0
REVIEW ARTICLES

Theory of Representations for Tensor Functions—A Unified Invariant Approach to Constitutive Equations

[+] Author and Article Information
Q.-S. Zheng

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

Appl. Mech. Rev 47(11), 545-587 (Nov 01, 1994) (43 pages) doi:10.1115/1.3111066 History: Online April 29, 2009

Abstract

Representations in complete and irreducible forms for tensor functions allow general consistent invariant forms of the nonlinear constitutive equations and specify the number and type of the scalar variables involved. They have proved to be even more pertinent in attempts to model mechanical behavior of anisotropic materials, since here invariant conditions predominate and the number and type of independent scalar variables cannot be found by simple arguments. In the last few years, the theory of representations for tensor functions has been well established, including three fundamental principles, a number of essential theorems and a large amount of complete and irreducible representations for both isotropic and anisotropic tensor functions in three- and two-dimensional physical spaces. The objective of the present monograph is to summarize and recapitulate the up-to-date developments and results in the theory of representations for tensor functions for the convenience of further applications in contemporary applied mechanics. Some general topics on unified invariant formulation of constitutive laws are investigated.

Copyright © 1994 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In