0
REVIEW ARTICLES

A historical survey of some mathematical aspects of Newtonian fluid flows

[+] Author and Article Information
RKh Zeytounian

12, rue Saint-Fiacre, 75002 Paris, France; zeytounian@aol.com

Appl. Mech. Rev 54(6), 525-562 (Jul 17, 2001) (38 pages) doi:10.1115/1.1416153 History: Received July 17, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bernoulli J (1737), Hydraulics.
Bernoulli D (1738), Hydrodynamica, Argentorati.
D’Alembert J (Le Rond) (1744), Traité de l’équilibre et du mouvement des fluids.
Euler L (1755), Principes généraux du mouvement des fluides, Hist Acad Berlin, 274–315.
Navier  CL MH (1821), Sur les lois des mouvements des fluides, en ayant égard à l’adhésion des molecules, Ann. Chim. (Paris) 19, 244–260.
Poisson  SD (1831), Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides, J. Ec. Polytech. (Paris) 13, cahier 20, 1–174.
Cauchy A (1828), Ex. de Math. 3, See Oeuvres8 , 195–226, 227–252, 253–277.
Stokes  GG (1845), On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc. viii, 287–319.
Saint-Venant  AJB de (1843), CR Acad Sci, Paris 17, 1240–1243.
Newton I (1687), Philosophiae Naturalis Principia Mathematica, London.
Gibbs  JW (1875), On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci. 3, 108–248, 343–524.
Neumann  C (1894), Ueber die Bewegung der Wärme in compressiblen oder auch incompressiblen Flüssigleiten, Ber Verh Ges Wiss 46, 1–24.
Fourier  J (1833), Mémoire d’analyze sur le mouvement de la chaleur dans les fluides, Mémoires de l’Acad. Royale des Sci. de l’Inst. de France, 12, 507–520. See (1890) (with editorial changes), 595–616 of Oeuvres de Fourier, Tome 2.
Goldstein  S (1969), Fluid mechanics in the first half of this century Annu. Rev. Fluid Mech. 1, 1–28.
Birkhoff  G, (1983), Numerical fluid dynamics, SIAM Rev. 25, 1–34.
Cercignani C, Illner R, Pulvirenti M (1994), The Mathematical Theory of Dilute Gases, AMS 106 , Springer-Verlag, New York.
Bellomo  N, Le Tallec  P, and Perthame  B (1995), Nonlinear Boltzmann equation solutions and applications to fluid dynamics, Appl. Mech. Rev. 48(12), 777–794.
Marchioro C and Pulvirenti M (1994), Mathematical Theory of Incompressible Nonviscous Fluids, AMS 96, Springer-Verlag, New York.
Chemin JY (1995), Fluides parfaits incompressibles, Asterisque230 , Paris.
Lions P-L (1996), Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications, No. 3, Clarendon Press.
Galdi GP (1994) An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearized Steady Problems, Springer-Verlag.
Galdi GP (1994), An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer-Verlag.
Constantin  P (1995), Not. Am. Math. Soc. 42, 658–663.
Doering CR and Gibbon JD (1995), Applied Analysis of the Navier-Stokes Equations, Cambridge Univ Press, Cambridge.
Lions P-L (1998), Mathematical Topics in Fluid Mechanics, Volume 2: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, No. 10, Clarendon Press.
Solonnikov  VA and Kazhikov  AV (1981), Existence theorems for the equations of motion of a compressible viscous fluid, Annu. Rev. Fluid Mech. 13, 79–95.
Valli A (1992), Mathematical results for compressible flows, In: Mathematical Topics in Fluid Mechanics, JF Rodrigues and A Sequeira (eds), Longman, New York 193–229.
Kazhikov A (1994), Some new statements for initial boundary value problems for Navier-Stokes equations of viscous gas. In: Progress in Theoretical and Computational Fluid Mechanics, GP Galdi, J Màlek, and J Necàs (eds), 33–72, Longman, New York.
Zeytounian  RKh (1999), Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view), Russian Math. Surveys 54, 479–564.
Lagrange JL (1781), Mémoire sur la théorie du mouvement des fluides, Nouv Mém Acad Berlin, 151–198.
Cauchy A (1827), Mémoire sur la théorie des ondes, Mém de l’Acad Roy des SciencesI .
Lamb H (1932), Hydrodynamics, Cambridge Univ Press.
Kutta WM (1910), Sitzb d k bayr Akad Wiss.
Strijevski, I (1958), Joukovski, Fondateur de la Science Aéronautique, Editions en langues étrangères, Moscou.
Villat  H (1972), As luck would have it-a few mathematical reflections, Annu. Rev. Fluid Mech. 4, 1–5.
Stewartson  K (1981), D’Alembert’s paradox, SIAM Rev. 23, 308–345.
Birkhoff G and Zarantonello EH (1957), Jets, Wakes and Cavities, Academic Press, New York.
Prandtl L (1904), Uber Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhanl. III, Internat. Math.- Kongresses, Heidelberg, 484–491.
Guiraud JP and Zeytounian RKh (eds) (1986), Asymptotic modelling of fluid flows, J. Mec. Theor. Appl., Special Issue.
