Comput. Phys. 109, 76–83.
Swegle  JW, Hicks  DL, and Attaway  SW (1995), Smoothed particle hydrodynamics stability analysis, J. Comput. Phys. 116, 123–134.
Belytschko  T, Guo  Y, Liu  WK, and Xiao  P (2000), A unified stability analysis of meshless particle methods, Int. J. Numer. Methods Eng. 48, 1359–1400.
Morris  JP (1996), Stability properties of SPH, Publ. - Astron. Soc. Aust. 13, 97.
Dyka  CT and Ingel  RP (1995), An approach for tension instability in smoothed particle hydrodynamics, Comput. Struct. 57, 573–580.
Dyka  CT, Randles  PW, and Ingel  RP (1995), Stress points for tensor instability in sph, Int. J. Numer. Methods Eng. 40, 2325–2341.
Dilts  GA (1999), Moving least-square particle hydrodynamics I: Consistency and stability, Int. J. Numer. Methods Eng. 44, 1115–1155.
Dilts  GA (2000), Moving least-square particle hydrodynamics II: Conservation and boundaries, Int. J. Numer. Methods Eng. 48, 1503–1524.
Vignjevic  R, Campbell  J, and Libersky  L (2000), A treatment of zero-energy modes in the smoothed particle hydrodynamics method, Comput. Methods Appl. Mech. Eng. 184, 67–85.
Balsara  DS (1995), Von Neumann stability analysis of smoothed particle hydrodynamics—Suggestions for optimal algorithms, J. Comput. Phys. 121, 357–372.
Chen  JK, Beraun  JE, and Jih  CJ (1999), An improvement for tensile instability in smoothed particle hydrodynamics, Computational Mech., Berlin 23, 279–287.
Randles  PW and Libersky  LD (2000), Normalized SPH with stress points, Int. J. Numer. Methods Eng. 48, 1445–1462.
Chen  JK, Beraun  JE, and Jih  CJ (1999), Completeness of corrective smoothed particle method for linear elastodynamics, Computational Mech., Berlin 24, 273–285.
Niedereiter  H (1978), Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Am. Math. Soc. 84, 957–1041.
Wozniakowski  H (1991), Average case complexity of multivariate integration, Bull. Am. Math. Soc. 24, 185–194.
Di Lisio  R, Grenier  E, and Pulvirenti  M (1998), The convergence of the SPH method, Comput. Math. Appl. 35, 95–102.
Riffert  H, Herold  H, Flebbe  O, and Ruber  H (1995), Numerical aspects of the smoothed particle hydrodynamics method for simulating accretion disks, Comput. Phys. Commun. 89, 1–16.
Bonet  J and Lok  TS (1999), Variational and momentum preservation aspects of smooth particle hydrodynamic formulation, Comput. Methods Appl. Mech. Eng. 180, 97–115.
Capuzzo-Dolcetta  R and Di Lisio  R (2000), A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics, Appl. Numer. Math. 34, 363–371.
Hicks  DL, Swegle  JW, and Attaway  SW (1997), Conservative smoothing stabilizes discrete-numerical instabilities in SPH materials dynamics computations, Appl. Math. Comput. 85, 209–226.
Hicks  DL (1999), SPH hydrocodes can be stabilized with shape-shifting, Comput. Math. Appl. 38, 1–16.
Campbell  J, Vignjevic  R, and Libersky  L (2000), A contact algorithm for smoothed particle hydrodynamics, Comput. Methods Appl. Mech. Eng. 184, 49–65.
Boffin  HMJ, Watkin  SJ, Bhattal  AS, Francis  N, and Whitworth  AP (1998), Numerical simulations of protostellar encounters I: Star-disc encounters, Mon. Not. R. Astron. Soc. 300, 1189–1204.
Boffin  HMJ, Watkin  SJ, Bhattal  AS, Francis  N, and Whitworth  AP (1998), Numerical simulations of protostellar encounters II: Coplanar disc-disc encounters, Mon. Not. R. Astron. Soc. 300, 1205–1213.
Boffin  HMJ, Watkin  SJ, Bhattal  AS, Francis  N, and Whitworth  AP (1998), Numerical simulations of protostellar encounters. III: Non-coplanar disc-disc encounters, Mon. Not. R. Astron. Soc. 300, 1214–1224.
Marinho  EP and Lepine  JRD (2000), SPH simulations of chump formation by dissipative collision of molecular clouds I: Non-magnetic case, Astron. Astrophys., Suppl. Ser. 142, 165–179.
Yoshikawa  K, Jing  JP, and Suto  Y (2000), Cosmological smoothed particle hydrodynamic simulations with four million particles: Statistical properties of X-ray clusters in a low-density universe, Astrophys. J. 535, 593–601.
Owen  JM, Villumsen  JV, Shapiro  PR, and Martel  H (1996), Adaptive smoothed particle hydrodynamics: Methodology I, Astrophys. J., Suppl. Ser. 103, 269–330.
Owen  JM, Villumsen  JV, Shapiro  PR, and Martel  H (1998), Adaptive smoothed particle hydrodynamics: Methodology II, Astrophys. J., Suppl. Ser. 116, 155–209.
Seto  N (2000), Perturbative analysis of adaptive smoothing methods in quantifying large-scale structure, Astrophys. J., Suppl. Ser. 538, 11–28.
