0
REVIEW ARTICLES

Zero-Pressure-Gradient Turbulent Boundary Layer

[+] Author and Article Information
William K. George, Luciano Castillo

State University of New York at Buffalo, Buffalo NY 14260

Appl. Mech. Rev 50(12), 689-729 (Dec 01, 1997) (41 pages) doi:10.1115/1.3101858 History: Online April 20, 2009

Abstract

Of the many aspects of the long-studied field of turbulence, the zero-pressure-gradient boundary layer is probably the most investigated, and perhaps also the most reviewed. Turbulence is a fluid-dynamical phenomenon for which the dynamical equations are generally believed to be the Navier-Stokes equations, at least for a single-phase, Newtonian fluid. Despite this fact, these governing equations have been used in only the most cursory manner in the development of theories for the boundary layer, or in the validation of experimental data-bases. This article uses the Reynolds-averaged Navier-Stokes equations as the primary tool for evaluating theories and experiments for the zero-pressure-gradient turbulent boundary layer. Both classical and new theoretical ideas are reviewed, and most are found wanting. The experimental data as well is shown to have been contaminated by too much effort to confirm the classical theory and too little regard for the governing equations. Theoretical concepts and experiments are identified, however, which are consistent-both with each other and with the governing equations. This article has 77 references.

Copyright © 1997 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In