Mangler  KW and Smith  JHB (1970), Behavior of the vortex sheet at the trailing edge of a lifting wing, Aero Journ Roy Aeron Soc 74, 906–908.
Sychev  VV (1972), Concerning laminar separation, Isv Akad Nauk SSSR, Mekh Zhidk i Gaza 3, 47–59.
Smith  FT (1977), The laminar separation of an incompressible fluid streaming past a smooth surface, Proc. R. Soc. London, Ser. A A356, 433–463.
Guiraud  JP and Zeytounian  RKh (1979), Séparation d’une nappe tourbillonnaire sur une surface réguliére à grand nombre de Reynolds, J. Mec. 18, 423–431.
Riemann B (1851), Grundlagen für eine Allgemeine Theorie der Functionen einer Veränderlichen Complexen Grösse, Göttingen.
Kelvin L (Sir W Thomson) (1869), On vortex motion, Edin Trans.XXV .
Zeytounian  RKh (1995), Nonlinear long waves on water and solitons, Phys. Usp. 38, 1333–1381.
Zabusky  NJ and Kruskal  MD (1965), Interactions of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240.
Kelvin L (Sir W Thomson) (1848), Cambridge and Dublin Math J Feb.
Green  G (1839), Cambridge Trans VII, 279.
Airy  GB (1845), Tides and waves, In: Encyclopaedia Metropolitana 5, 241.
Poisson SD (1816), Mémoire sur la théorie des ondes, Mémoires de l’Acad Roy des Sciences I.
Rayleigh  Lord (1876), Philos. Mag. Scientific Papers I, 251.
Popoff  A (1858), Liouville III(2), 251.
Stokes  GG (1847), On the theory of oscillatory waves, Cambr Trans 8, 441–473.
Levi-Civita  T (1925), Math. Ann. 93, 264.
Struik  DJ (1926), Math Annalen 95, 595.
Gerstner FL (1809), Abh d k böhm Ges d Wiss and Gilbert’s Annalen Physik, XXXII.
Rankine WJM (1863), Philos. Trans. R. Soc. London, 481.
Boussinesq  J (1871), C R Acad Sci 72, 755.
Boussinesq  J (1871), C R Acad Sci 73, 256.
Boussinesq  J (1872), J. Math. Pures Appl. 17(2), 55.
Boussinesq J (1877), Essai sur la théorie des eaux courantes, Mémoires présentés par divers Savants à l’Academie des Sciences (Institut de France) série 2, Vol 23, 1 and Vol 24, 1.
Saint-Venant  AJB de (1871), Théorie du mouvement non permanent des eaux, Institut de France, Acad. Sci., Paris, C. R. 73(3) 147 and 73 (4), 237 .
Russell JS (1844), Report on waves, Report on the 14th Meeting of the British Association for the Advancement of Science, York, 311, John Murray, London.
Ursell  F (1953), Proc. Cambridge Philos. Soc. 49, 685.
Korteweg  DJ and de Vries  G (1895), Philos. Mag. 39, 422.
Newell AC (1985), Solitons in Mathematics and Physics, SIAM, Philadelphia.
von Mayer  JR (1842), Bemerkungen über die Kräfte der unbelebten, Natur Ann der Chemie 61, 233–240.
Birch T (1744), The Works of the Honourable Robert Boyle, 5 Volumes, London.
Kirchhoff  G (1868), Ann. Phys. (Leipzig) 134, 177–193.
Lanchester FW (1907), Aerodynamics, Constable, London.
Kaplun  S (1954), The role of coordinate systems in boundary-layer theory, ZAMP 5, 111–135.
Kaplun  S (1957), Low Reynolds number flow past a circular cylinder J. Math. Mech. 6, 595–603.
Kaplun  S and Lagerstrom  PA (1957), Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J Rat Mech Anal 6, 585–593.
Lagerstrom PA (1988), Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, Vol 76, Springer-Verlag, New York.
Oleinik  OA (1963), On a system of equations in boundary layer theory, Zhurn Vychislit Mat Fiz 3, 489–507.
Nickel  K (1973), Prandtl’s boundary-layer theory from the viewpoint of a mathematician, Annu. Rev. Fluid Mech. 5, 405–428.
Weinan  E (2000), Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Mech. Sin. 16, 207–218.
Goldstein  S (1948), On laminar boundary layer flow near a point of separation, Q. J. Mech. Appl. Math. 1, 43–69.
Stewartson  K (1970), Is the singularity at separation removable? J. Fluid Mech. 44, 347–364.
Guiraud  JP (1995), Going on with Asymptotics. In: Asymptotic Modelling in Fluid Mechanics, Lecture Notes in Physics, PA Bois, E Dériat, R Gatignol, and A Rigolot (eds) 442, 257–307.
Catherall  D and Mangler  KW (1966), The integration of the two-dimensional laminar boundary-layer equations past the point of vanishing skin friction, J. Fluid Mech. 26, 163–182.
Neiland  VYa (1969), Towards a theory of separation of the laminar boundary layer in a supersonic stream, Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 4, 33–35.