Dave  R, Dubinski  J, and Hernquist  L (1997), Parallel TreeSPH, New Astron. 2, 277–297.
Hernquist  L and Katz  N (1989), TREESPH: A unification of SPH with the hierarchical tree method, Astrophys. J., Suppl. Ser. 70, 419–446.
Lia  C and Carraro  G (2000), A parallel tree SPH code for galaxy formation, Mon. Not. R. Astron. Soc. 314, 145–161.
Plimpton  S, Attaway  S, Hendrickson  B, Swegle  J, and Vaughan  C (1998), Parallel transient dynamics simulations: algorithms for contact detection and smoothed particle hydrodynamics, Journal of Parallel and Distributed Computing 50, 104–122.
Gutfraind  R and Savage  SB (1997), Smoothed particle hydrodynamics for the simulation of broken-ice field: Mohr-Coulomb-type rheology and frictional boundary conditions, J. Comput. Phys. 134, 203–215.
Oger  L and Savage  SB (1999), Smoothed particle hydrodynamics for cohesive grains, Comput. Methods Appl. Mech. Eng. 180, 169–183.
Gutfraind  R and Savage  SB (1998), Flow of fractured ice through wedge-shaped channels: Smoothed particle hydrodynamics and discrete-element simulations, Mech. Mater. 29, 1–17.
Birnbaum  NK, Francis  NJ, and Gerber  BI (1999), Coupled techniques for the simulation of fluid-structure and impact problems, Computer Assisted Mechanics and Engineering Science 16, 295–311.
Fahrenthold  EP and Koo  JC (1997), Hamiltonian particle hydrodynamics, Comput. Methods Appl. Mech. Eng. 146, 43–52.
Liu  WK, Zhang  Y, and Ramirez  MR (1991), Multiple scale finite element methods, Int. J. Numer. Methods Eng. 32, 969–990.
Lancaster  P and Salkauskas  K (1980), Surface generated by moving least square methods, Math. Comput. 37, 141–158.
Belytschko  T, Lu  YY, and Gu  L (1994), Fracture and crack growth by element-free Galerkin methods, Model. Simul. Sci. Comput. Engrg. 2, 519–534.
Belytschko  T, Lu  YY, and Gu  L (1995), Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Struct. 32, 2547–2570.
Belytschko  T, Lu  YY, and Gu  L (1995), Crack propagation by element-free Galerkin methods, Eng. Fract. Mech. 51, 295–315.
Liu WK (1995), An introduction to wavelet reproducing kernel particle methods, USACM Bull. 8 , 3–16.
Shepard D (1968), A two-dimensional interpolation function for irregularly spaced points, In: Proc of ACM National Conf, 517–524.
Belytschko  T, Krongauz  Y, Fleming  M, Organ  D, and Liu  WK (1996), Smoothing and accelerated computations in the element free Galerkin method, J. Comput. Appl. Math. 74, 111–126.
Fleming  M, Chu  YA, Moran  B, and Belytschko  T (1997), Enriched element-free Galerkin methods for crack tip fields, Int. J. Numer. Methods Eng. 40, 1483–1504.
Rao  BN and Rahman  S (2000), An efficient meshless method for fracture analysis of crack, Computational Mech., Berlin 26, 398–408.
Liu  WK, Chen  Y, Uras  RA, and Chang  CT (1996), Generalized multiple scale reproducing kernel particle methods, Comput. Methods Appl. Mech. Eng. 139, 91–158.
Uras  RA, Chang  CT, Chen  Y, and Liu  WK (1997), Multiresolution reproducing kernel particle methods in acoustics, J. Comput. Acoust. 5, 71–94.
Suleau  S and Bouillard  Ph (2000), One-dimensional dispersion analysis for the element-free Galerkin method for the Helmholtz equation, Int. J. Numer. Methods Eng. 47, 1169–1188.
Suleau  S, Deraemaeker  A, and Bouillard  Ph (2000), Dispersion and pollution of meshless solution for the Helmholtz equation, Comput. Methods Appl. Mech. Eng. 190, 639–657.
Bouillard  Ph and Suleau  S (1998), Element-free Galerkin solutions for Helmholtz problems: Formulation and numerical assessment of the pollution effect, Comput. Methods Appl. Mech. Eng. 162, 317–335.
Christon  MA and Voth  TE (2000), Results of von neumann analyses for reproducing kernel semi-discretizations, Int. J. Numer. Methods Eng. 47, 1285–1301.
Li S (1997), Moving Least Square Reproducing Kernel Methods, PhD thesis, McCormick School of Eng and Applied Science, Northwestern Univ, Evanston IL, May.
Farwig  R (1986), Multivariate interpolation of arbitrarily spaced data by moving least squares methods, J. Comput. Appl. Math. 16, 79–93.
Farwig  R (1986), Rate of convergence of shepard’s global interpolation formula, Math. Comput. 46, 577–590.
Li  S and Liu  WK (1998), Reproducing kernel hierarchical partition of unity Part I: Formulation and theory, Int. J. Numer. Methods Eng. 45, 251–288.
Daubechies I (1992), Ten Lectures on Wavelets, Soc for Indust and Appl Math, Philadelphia.
Chui CK (1992), An Introduction to Wavelets, Academic Press, Boston.
