Geometrically Exact Analysis of Spatial Frames

[+] Author and Article Information
Paulo M. Pimenta, Takashi Yojo

Department of Structural and Foundation Engineering, Escola Politécnica, Universidade de São Paulo, CP 61548, 05424-970 São Paulo, SP, Brazil

Appl. Mech. Rev 46(11S), S118-S128 (Nov 01, 1993) doi:10.1115/1.3122626 History: Online April 29, 2009


A fully nonlinear, geometrically exact, finite strain rod model is derived from basic kinematical assumptions. The model incorporates shear distortion in bending and can take account of torsion warping. Rotation in 3D space is handled with the aid of the Euler-Rodrigues formula. The accomplished parametrization is simple and does not require update algorithms based on quaternions parameters. Weak and strong forms of the equilibrium equations are derived in terms of cross section strains and stresses, which are objective and suitable for constitutive description. As an example, an invariant linear elastic constitutive equation based on the small strain theory is presented. The attained formulation is very convenient for numerical procedures employing Galerkin projection like the finite element method and can be readily implemented in a finite element code. A mixed formulation of Hu-Washizu type is also derived, allowing for independent interpolation of the displacement, strain and stress fields within a finite element. An exact expression for the Fréchet derivative of the weak form of equilibrium is obtained in closed form, which is always symmetric for conservative loading, even far from an equilibrium state and is very helpful for numerical procedures like the Newton method as well as for stability and bifurcation analysis. Several numerical examples illustrate the usefulness of the formulation in the lateral stability analysis of spatial frames. These examples were computed with the code FENOMENA, which is under development at the Computational Mechanics Laboratory of the Escola Politécnica.

Copyright © 1993 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In