Stewartson  K and Williams  PG (1969), Self-induced separation, Proc. R. Soc. London, Ser. A A312, 181–206.
Nayfeh  AH (1991), Triple deck structure, Comput. Fluids 20, 269–292.
Meyer  RE (1983), A view of the triple deck, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 43, 639–663.
Lighthill  MJ (1953), On boundary layers and upstream influence. II. Supersonic flows without separation, Proc. R. Soc. London, Ser. A 217, 478–507.
Mauss J (1995), Asymptotic modelling for separating boundary layers, In: Lecture Notes in Physics 442, 239–254.
Smith  FT (1982), On the high Reynolds number theory of laminar flows, IMA J. Appl. Math. 28, 207–281.
Sychev VV (ed) (1987), Asymptotic Theory of Separating Flows, Nauka, Moscou (in Russian).
Stokes  GG (1851), Trans. Cambridge Philos. Soc. ix(8), Papers iii, 1.
Oseen CW (1910), Arkiv för matematik, Bd vi, No. 29.
Lagerstrom PA (1964), Laminar flow theory, In: Theory of Laminar Flows, FK Moore (ed), Section B, 20–285, Princeton Univ Press.
Sano  T (1981), Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech. 112, 433–441.
Truesdell  C (1952), The mechanical foundations of elasticity and fluid dynamics, J Rat Mech Anal 1, 125–300.
Truesdell  C (1953), Notes on the history of the general equations of hydrodynamics, Am. Math. Monthly 60, 445–458.
Truesdell C (1966), The Mechanical Foundations of Elasticity and Fluid Dynamics, Gordon and Breach, New York.
Truesdell C (1952), Vorticity and the thermodynamic state in a gas flow, Mémorial des Sciences Mathématiques, Fascicule 119 , Paris.
Poincaré H (1892), Thermodynamique, Gauthier-Villars.
Truesdell C and Muncaster RG (1980), Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas, Academic Press, New York.
Majda A (1985), Mathematical foundations of incompressible fluid flow, Princeton Univ, Dept of Math, Lecture Notes.
Wilcox C (1975), Scattering theory for the d’Alembert equation in exterior domain, In: Lect. Notes Math.442 , Springer-Verlag Berlin.
Zeytounian  RKh (2000), An asymptotic derivation of the initial condition for the incompressible and viscous external unsteady fluid flow problem, Int. J. Eng. Sci. 38, 1983–1992.
Oberbeck  A (1879), Ann. Phys. (Leipzig) 7, 271–292.
Boussinesq J (1903), Théorie Analytique de la Chaleur, Vol 2, Gauthier-Villars, Paris.
Joseph DD (1976), Stability of Fluid Motions II, Springer-Verlag, Heidelberg.
Bénard  H (1900), Rev. Gen. Sci. Pures Appl. 11, 1261.
Zeytounian  RKh (1989), The Bénard problem for deep convection: rigorous derivation of approximate equations, Int. J. Eng. Sci. 27, 1361–1366.
Zeytounian  RKh (1997), The Bénard-Marangoni thermocapillary instability problem: on the role of the buoyancy, Int. J. Eng. Sci. 35, 455–466.
Charki  Z (1996), The initial value problem for the deep Bénard convection equations with data in Lq,Math Models Methods Appl Sci 6, 269–277.
Errafiy  M and Zeytounian  RKh (1991), The Bénard problem for deep convection: Linear theory, Int. J. Eng. Sci. 29, 625–635.
Errafiy  M and Zeytounian  RKh (1991), The Bénard problem for deep convection: Routes to chaos, Int. J. Eng. Sci. 29, 1363–1373.
Rajagopal  KR, Ruzicka  M, and Srinivasa  AR (1996), On the Oberbeck-Boussinesq approximation, Math Models Methods Appl Sci 6, 1157–1167.
Drazin PG and Reid WH (1981), Hydrodynamic Stability, Cambridge Univ Press, Cambridge.
Zeytounian RKh (1990), Asymptotic Modeling of Atmospheric Flows, Springer-Verlag, Heidelberg.
Bois  PA (1991), Asymptotic aspects of the Boussinesq approximation for gases and liquids, Geophys. Astrophys. Fluid Dyn. 58, 45–55.
Van Dyke M (1975), Perturbation Methods in Fluid Mechanics, Annotated edition, Parabolic Press, Stanford CA.
Eckhaus W (1979), Asymptotic Analysis of Singular Perturbations, Studies in Math and its Applications 9 , North-Holland, Amsterdam.
Nayfeh AH (1981), Introduction to Perturbation Techniques, Wiley, New York.
Zeytounian RKh (1994), Modélisation asymptotique en mécanique des fluides newtoniens, Mathématiques et Applications, Soc. Math. Appl. Ind. 15 , Springer-Verlag, Berlin, Heidelberg.
Kevorkian J and Cole JD (1996), Multi Scale and Singular Perturbation Methods, AMS 114 , Springer-Verlag, New York.
Maxwell  JC (1867), On the dynamic theory of gases, Philos. Trans. R. Soc. London 157, 49–88.
Boltzmann L (1872), Sitzungsberichte Akad Wiss, Vienna, Part II, 66, 275–370.