Li  S and Liu  WK (1998), Synchronized reproducing kernel interpolant via multiple wavelet expansion, Computational Mech., Berlin 28, 28–47.
Li  S and Liu  WK (1998), Reproducing kernel hierarchical partition of unity Part II: Applications, Int. J. Numer. Methods Eng. 45, 289–317.
Günther  F, Liu  WK, Diachin  D, and Christon  MA (2000), Multi-scale meshfree parallel computations for viscous compressible flows, Comput. Methods Appl. Mech. Eng. 190, 279–303.
Chen  JS, Wu  CT, and Belytschko  T (2000), Regularization of material instabilities by meshfree approximations with intrinsic length scales, Int. J. Numer. Methods Eng. 47, 1303–1322.
Wagner  GJ and Liu  WK (2000), Hierarchical enrichment for bridging scales and meshfree boundary conditions, Int. J. Numer. Methods Eng. 50, 507–524.
Huerta  A and Fernández-Méndez  S (2000), Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng. 48, 1615–1636.
Fernández-Mendez S, Diez P, and Huerta A (2001), Convergence of finite elements enriched with meshless methods, SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. (submitted).
Han  W, Wagner  GJ, and Liu  WK (2002), Convergence analysis of a hierarchical enrichment of dirichlet boundary conditions in a meshfree method, Int. J. Numer. Methods Eng. 53(6), 1323–1336.
Liu  WK, Uras  RA, and Chen  Y (1997), Enrichment of the finite element method with reproducing kernel particle method, ASME J. Appl. Mech. 64, 861–870.
B Szabó and I Babuška (1991), Finite Element Analysis, John Wiley & Sons, New York.
Dolbow  J, Möse  N, and Belytschko  T (2000), Discontinuous enrichment in finite elements with a partition of unity method, Finite Elem. Anal. Design 36, 235–260.
Wagner  GJ, Möse  N, Liu  WK, and Belytschko  T (2000), The extended finite element method for rigid particles in stokes flow, Int. J. Numer. Methods Eng. 51, 293–313.
Daux  C, Möse  N, Dolboaw  J, Sukumar  N, and Belytschko  T (2000), Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng. 48, 1741–1760.
Wagner GJ (2001), A Numerical Investigation of Particulate Channel Flows, PhD thesis, Northwestern Univ, Evanston IL.
Gosz  J and Liu  WK (1996), Admissible approximations for essential boundary conditions in the reproducing kernel particle method, Computational Mech., Berlin 19, 120–135.
Zhu  T and Atluri  SN (1998), A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mech., Berlin 21, 211–222.
Li  S, Hao  W, and Liu  WK (2000), Numerical simulations of large deformation of thin shell structures using meshfree methods, Computational Mech., Berlin 25, 102–116.
Chen  JS and Wang  HF (2000), New boundary condition treatments in meshfree computation of contact problems, Comput. Methods Appl. Mech. Eng. 187, 441–468.
Wagner  GJ and Liu  WK (2000), Application of essential boundary conditions in mesh-free methods: A corrected collocation method, Int. J. Numer. Methods Eng. 47, 1367–1379.
Günther  F and Liu  WK (1998), Implementation of boundary conditions for meshless methods, Comput. Methods Appl. Mech. Eng. 163, 205–230.
Kalijevic  I and Saigal  S (1997), An improved element free Galerkin formulation, Int. J. Numer. Methods Eng. 40, 2953–2974.
Krongauz  Y and Belytschko  T (1996), Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. Methods Appl. Mech. Eng. 131, 133–145.
Liu  GR and Gu  YT (2000), Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches, Computational Mech. 26, 536–546.
Pang  Z (2000), Treatment of point loads in element free Galerkin method (EFGM), Commun. in Numer. Methods in Eng. 16, 335–341.
Klaas  O and Shepard  MS (2000), Automatic generation of octree-based three-dimensional discretization for partition of unity methods, Computational Mech. 25, 296–304.
Belytschko  T and Tabbara  M (1997), Dynamic fracture using element-free Galerkin methods, J. Comput. Appl. Math. 39, 923–938.
Dolbow  J and Belytschko  T (1999), Volumetric locking in the element-free Galerkin method, Int. J. Numer. Methods Eng. 46, 925–942.
Beissel  S and Belytschko  T (1996), Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Eng. 139, 49–74.
Dolbow  J and Belytschko  T (1999), Numerical integration of the Galerkin weak form in meshfree methods, Computational Mech. 23, 219–230.
Atluri  SN, Sladek  J, Sladek  V, and Zhu  T (2000), The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity, Computational Mech. 25, 180–198.
Atluri  SN and Zhu  T (2000), New concepts in meshless methods, Int. J. Numer. Methods Eng. 47, 537–556.
Zhu  T, Zhang  J, and Atluri  SN (1999), A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems, Eng. Anal. Boundary Elem. 23, 375–389.
Zhu  T (1999), A new meshless regular local boundary integral equation (MRLBIE) approach, Int. J. Numer. Methods Eng. 46, 1237–1252.
Sladek  V, Sladek  J, Atluri  SN, and Van Keer  R (2000), Numerical integration of singularities in meshless implementation of local boundary integral equations, Computational Mech. 25, 394–403.
De  S and Bathe  KJ (2000), The method of finite spheres, Computational Mech. 25, 329–345.
