0
REVIEW ARTICLES

Bayonet Tube Heat Exchanger

[+] Author and Article Information
G. S. H. Lock, Harpal Minhas

Department of Mechanical Engineering, University of Alberta, Edmonton AB T6G 2G8, Canada

Appl. Mech. Rev 50(8), 445-473 (Aug 01, 1997) (29 pages) doi:10.1115/1.3101733 History: Online April 20, 2009

Abstract

This review article provides an overview and assessment of the bayonet tube heat exchanger in its concentric tube configuration. The article begins with a brief historical sketch of its use in three main contexts: in the process industries, especially in waste heat recovery; in geotechnical engineering, in permafrost stabilization; and in medicine, especially in cryosurgery. A conceptual outline describing the main heat transfer features of the device in counterflow, parallel flow, and cross flow situations follows. Particular attention is paid to the implications of thermal coupling between the inner tube flow, the annular (return) flow and the external fluid flow. The main text is divided into two parts: Experimental studies and Theoretical studies. Each of these is subdivided into two complementary sections: hydraulic studies, in which the emphasis is placed on fluid flow characteristics, especially in the U-bend at the end of the tube; and thermal studies, emphasizing the convective heat transfer characteristics. Each subsection is further divided to permit separate discussion of laminar, transitional and turbulent flow under steady, single-phase conditions. Experimental data are systematically compared with numerical predictions to provide a comprehensive survey of the effect of the independent variables (flow rate, tube geometry, and fluid properties) on the dependent variables (pressure drop, heat transfer rate). Experimental and numerical data are combined to develop empirical correlations for pressure drop and heat transfer. The final section examines the above findings to uncover the limitations of our current knowledge and thereby suggest profitable avenues for future research. There are 47 references listed at the end of the article.

Copyright © 1997 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In