Lax PD (1973), Hyperbolic systems of conservation laws and the mathematical theory of shocks waves, In: Regional Conf Series in Appl Math 11, SIAM, Philadelphia.
Hilbert  D (1912), Math. Ann. 72, 562.
Chapman  S (1916), Philos. Trans. R. Soc. London A216, 279.
Enskog D (1917), Dissertation, Uppsala.
Grad  H (1963), Asymptotic theory of the Boltzmann equation, Phys. Fluids 6, 147–181.
Grad H (1966), Transport Theory, SIAM-AMS Proc 20, Abu Shumaya (ed), 269–308.
Chapman S and Cowling TG (1952), The Mathematical Theory of Nonuniform Gases, Cambridge Univ Press, Cambridge.
Darrozès JS (1969), Approximate solutions of the Boltzmann equation for flows past bodies of moderate curvature, In: Rarefied Gas Dynamics, L Trilling and HY Wachman (eds), Vol 1, 111–120, Academic Press.
Darrozès JS (1970), ONERA-Publication, no 130 (edited in 1972).
Van Dyke  M (1962), Higher approximations in boundary-layer theory, Parts 1 and 2, J. Fluid Mech. 14, 161–1777 and 481–495.
Lachowicz M (1995), Asymptotic analysis of nonlinear kinetic equations: The hydrodynamic limit, In: Lecture Notes in the Mathematical Theory of the Boltzmann Equation, World Sci.
Perthame B (1995), Introduction to the collision models in Boltzmann’s theory. Publications du Lab Anal NumR95026 , Univ P et M Curie.
Cercignani C (1975), Theory and Application of the Boltzmann Equation, Scottish Academic Press.
Guiraud JP (1973), Gas dynamics from the point of view of kinetic theory, Proc of 13th Int Conf on Theor and Appl Mech (ICTAM, Moscow, Aug. 1972), E Becker and GK Mikhailov (eds), 104–123, Springer-Verlag.
Sone Y (1991), Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers, In: Progress in Mechanics, Springer-Verlag.
Sideris  TC (1985), Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys. 101, 475–485.
Bardos  C, Golse  F, and Levermore  D (1991), Fluid dynamics limit of kinetic equations I: Formal derivation, J. Stat. Phys. 63, 323–344.
Bardos  C, Golse  F, and Levermore  D (1993), Fluid dynamics limit of kinetic equations II, Commun. Pure Appl. Math. 46, 667–753.
Lions  P-L, Perthame  B, and Tadmor  E (1991), Formulation cinétique des lois de conservation scalaires, C R Acad Sci Paris 312, I, 97–102.
DiPerna  RJ and Lions  P-L (1990), On the Cauchy problem for the Boltzmann equation: Global existence and weak stability results, Ann. Math. 130, 1189–1214.
DiPerna  RJ and Lions  P-L (1991), Global solutions of the Boltzmann and the entropy inequality, Arch Rat Math Anal 114, 47–55.
Lions  P-L (1994), Compactness in Boltzmann equation via Fourier integrals operator and applications, I., J Math, Kyoto Univ 34, 391–427.
Lions  P-L (1994), Compactness in Boltzmann equation via Fourier integrals operator and applications, II, J Math, Kyoto Univ 34, 429–461.
Kreiss  HO (1970), Initial boundary value problems for hyperbolic equations, Commun. Pure Appl. Math. 23, 277–298.
Kreiss  HO (1974), Boundary conditions for hyperbolic differential equations. In: Lect. Notes Math. 363, Springer-Verlag Berlin, 64–74.
Belov  YuYa and Yanenko  NN (1971), Influence of viscosity on the smoothness of solutions of incompletely parabolic system, Math Notes 10, 480–483.
Oliger  J and Sundström  A (1978), Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 35, 419–446.
Majda A (1984), Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, AMS 53, Springer-Verlag, New York.
Kreiss HO and Lorenz J (1989), Initial Boundary Value Problems and the Navier-Stokes Equations, Academic Press, Boston.
Zeytounian RKh (1991), Meteorological Fluid Dynamics, Lecture Notes in Physics, Vol m5 , Springer-Verlag, Heidelberg.
Greenspan HP (1968) The Theory of Rotating Fluids, Cambridge Univ Press.
Nayfeh AH (1973), Perturbation Methods, Wiley, New York.
Beirào da Veiga  H (1994), Singular limits in compressible fluid dynamics, Arch. Ration. Mech. Anal. 128, 313–327.
Gresho  PM (1992), Some interesting issues in incompressible fluid dynamics, both in the continuum and in numerical simulation, Adv. Appl. Mech. 28, 46–140.
Gustafsson  B and Sundström  A (1978), Incompletely parabolic problems in fluid dynamics, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 35, 343–357.
Viviand H and Veuillot J (1978), Publication ONERA, No. 1978–4.
Viviand H (1983), Publication ONERA, No. 1983–4.
Zeytounian RKh (2000), Theoretical aspects of interfacial phenomena and Marangoni effect: Modelling and stability, CISM Notes to Advanced School, coordinated by MG Velarde and RKh Zeytounian, (Udine, 10–14 July 2000), 68 pages.