Chen JS, Wu CT, and Yoon S (2001), Nonlinear version of stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Numer. Methods Eng. In press.
Krysl  P and Belytschko  T (1996), Element-free Galerkin method: convergence of the continuous and discontinuous shape function, Comput. Methods Appl. Mech. Eng. 148, 257–277.
Krysl  P and Belytschko  T (1999), The element free Galerkin method for dynamic propagation of arbitrary 3-d cracks, Int. J. Solids Struct. 44, 767–800.
Li S, Liu WK, Rosakis A, Belytschko T, and Hao W (2001), Meshfree Galerkin simulations of dynamic shear band propagation and failure mode transition, Int. J. Solids Struct. (in press).
Li  S, Liu  WK, Qian  D, Guduru  R, and Rosakis  AJ (2001), Dynamic shear band propagation and micro-structure of adiabatic shear band, Comput. Methods Appl. Mech. Eng. 191, 73–92.
Zhou  M, Rosakis  AJ, and Ravichandran  G (1996), Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed, J. Mech. Phys. Solids 44, 981–1006.
Kalthoff  JF (1987), Shadow optical analysis of dynamic shear fracture, Proc. of SPIE, Photomechanics and Speckle Metrology 814, 531–538.
Kalthoff JF and Winkler S (1987), Failure mode transition at high rates of shear loading, In: Impact Loading and Dynamic Behavior of Materials, CY Chiem, HD Kunze, and LW Meyer (eds), Vol. 1, 185–195.
Chen  JS, Pan  C, Wu  CT, and Roque  C (1998), A Lagrangian reproducing kernel particle method for metal forming analysis, Computational Mechanics 21, 289–307.
Chen  JS, Roque  C, Pan  C, and Button  ST (1998), Analysis of metal forming process based on meshless method, J. Mater. Process. Technol. 80–81, 642–646.
Chen  JS, Pan  C, and Wu  CT (1997), Large deformation analysis of rubber based on a reproducing kernel particle method, Computational Mech. 19, 153–168.
Chen  JS, Pan  C, and Wu  CT (1998), Application of reproducing kernel particle methods to large deformation and contact analysis of elastomers, Rubber Chem. Technol. 7, 191–213.
Wu  CT, Chen  JS, Chi  L, and Huck  F (2001), Lagrangian meshfree formulation for analysis of geotechnical materials, J. Eng. Mech. 127, 140–149.
Kim  NH, Choi  KK, Chen  JS, and Park  YH (2000), Meshless shape design sensitivity and optimization for contact problem with friction, Computational Mech. 25, 157–168.
Li  S and Liu  WK (2000), Numerical simulations of strain localization in inelastic solids using mesh-free methods, Int. J. Numer. Methods Eng. 48, 1285–1309.
Li  S, Hao  W, and Liu  WK (2000), Meshfree simulations of shear banding in large deformation, Int. J. Solids Struct. 37, 7185–7206.
Jun  S, Liu  WK, and Belytschko  T (1998), Explicit reproducing kernel particle methods for large deformation problems, Int. J. Numer. Methods Eng. 41, 137–166.
Chen  JS, Yoon  S, Wang  HP, and Liu  WK (2000), An improvement reproducing kernel particle method for nearly incompressible hyperelastic solids, Comput. Methods Appl. Mech. Eng. 181, 117–145.
Askes  H, de Borst  R, and Heeres  OM (1999), Conditions for locking-free elasto-plastic analysis in the element-free Galerkin method, Comput. Methods Appl. Mech. Eng. 173, 99–109.
Krysl  P and Belytschko  T (1996), Analysis of thin shells by the element-free Galerkin method, Int. J. Solids Struct. 33, 3057–3080.
Donning  BM and Liu  WK (1998), Meshless methods for shear-deformable beams and plates, Comput. Methods Appl. Mech. Eng. 152, 47–71.
Noguchi H (1997), Application of element free Galerkin method to analysis of Mindlin type plate/shell problems, Proc of ICE97, 918–923.
Garcia  O, Fancello  EA, de Barcellos  CS, and Duarte  CA (2000), hp-Clouds in Mindlin’s thick plate model, Int. J. Numer. Methods Eng. 47, 1381–1400.
Noguchi  H, Kawashima  T, and Miyamura  T (2000), Element free analysis of shell and spatial structures, Int. J. Numer. Methods Eng. 47, 1215–1240.
Li  S, Qian  D, Liu  WK, and Belytschko  T (2000), A meshfree contact-detection algorithm, Comput. Methods Appl. Mech. Eng. 190, 7185–7206.
Qian D, Li S, and Cao J (2000). 3D simulation of manufacturing process by a meshfree contact algorithm, 20th Int Congress of IUTAM, Chicago IL, August.
Song  N, Qian  D, Cao  J, Liu  WK, and Li  S (2001), Effective model for prediction of springback in flanging, ASME J. Eng. Mater. Technol. 123, 456–461.
Jun  S and Im  S (2000), Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation, Computational Mech. 25, 257–266.
Liu  WK and Chen  Y (1995), Wavelet and multiple scale reproducing kernel method, Int. J. Numer. Methods Fluids 21, 901–933.
Liu  WK, Hao  W, Chen  Y, Jun  S, and Gosz  J (1997), Multiresolution reproducing kernel particle methods, Computational Mech. 20, 295–309.
