0
REVIEW ARTICLES: Geophysical Flows

Laboratory Observations of Gravity Wave, Critical Layer Flows Using Single and Double Wave Forcing

[+] Author and Article Information
Donald P. Delisi, Timothy J. Dunkerton

Northwest Research Associates, PO Box 3027, Bellevue WA 98009-3027

Appl. Mech. Rev 47(6S), S113-S117 (Jun 01, 1994) doi:10.1115/1.3124384 History: Online April 29, 2009

Abstract

Laboratory measurements of gravity wave, critical layer flows are presented. The measurements are obtained in a salt-stratified annular tank, with a vertical shear profile. Internal gravity waves are generated at the floor of the tank and propagate vertically upward into the fluid. At a depth where the phase speed of the wave equals the mean flow speed, defined as a critical level, the waves break down, under the right forcing conditions, generating small scale turbulence. Two cases are presented. In the first case, the wave forcing is a single, monochromatic wave. In this case, the early wave breaking is characterized as Kelvin-Helmholtz breaking at depths below the critical level. Later wave breaking is characterized by weak overturning in the upper part of the tank and regular, internal mixing regions in the lower part of the tank. In the second case, the wave forcing is two monochromatic waves, each propagating with a different phase speed. In this case, the early wave breaking is again Kelvin-Helmholtz in nature, but later wave breaking is characterized by sustained overturning in the upper part of the tank with internal mixing regions in the lower part of the tank. Mean velocity profiles are obtained both before and during the experiments.

Copyright © 1994 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In