Whitham GB (1974), Linear and Nonlinear Waves, Wiley-Interscience, New York.
Dobrokhotov  SYu and Safarevich  AI (1996), On the behavior of an incompressible fluid velocity field at infinity, Fluid Dyn. 31, 511–514.
Serrin J (1959), Mathematical principles of classical fluid mechanics, In: Handbuch der Physik VIII/1, Springer-Verlag, Berlin, 125–263.
Serrin  J (1959), On the uniqueness of compressible fluid motion, Arch. Ration. Mech. Anal. 3, 271–288.
Batchelor  GK (1956), On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid Mech. 1, 177–190.
Wood  WW (1957), Boundary layers whose streamlines are closed, J. Fluid Mech. 2, 77–87.
Guiraud  JP and Zeytounian  RKh (1984), The setting in motion of a viscous liquid inside a two-dimensional cavity, USSR Comput. Math. Phys. 24(4), 92–94.
Ball  J (1997), Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quarterly J. Math. 28(2), 473–486.
Antontsev SN, Kazhikhov AV, and Monakhov VN (1983), Boundary Value Problems in Mechanics of Inhomogeneous Fluids, Nauka, Novosibirsk (in Russian, North-Holland, Amsterdam, 1990).
Lions  P-L (1993), Compacité des solutions de Navier-Stokes compressible isentropiques, C R Acad Sci Paris 317, I, 115–120.
Leray  J (1933), Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl. 12, 1–82.
Hopf  E (1951), Über die Anfangswertaufgabe für die hydrodynamischen Grund-gleichungen, Math. Nachr. 4, 213–231.
Valli A (1986), Navier-Stokes equations for compressible fluids: Global estimates and periodic solutions, In: Proc of Symp in Pure Mathematics (AMS) 45, Part 2, 467–476.
Eckmann  JP (1981), Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53, 643–654.
Richtmyer RD (1978), Principles of Advanced Mathematical Physics, Vol 1, Springer-Verlag, New York.
Wolibner  W (1933), Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z. 37, 698–726.
Yudovich  VI (1963), Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys. 3, 1407–1456.
Kato  T (1967), On classical solution of the two-dimensional non-stationary Euler equation, Arch. Ration. Mech. Anal. 25, 188–200.
Bardos  C (1972), Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40, 769–790.
Kato T (1992), A remark on a theorem of C Bardos on the 2D-Euler equation, Dept of Math, Univ of California, preprint.
Ebin  D and Marsden  J (1970), Groups of diffeomorphisms on the motion of an incompressible fluid, Ann. Math. 92, 102–163.
Kato  T (1972), Non-stationary flows of viscous and ideal fluids in R3,J. Funct. Anal. 9, 296–309.
Bourguignon  JP and Brezis  H (1974), Remarks on the Euler equations, J. Funct. Anal. 15, 341–363.
Temam  R (1975), On the Euler equation of incompressible perfect fluids, J. Funct. Anal. 20, 32–43.
Temam R (1976), Local existence of C solution of the Euler equations of incompressible perfect fluids, In: Lect. Notes Math.565 , Springer-Verlag, New York.
Temam  R (1986), Remarks on the Euler equations, In: Nonlinear Functional Analysis and its Applications, . (ed), AMS Proc of Symposia in Pure Mathematics 45, Part 2, 429–430.
Kato  T and Ponce  G (1988), Commutator estimates and Navier-Stokes equations, Commun. Pure Appl. Math. 41, 893–907.
Sulem C and Sulem PL (1983), The well-posedness of two-dimensional ideal flow, J. Mec. Theor. Appl. Special Issue, 217–242.
Sulem  C, Sulem  PL, Bardos  C, and Frisch  U (1981), Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability, Commun. Math. Phys. 80, 769–790.
Moore  DW (1979), The spontaneous appearance of a singularity in the shape of an evolution vortex sheet, Proc. R. Soc. London, Ser. A 365, 105–119.
Guiraud  JP and Zeytounian  RKh (1979), Note sur un mécanisme d’instabilité pour le coeur d’une nappe tourbillonnaire enroulée, Rech. Aerosp. 2, 85–88.
Bardos C (1978), Nonlinear Euler equation and Burgers equation: Relation with turbulence, nonlinear partial differential equations and applications, Proc Indiana 1976–1977, Lect. Notes in Math.648 , Springer-Verlag.
Baouendi  MS and Goulaouic  C (1983), Sharp estimates for analytic pseudo-differential operators and application to Cauchy problems, J. Diff. Eqns. 48, 241–268.
Metivier G (1983/84), Un thèoreme de Cauchy-Kowalevski pseudo-différentiel local, Séminaire Goulaouic-Schwartz, No. 16, Ecole Polytechnique, Paris.
Bardos  C (1976), Analyticité de la solution de l’équation d’Euler dans un ouvert de Rn,C R Acad Sci, Paris 283, 255–258.
Bardos  C, Benachour  S, and Zerner  M (1976), Analyticité des solutions périodiques de l’équation d’Euler en dimension deux, C R Acad Sci, Paris 282, 995–998.