Liu  WK and Jun  S (1998), Multiple scale reproducing kernel particle methods for large deformation problems, Int. J. Numer. Methods Eng. 141, 1339–1362.
Liu  WK, Jun  S, Sihling  DT, Chen  Y, and Hao  W (1997), Multiresolution reproducing kernel particle method for computational fluid dynamics, Int. J. Numer. Methods Fluids 24, 1391–1415.
Liu  WK, Hao  S, Belytschko  T, Li  S, and Chang  T (2000), Multi-scale methods. Int. J. Numer. Methods Eng. 47, 1343–1361.
Wagner  GJ and Liu  WK (2000), Turbulence simulation and multiple scale subgrid models, Computational Mech. 25, 117–136.
Liu  WK, Hao  S, Belytschko  T, Li  S, and Chang  CT (1999), Multiple scale meshfree methods for damage fracture and localization, Comput. Mater. Sci. 16, 197–205.
Hao  S, Liu  WK, and Chang  CT (2000), Computer implementation of damage models by finite element and mesh-free methods, Comput. Methods Appl. Mech. Eng. 187, 401–440.
Lee  SH, Kim  HJ, and Jun  S (2000), Two scale meshfree method for the adaptivity of 3-d stress concentration problems, Computational Mech. 26, 376–387.
Saigal  S and Barry  W (2000), A slice based element free Galerkin formulation, Computational Mech. 25, 220–229.
Zhang  X, Lu  M, and Wagner  JL (2000), A 2-D meshless model for jointed rock structures, Int. J. Numer. Methods Eng. 47, 1649–1661.
Danielson  KT and Adley  MD (2000), A meshless treatment of three-dimensional penetrator targets for parallel computation, Computational Mech. 25, 267–273.
Danielson  KT, Hao  S, Liu  WK, Aziz  R, and Li  S (2000), Parallel computation of meshless methods for explicit dynamic analysis, Inter. J. Numer. Methods 47, 1323–1341.
Zhang LT, Wagner GJ, and Liu WK (2000), A parallelized meshfree method with boundary enrichment for large-scale CFD, J. Comput. Phys. (submitted).
Chen JS and Wang HP (2000), Meshfree smooth surface contact algorithm for sheet metal forming, In: SAE 2000 World Congress, Paper No. 2000-01-1103, SAE International, March.
Hao S, Park HS, and Liu WK (2001), Moving particle finite element method, Submitted to Int. J. Numer. Methods Eng.
Ohno K, Esfarjani K, and Kawazoe Y (1999), Computational Materials Science: from Ab initio to Monte Carlo Methods, Springer, Berlin.
Landau LD and Lifshitz EM (1965), Quantum Mechanics: Non-relativistic theory, Pergmon, Oxford, London.
Feynman RD and Hibbs AR (1965), Quantum mechanics and path integrals, McGraw-Hill, New York.
Dirac PAM (1958), The Principles of Quantum Mechanics, Oxford Univ Press, London.
Hartree  DR (1928), The wave mechanics of an atom with a non-Coulomb central field, Part I, Theory and methods, Proc. Cambridge Philos. Soc. 24, 89.
Hartree  DR (1932), A practical method for the numerical solution of differential equations, Mem and Proc of Manchester Literary and Phil. Soc. 77, 91–106.
Fock  V (1930), Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems, Z. Phys. 61, 126.
Takashima  H, Kitamura  K, Tanabe  K, and Nagashima  U (2000), Is large-scale Ab initio Hartree-Fock calculation chemically accurate? towards improved calculation of biological molecule properties, J. Comput. Chem. 20, 443–454.
Tu  Y and Laaksonen  A (2000), Combined Hartree-Fock quantum mechanical and molecular mechanical dynamics simulations of water at ambient and supercritical conditions, J. Chem. Phys. 133, 11264–11269.
Li  X, Millam  JM, and Sohlegel  HB (2000), Ab initio molecular dynamics studies of the photodissociation of formaldehyde, H2CO−H2+CO: Direct classical trajectory calculations by MP2 and density function theory, J. Chem. Phys. 113, 10062–10067.
Starikov  EB (2000), Nucleic acids as objects of material science: importance of quantum chemical and quantum mechanical studies, Int. J. Quantum Chem. 77, 859–870.
Clementi  E (2000), Ab initio computations in atoms and molecules, IBM J. Res. Dev. 44, 228–245.
Kohn  W and Sham  LJ (1965), Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, 1133.
Hohenberg  P and Kohn  W (1964), Inhomogeneous electron gas, Phys. Rev. 136, B864.
Harris  J (1985), Simplified method for calculating the energy of weakly interacting fragments, Phys. Rev. B 31, 1770–1779.
Born  M and Oppenheimer  JR (1927), Zur quantentheorie, Ann. Phys. (Leipzig) 84, 457.
Car  R and Parrinello  M (1985), Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55, 2471–2474.
Ryckaert  JP, Ciccotti  G, and Berendsen  HJC (1977), Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23, 327–341.
Verlet  L (1967), Computer experiments on classical fluids I: Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159, 98.
Ishikawa  Y, Binning  RC, and Shramek  NS (1999), Direct ab initio molecular dynamics study of NO2++(H2O)4 to HNO3(H7O3)+,Chem. Phys. Lett. 313, 341–350.
