REVIEW ARTICLES: Inelastic Microstructures

Variational Estimates for the Elastoplastic Response of Particle-Reinforced Metal-Matrix Composites

[+] Author and Article Information
Guoan Li

Orthopaedic Biomechanics Laboratory, Ross Building #215, School of Medicine, Johns Hopkins University, Baltimore MD 21205

P. Ponte Castañeda

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA 19104

Appl. Mech. Rev 47(1S), S77-S94 (Jan 01, 1994) doi:10.1115/1.3122825 History: Online April 29, 2009


Ductile solids reinforced by aligned elastic spheroidal inclusions, with overall transversely isotropic symmetry, are examined analytically in this paper. Estimates for the effective constitutive behavior of this class of composite materials are obtained in terms of simple optimization problems for general loading conditions, as functions of the particle stiffness, concentration and shape. In particular, explicit expressions are obtained for the yield functions of the composites. The results apply to composites with inclusion shapes ranging from continuous fibers (or needles in the limit of vanishingly small concentration), to approximately spherical, to continuous flat layers (or disks). As an example, we investigate a model composite of the type used in many structural applications, namely, 2124 Al–SiC which is made of a ductile matrix phase (Al) reinforced by hard brittle particles (SiC). The predicted stress-strain responses for these composites are compared with available experimental measurements and numerical calculations. Thus, it is shown that the constitutive model developed in this work predicts fairly accurately the uniaxial tensile experiments of Christman et al. (1989). In addition, the constitutive model is in good agreement with the periodic finite-element calculations of Tvergaard (1990) and Hom (1992), also for uniaxial loading conditions. A significant advantage of the analytical model proposed herein is that it can provide the constitutive response of composites under arbitrary loading conditions, without requiring complex numerical computations.

Copyright © 1994 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In