Benachour  S (1976), Analyticité des solutions périodiques de l’équation d’Euler en dimension trois, C R Acad Sci, 283, 107–110.
Alinhac  S and Metivier  G (1986), Propagation de l’analyticité locale pour les solutions de l’équation d’Euler, Arch. Ration. Mech. Anal. 92, 287–296.
Le Bail  D (1986), Analyticité locale pour les solutions de l’équation d’Euler, Arch. Ration. Mech. Anal. 95, 117–136.
Okazawa  N (1996), Comm on Appl Nonlinear Anal 3, 107–113.
Ghidaglia  JM (1984), Commun. Partial Differ. Equ. 9, 1265–1298.
Lions  P-L, Perthame  B, and Souganidis  PE (1996), Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Commun. Pure Appl. Math. 49, 599–638.
DiPerna  RJ (1983), Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91, 1–30.
DiPerna  RJ (1983), Convergence of approximate solutions to conservation laws, Arch Rat Math Anal 82, 27–70.
Brenier Y (1994), In: Partial Differential Equations of Elliptic Type, Sympos Math XXXV (held in Cortona, 1992), Cambridge Univ Press, Cambridge, 123–148.
Constantin  P, Titi  ES, and Weinan  F (1994), Onsager conjecture on the energy conservation for solutions of Euler equation, Commun. Math. Phys. 165(1), 207–209.
Onsager  L (1949), Statistical hydrodynamics, Nuovo Cimento 6, Supplement No 2, 279–287.
Arendt  S (1994), On the non-existence of steady confined flows of a barotropic fluid in a gravitational field, J. Fluid Mech. 271, 341–350.
Blokhin  AM and Birkin  AD (1996), Math Model 8, 89–104 (in Russia).
Benney  DJ (1976), Significant interactions between small and large scale surface waves, Stud. Appl. Math. 55, 93–106.
Tsutsumi  M and Hatano  S (1994), Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlinear Analysis: Theory, Methods, Appl. 22, 155–171.
Craig  W, Sulem  C, and Sulem  PL (1992), Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5, 497–522.
Shen  SSP (1995), On the accuracy of the stationary forced Korteweg-DeVries equation as a model equation for flows over a bump, Q. Appl. Math. LIII, 701–719.
Caprino  S and Marchioro  C (1986), On nonlinear stability of stationary planar Euler flows in an unbounded strip, Nonlinear Anal.: Theory, Methods, Appl. 10, 1263–1275.
Chemin JY (1991), Persistence de structure geometriques dans les fluides incompressibles bidimensionels, Preprint.
Chemin JY (1991), Séminaire sur les Equations aux Derivées Partielles 1990-1991, Exp. No XIII, Ecole Polytech, Palaiseau, 11 pp.
Chemin  JY (1993), Ann Sci Ecole Norm Sup 26, 517–542.
Serfati  P (1994), C. R. Acad. Sci., Ser. I: Math. 318, 515–518.
Serre  D (1997), Math. Rev. MR97d/76007, 2613.
Majda  A (1986), Vorticity and the mathematical theory of incompressible fluid flow, Commun. Pure Appl. Math. 39, S187–S220.
Alinhac  S (1991), J. Funct. Anal. 98, 361–379.
Bertozzi AL and Constantin P (1992), Global regularity for vortex patches, Dept of Math, Univ of Chicago, preprint.
Duchon  J and Robert  R (1988), Global vortex sheet solutions of Euler equations in the plane, J. Diff. Eqns. 73, 215–224.
McGrath  FJ (1968), Non-stationary plane flow of viscous and ideal fluids, Ach Rat Math Anal 27, 329.
Swann  H (1971), The convergence with vanishing viscosity of stationary Navier-Stokes flow to ideal flow in R3,Trans. Am. Math. Soc. 157, 373–397.
Kato  T (1975), Quasi-linear equations of evolution with application to partial differential equations. In: Lect. Notes Math. 448, 25–70, Springer-Verlag, New York.
Marchioro C and Pulvirenti M (1984), Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics 203, Springer-Verlag, Berlin.
Esposito  R, Marra  R, Pulvirenti  M, and Sciarretta  C (1988), A stochastic Lagrangian formalism for the 3-D Navier-Stokes flow, Commun. Partial Differ. Equ. 13, 1601.
Beirào da Veiga  H (1981), On the barotropic motion of compressible perfect fluids, An Scuola Norm Sup Pisa 8, 317–351.
Graffi  D (1953), Il teorema di unicità nella dinamica dei fluidi compressibili, J Rat Mech Anal Math 2, 99–106.
Secchi  P (1983), Existence theorems for compressible viscous fluids having zero shear viscosity, Rend Sem Mat Univ Padova 70, 73–102.
Ladhyzhenskaya OA (1961), The Mathematical Theory of Viscous Incompressible Flow (in Russian), Gos Izdat Fiz-Mat Lit, Moskva, (Gordon and Breach, New York, 1963, 2nd edition, 1969).
Shinbrot M (1973), Lectures on Fluid Mechanics, Gordon and Breach, New York.
Temam R (1983), The Navier-Stokes Equations and Non-Linear Functional Analysis, CBMS-NSF Regional Conf Series in Applied Mathematics, SIAM, Philadelphia PA.