Belosludov  RV, Sluiter  M, Li  ZQ, and Kawazoe  Y (1999), Ab initio and lattice dynamics studies of the vibrational and geometrical properties of the molecular complex of hydroquinone and C60,Chem. Phys. Lett. 312, 299–305.
Jones  JE (1924), On the determination of molecular fields I: From the variation of the viscosity of a gas with temperature, Proc of Royal Society (London) 106A, 441–462.
Jones  JE (1924), On the determination of molecular fields II: From the equation of state of a gas, Proc of Royal Society (London) 106A, 463.
Falk  ML and Langer  JS (1998), Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E 57, 7192–7205.
Falk  ML (1999), Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids, Phys. Rev. B 60, 7062–7070.
Daw  MS and Baskes  MI (1984), Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in solids, Phys. Rev. B 29, 6443–6453.
Schuller  IK (1988), Molecular dynamics simulation of epitaxial growth, MRS Bull. 13, 23–27.
Baskes  M, Daw  M, Dodson  B, and Foiles  S (1988), Atomic-scale simulation in materials science, MRS Bull. 13, 28–35.
Slater  JC and Koster  GF (1954), Simplified LCAO method for the periodic potential problem, Phys. Rev. 94, 1498.
Anderson PW (1968), Self-consistent pseudo-potentials and ultralocalized functions for energy bands. Phys. Rev. Lett. 21:13 .
Anderson  PW (1969), Localized orbitals for molecular quantum theory I: The hückel theory. Phys. Rev. 181, 25.
Qian  D, Liu  WK, and Ruoff  RS (2001), Mechanics of nanotube filled with fullerenes, J. Phys. Chem. B 105, 10753–10758.
Tadmor  EB, Ortiz  M, and Phillips  R (1996), Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529–1563.
Milstein F (1982), Crystal elasticity, In: Mechanics of Solids, Pergamon, Oxford, 417–452.
Tersoff  J (1988), Empirical interatomic potential for carbon, with application to amorphous carbon, Phys. Rev. Lett. 61, 2879–2882.
Brenner  DW (1990), Empirical potential for hydrocarbons for use in simulating chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471.
Bulatov  V, Abraham  FF, Kubin  L, Devincre  B, and Yip  S (1998), Connecting atomistic and mesoscale simulations of crystal plasticity, Nature (London) 391, 669–672.
Clementi  E (1988), Global scientific and engineering simulations on scalar, vector and parallel LCAP-type supercomputer, Philos. Trans. R. Soc. London, Ser. A 326, 445–470.
Clementi  E, Chin  S, Corongiu  G, Detrich  JH, Dupuis  M, Folsom  D, Lie  GC, Logan  D, and Sonnad  V (1989), Supercomputing and supercomputers for science and engineering in general and for chemistry and biosciences in particular, Int. J. Quantum Chem. 35, 3–89.
Given  JA and Clementi  E (1989), Molecular dynamics and Rayleigh-Benard convection, J. Chem. Phys. 90, 7376–7383.
Hermansson  K, Lei  GC, and Clementi  E (1988), An ab initio pair potential for the interaction between a water molecular and a formate ion, Theor. Chim. Acta 74, 1–10.
Abraham  FF (1996), Dynamics of brittle fracture with variable elasticity, Phys. Rev. Lett. 77, 869–872.
Abraham  FF (1997), Portrait of a crack: rapid fracture mechanics using parallel molecular dynamics, IEEE Comput. Sci. Eng. 4, 66–77.
Abraham  FF, Brodbeck  D, Rudge  WE, and Xu  X (1997), A molecular dynamics investigation of rapid fracture mechanics, J. Mech. Phys. Solids 45, 1595–1619.
Abraham  FF, Brodbeck  D, Rudge  WE, and Xu  X (1997), Instability dynamics in three-dimensional fracture: An atomistic simulation, J. Mech. Phys. Solids 45, 1461–71.
Abraham  FF, Broughton  JQ, and Davidson  BN (1997), Large-scale simulation of crack-void and void-void plasticity in metallic fcc crystals under high strain rates, J. Comput.-Aided Mater. Des. 5, 73–80.
Abraham  FF (1997), On the transition from brittle to plastic failure in breaking a nanocrystal under tension (NUT), Europhys. Lett. 38, 103–106.
Abraham  FF and Broughton  JQ (1997), Large-scale simulations of brittle and ductile failure in fcc crystals, Comput. Mater. Sci. 10, 1–9.
Abraham  FF and Gao  H (1998), Anomalous ductile-brittle fracture behavior in fcc crystals, Philos. Mag. Lett. 78, 307–312.
Abraham  FF, Brodbeck  D, Rudge  WE, Broughton  JQ, Schneider  D, Land  B, Lifka  D, Gerber  J, Rosenkrantz  M, Skovira  J, and Gao  H (1998), Ab initio dynamics of rapid fracture, Modell. Simul. Mater. Sci. Eng. 6, 639–670.
Gumbsch  P and Cannon  RM (2000), Atomistic aspects of brittle fracture, MRS Bull. 25, 15–20.
Gumbsch  P and Gao  H (2000), Driving force and nucleation of supersonic dislocations, J. Computer-Aided Mat. Des. 6, 137–144.
Trebin  HR, Mikulla  R, Stadler  J, Schaaf  G, and Gumbsch  P (1999), Molecular dynamics simulations of crack propagation in quasicrystals, Comput. Phys. Commun. 121–122, 536–539.
Hartmaier  A and Gumbsch  P (2000), The brittle-to-ductile transition and dislocation activity at crack tips, J. Comput.-Aided Mater. Des. 6, 145–155.
Perez  R and Gumbsch  P (2000), An ab initio study of the cleavage anisotropy in silicon, Acta Mater. 48, 4517–4530.
Farkas  D (2000), Atomistic theory and computer simulation of grain boundary structure and diffusion, J. Phys.: Condens. Matter 12, R497–516.
Farkas  D (2000), Atomistic studies of intrinsic crack-tip plasticity, MRS Bull. 25, 35–38.
Farkas  D (2000), Bulk and intergranular fracture behavior of NiAL. Philos. Mag. A 80, 1425–1444.
Farkas D (2000), Mechanisms of intergranular fracture. In: Fracture and Ductile vs Brittle Behavior, GE Beltz, RLB Selinger, K-S Kim, and MP Marder (eds), Mat Res Soc, Warrendale PA, 291–298.
Mishin Y, Farkas D, Mehl MJ, and Papaconstantopoulos DA (1999), Interatomic potentials for Al and Ni from experimental data and ab initio calculations, in: Multiscale Modeling of Materials, VV Bulatov, TD de la Rubia, R Phillips, E Kaziras, and N Ghoniem (eds), Mat Res Soc, Warrendale PA, 535–540.
Langer  JS (2000), Numerical and analytic routes from microscale to macroscales in theories of deformation and fracture, J. Comput.-Aided Mater. Des. 1999, 89–94.
Monaghan  JJ (1994), Vortex particle methods for periodic channel flow, J. Comput. Phys. 107, 152–159.
Beale  JT (1986), A convergent 3-D vortex method with grid-free stretching, Math. Comput. 46, 401–424.
Winckelmans  GS and Leonard  A (1993), Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows, J. Comput. Phys. 109, 247–273.
Fishelov  D (1990), A new vortex scheme for viscous flows, J. Comput. Phys. 86, 211–224.
Cotte  GH, Koumoutsakos  P, and Salihi  MLO (2000), Vortex methods with spatially varying cores, J. Comput. Phys. 162, 164–185.
Lin H and Vezza M, (1996), A pure vortex sheet method for simulating unsteady, incompressible, separated flows around static and pitching aerofoils, In: Proc of 20th Congress of Int Council of the Aeronautical Sciences, Sorento, Italy, 2184–2193.
Brackbill  JU, Kothe  DB, and Ruppel  HM (1988), FLIP: A low-dissipation, particle-in-cell method for fluid flow, Comput. Phys. Commun. 48, 25–38.
Brackbill  JU (1988), The ringing instability in particle-in-cell calculation of low speed flow, J. Comput. Phys. 75, 469.
Burgess  D, Sulsky  D, and Brackbill  JU (1992), Mass matrix formulation of the FLIP particle-in-cell method, J. Comput. Phys. 103, 1–15.
Sulsky  D, Zhou  SJ, and Schreyer  HL (1995), Application of a particle-in-cell method to solid mechanics, Comput. Phys. Commun. 87, 236–252.
Brackbill  JU (1991), FLIP-MHD: A particle-in-cell method of magnetohydrodynamics, J. Comput. Phys. 96, 163–192.
Hockney R and Eastwood J (1988), Computer Simulation Using Particles, Adam Hilger, Bristol.
Succi  S (1997), Lattice Boltzmann equation: Failure or success? Physica A 240, 221–228.
Filippova  O and Hänel  D (2000), A novel lattice bgk approach for low mach number combustion, J. Comput. Phys. 158, 139–160.
He  X, Chen  S, and Zhang  R (2000), A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys. 152, 642–663.
Mazzocco  F and Arrighetti  C (2000), Multiscale lattice Boltzmann schemes: A preliminary application to axial turbomachine flow simulations, Int. J. Mod. Phys. 11, 233–245.
van der Sman  RGM (1997), Lattice Boltzmann scheme for natural convection in porous media, Int. J. Mod. Phys. 8, 879–888.
Maier  RS (1986), Boundary conditions for the lattice Boltzmann method, Phys. Fluids 8, 1788–1801.
McNamara  G and Zanetti  G (1988), Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett. 61, 2332.
Ziegler  DP (1993), Boundary conditions for lattice Boltzmann simulations, J. Stat. Phys. 71, 1171.
Benzi  R, Succi  S, and Vergassola  M (1992), The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222, 145.
Reider  MB and Sterling  JD (1995), Accuracy of discrete-velocity BGK models for the simulation of the impressible Navier-Stokes equations, Comput. Fluids 24, 459–467.
Karlin  IV, Succi  S, and Orszag  S (1999), Lattice Boltzmann method for irregular grids, Phys. Rev. Lett. 26, 5245–5248.
van der Sman  RGM and Ernst  MH (2000), Convection-diffusion lattice Boltzmann scheme for irregular lattices, J. Comput. Phys. 160, 766–782.
Mei  R, Shyy  W, Yu  D, and Luo  LS (2000), Lattice Boltzmann method for 3-d flows with curved boundary, J. Comput. Phys. 161, 680–699.