Temam R (1977), Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam (3rd ed, 1984).
Temam R (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Appl Math Sci 68 , Springer-Verlag, New York.
Heywood  JG (1980), The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29, 639–680.
Simon J (1989), Non-homogeneous viscous incompressible fluids: existence of velocity, density and pressure, Publ Lab d’Analyze Numérique, Univ P et M Curie, Paris, R89004, 47 pp.
Amick CJ (1986), On steady Navier-Stokes flow past a body in the plane. In: Proc of Symp in Pure Mathematics45 , 37–50.
Ben-Artzi  M (1994), Global solutions of 2-dimensional Navier-Stokes and Euler equations, Arch. Ration. Mech. Anal. 128, 329–358.
Brezis  H (1994), Global solutions of 2-dimensional Navier-Stokes and Euler equations—Remarks, Arch. Ration. Mech. Anal. 128, 359–360.
Galdi  GP and Sohr  H (1995), Arch. Ration. Mech. Anal. 131, 101–119.
Galdi GP (1993), Existence and uniqueness at low Reynolds number of stationary plane flow of a viscous fluid in exterior domains, In: Recent Developments in Theoretical Fluid Mechanics, GP Galdi and J Nečas (eds), 291 , 1–33, Longman, New York.
Amick  CJ (1988), On Leray’s problem of steady Navier-Stokes flow past a body in the plane, Acta Math. 161, 71–130.
Amann  H (1994), Stability of the rest state of a viscous incompressible fluid, Arch. Ration. Mech. Anal. 126, 231–242.
Kozono  H and Ogawa  T (1993), Arch. Ration. Mech. Anal. 122, 1–17.
Frehse  J and Rùzicka  M (1994), Arch. Ration. Mech. Anal. 128, 361–380.
Tani  A and Tanaka  N (1995), Arch. Ration. Mech. Anal. 130, 303–314.
Tani  A (1996), Arch. Ration. Mech. Anal. 133, 299–331.
Elizarova TG and Chetverushkin BN (1986), In: Mathematical Modelling Processes in Non-Linear Media, 261–278, Nauka, Moscow.
Sheretov  YuV (1994), Comp Maths Phys 34, 409–415.
Padula  M and Petunin  I (1994), Asymptotic behavior of solutions to the exterior problem for the Oberbeck-Boussinesq equations, Eur. J. Mech. B/Fluids 13(6), 701–730.
Glushko  AV and Glushko  YeG (1995), USSR Comput. Math. Math. Phys. 35, 1019–1024.
Bernardini  C, Metivet  B, and Pernaud-Thomas  B (1995), Math. Modell. Numer. Anal. 29, 871–921.
Szepessy  A and Zumbrun  K (1996), Arch. Ration. Mech. Anal. 133, 249–298.
Galdi  GP, Heywood  JG, and Shibata  Y (1997), On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest, Arch. Ration. Mech. Anal. 138, 307–318.
Kato  T (1984), Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z. 187, 471–480.
Shibata Y (1995), An exterior initial boundary value problem for Navier-Stokes equation, Math Research Note, Inst of Mathematics, Univ of Tsukuba.
Heywood  JG (1979), A uniqueness theorem for nonstationary Navier-Stokes flow past an obstacle, Annali Sc Norm Pisa 6, 427–444.
Ladyzhenskaya  OA and Solonnikov  VA (1980), Determination of solutions of boundary value problems for steady-state Stokes and Navier-Stokes equations having an infinite Dirichlet integral, Zap. Nauchn. Semin. LOMI 96, 117–160.
Solonnikov  VA (1993), On the boundary value problem with discontinuous boundary data for the Navier-Stokes equations in three-dimensional case, Algebra Anal. 5, 252–270.
Solonnikov  VA (1993), Evolution free boundary problem for equation of motion of viscous compressible barotropic self-graviting fluid, SAACM 3, 257–275.
Solonnikov  VA (1994), Zap. Nauchn. Semin. POMI 213, 179–205.
Solonnikov  VA (1995), Free boundary problems for the Navier-Stokes equations with moving contact points, Free boundary problems: Theory and applications, Pitman Res. Notes in Math Series 323, 213–214.
Heywood JG (1994), Remarks on the possible global regularity of solutions of the three-dimensional Navier-Stokes equations, In: Progress in Theoretical and Computational Fluid Mechanics, GP Galdi, J Málek, and J Necás (eds), 1–32, Longman, New York.
Cottet GH (1992), Two dimensional incompressible fluid flow with singular initial data. In: Mathematical Topics in Fluid Mechanics, JF Rodrigues and A Sequeira (eds), 32–49, Longman Scientific and Technical, New York.
Bartucelli  MV, Doering  CR, and Gibbon  JD (1991), Ladder theorem for the 2D and 3D Navier-Stokes equations on a finite periodic domain, Nonlinearity 4, 531–542.
Bartucelli  MV, Doering  CR, Gibbon  JD, and Malham  SJA (1993), Length scales in solutions of the Navier-Stokes equations, Nonlinearity 6, 549–568.