Frisch  U, d’Humiéres  D, Lallemand  P, Pomeau  Y, and Rivet  JP (1987), Lattice gas hydrodynamics in two and three dimensions, Complex Syst. 1, 649–707.
Bhatnagar  P, Gross  EP, and Krook  MK (1954), A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94, 511.
Braun  J and Sambridge  MA (1995), A numerical method for solving partial differential equations on highly irregular evolving grids, Nature (London) 376, 655–660.
Braun  J, Sambridge  MA, and McQueen  H (1995), Geophysical parametrization and interpolation of irregular data using natural neighbors, Geophys. J. Int. 122, 837–857.
Traversoni L (1994), Natural neighbor finite elements, In: Int Conf on Hydraulic Engineering Software Hydrosoft Proc, Vol 2, Computational Mechanics Publ 291–297.
Sibson  R (1980), A vector identity for the Dirichlet tessellation, Math. Proc. Cambridge Philos. Soc. 87, 151–155.
Sibson R (1981), A brief description of natural neighbor interpolation. In: Interpreting Multivariate Data, V Barnett (ed) Wiley, Chichester, 21–36.
Sukumar  N, Moran  B, and Belytschko  T (1998), The natural element method in solid mechanics, Int. J. Numer. Methods Eng. 43, 839–887.
Sukumar  N and Moran  B (1999), c1 natural neighbor interpolant for partial differential equations, Numer. Methods for Partial Differential Equations 15, 417–447.
Sukumar  N, Moran  B, Semenov  AY, and Belikov  VV (2001), Natural neighbor Galerkin methods, Int. J. Numer. Methods Eng. 50, 1–27.
Bueche  D, Sukumar  N, and Moran  B (2000), Dispersive properties of the natural element method, Computational Mech., Berlin 25, 207–219.
Cueto  E, Doblaré  M, and Gracia  L (2000), Imposing essential boundary conditions in natural element method by means of density-scaled α-shapes, Int. J. Numer. Methods Eng. 48, 519–546.
Belikov  VV, Ivanov  VD, Kontorivich  VK, Korytnik  SA, and Semenov  AY (1997), The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points, Computational Math. and Mathematical Phys. 37, 9–15.
Oñate  E, Idelsohn  S, Zienkiewicz  OC, and Taylor  RL (1996), A stabilized finite point method for analysis of fluid mechanics problems, Comput. Methods Appl. Mech. Eng. 139, 315–347.
Oñate  E, Idelsohn  S, Zienkiewicz  OC, and Taylor  RL (1996), A finite point method in computational mechanics: Application to convective transport and fluid flow, Int. J. Numer. Methods Eng. 39, 3839–3866.
Oñate  E and Idelsohn  S (1998), A mesh-free point method for advective-diffusive transport and fluid flow problems, Computational Mech., Berlin 21, 283–292.
Taylor  RL, Zienkiewicz  OC, and Onate  E (1997), A hierarchical finite element method based on the partition of unity, Comput. Methods Appl. Mech. Eng. 152, 73–84.
Pardo  E (2000), Meshless method for linear elastostatics based on a path integral formulation, Int. J. Numer. Methods Eng. 47, 1463–1480.
Needleman  A (1990), An analysis of tensile decohesion along an interface, J. Mech. Phys. Solids 38, 289–324.
Xu  XP and Needleman  A (1994), Numerical simulations of fast crackgrowth in brittle solids, J. Mech. Phys. Solids 42, 1397–1434.
Camacho  GT and Ortiz  M (1997), Adaptive Lagrangian modeling of ballistic penetration of metallic targets, Comput. Methods Appl. Mech. Eng. 142, 269–301.
Ortiz  M and Pandolfi  A (1999), Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng. 44, 1267–1282.
Gao  H and Klein  P (1998), Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids 46, 187–218.


Grahic Jump Location
Examples of kernel functions
Grahic Jump Location
A 2D Stress point distribution
Grahic Jump Location
The Ghost particle approach for boundary treatment
Grahic Jump Location
An illustration of 2D hierarchical partition of unity
Grahic Jump Location
Local meshfree-Galerkin illustration (∂Ωs=Ls∪Γs)
Grahic Jump Location
Geometry definition of a representative nodal domain
Grahic Jump Location
Asymmetrical impact problem (effective stress contour)
Grahic Jump Location
Comparison of the deformations at different time stages for a block of hyperelastic material under compression by using MESHFREE and FEM when Δt=1×10−6 (s)
Grahic Jump Location
Large deformation of a pinched cylinder
Grahic Jump Location
Shear band pathes obtained via FEM and RKPM with different spatial aspect ratios in mesh/particle distribution
Grahic Jump Location
Meshfree simulation of curved dynamic shear band: a) experimental observation; b) meshfree calculation 248
Grahic Jump Location
Multi-scale Meshfree Simulation of strain localization of three point bending test
Grahic Jump Location
Meshfree Galerkin Simulation of flow past an airfoil
Grahic Jump Location
Penetration of a concrete block
Grahic Jump Location
Molecular dynamics simulations of C60 passing through nanotube 320
Grahic Jump Location
Lattice and velocity directions: a) triangular lattice; b) square lattice
Grahic Jump Location
Cubic Lattice with 15 molecular speeds (D3Q15)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In