Constantin P and Foias C (1988), Navier-Stokes Equations, Univ of Chicago Press, Chicago.
Valli  A (1983), Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann Scuola Norm Sup Pisa 10(4), 607–647.
Matsumura A (1981), An energy method for the equation of motion of compressible viscous and heat-conductive fluids, MRC Technical Summary Report 2194, Univ of Wisconsin, Madison.
Matsumura A and Nishida T (1981), The initial boundary value problem for the equations of motion of compressible viscous and heat-conducting fluid, MRC Technical Summary Report 2237, Univ of Wisconsin, Madison.
Matsumura A and Nishida T (1982), Initial boundary value problems for the equations of motion of general fluids, In: Comp Methods in Applied Sciences and Engineering, R Glowinski and JL Lions (eds), V, North-Holland, Amsterdam, 389–406.
Zajaczkowski  WM (1994), On nonstationary motion of a compressible barotropic viscous capillary fluid bounded by a free surface, SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 25, 1–84.
Valli  A (1981), Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll Un Mat It, Anal Funz Appl 18-C(5), 317–325.
Itaya  N (1976), On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness, J Math Kyoto Univ 16, 413–427.
Novotny  A and Padula  M (1994), Lp approach to steady flows of viscous compressible fluids in exterior domains, Arch. Ration. Mech. Anal. 126, 243–297.
Padula  M (1993), A representation formula for the steady solutions of a compressible fluid moving at low speed, Transp. Theory Stat. Phys. 21, 593–613.
Nordström  J (1995), The use of characteristic boundary conditions for the Navier-Stokes equations, Comput. Fluids 24, 609–623.
Hoff  D (1997), Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Ration. Mech. Anal. 139, 303–354.
Hoff  D (1995), Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Diff. Eqns. 120, 215–254.
Desjardins  B (1997), Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal. 137, 135–158.
Serre  D (1986), Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur, C R Acad Sci, Paris 303, 703–706.
Serre  D (1991), Variations de grande amplitude pour la densité d’un fluide visqueux compressible, Physica D 48, 113–128.
Valli  A and Zajaczkowski  WM (1986), Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in general case, Commun. Math. Phys. 103, 259–296.
Eberle A, Rizzi A, and Hirschel EH (1992), Numerical Solutions of the Euler Equations for Steady Flow Problems, Verlag-Vieweg, Braunschweig.
Peyret R (1996), Handbook of Computational Fluid Mechanics, Academic Press.
Hadamard J (1964), La théorie des équations aux dérivées partielles, Editions Scientifiques, Peking.
Heywood  JG (1989), Open problems in the theory of the Navier-Stokes equations for viscous incompressible flow, Lect. Notes Math. 1431, 1–22, Springer-Verlag.
Galdi GP, Màlek J, and Nečas J (eds) (1994), Progress in Theoretical and Computational Fluid Mechanics, Longman, New York.
Temam R (2000), Some developments on Navier-Stokes equations in the second half of the 20th century, In: Development of Mathematics 1950-2000, J-P Pier (ed), Birkhäuser Verlag, Basel, Switzerland, 1049–1106.
Zeytounian RKh and Guiraud JP (1984), Asymptotic features of low Mach number flows in aerodynamics and in the atmosphere, In: Adv in Comput Methods for Boundary and Interior Layers, JJH Miller (ed), 95–100, Boole Press, Dublin.
Zeytounian RKh (2002), Asymptotic Modeling of Fluid Flow Phenomena: Some Basic Aspects, Recent Developments and Issues, Kluwer Academic Publishers, Dordrecht.
Benedetto  D, Marchioro  C, and Pulvirenti  M (1993), On the Euler flow in R2,Arch. Ration. Mech. Anal. 123, 377–386.
Brenier  Y (1997), A homogenized model for vortex sheets, Arch Rat Math Anal 138, 319–353.
Foias  C and Saut  JC (1986), Proc of Symp in Pure Mathematics, 45 Part I, 439–448.
Galdi GP and J Nečas (eds) (1993), Recent Developments in Theoretical Fluid Mechanics 291, Longman, New York.
Ghidaglia  M (1986), Nonlinear Analysis: Theory, Methods, & Applications 10, 777–790.
Ladhyzhenskaya OA (1967), In: The Mathematical Problems in Fluid Mechanics, Institute of Basic Technical Problems, Polish Acad of Sci, Warszawa, 61–86.
Rodrigues JF and Sequeira A (1992), Mathematical Topics in Fluid Mechanics, Longman, New York.
Stewartson  K and Hall  MG (1963), The inner viscous solution for the core of a leading-edge vortex, J. Fluid Mech. 15, 306–318.
Strikwerda  JC (1977), Initial boundary value problems for incompletely parabolic system, Commun. Pure Appl. Math. 30, 797–822.
Stuart  JT (1986), Keith Stewartson: His life and work, Annu. Rev. Fluid Mech. 18, 1–14.
von Mises R (1958), Mathematical Theory of Compressible Fluid Flow, Academic Press, New York.
von Wahl W (1985), The Equations of Navier-Stokes and Abstract Parabolic Equations, Friedr Vieweg and Sohn, Brunschweig.

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In