0
REVIEW ARTICLES: Numerical

Implementation of the Nonlocal Microplane Concrete Model Within an Explicit Dynamic Finite Element Program

[+] Author and Article Information
William F. Cofer

Department of Civil and Environmental Engineering, Washington State University, Pullman WA 99164-2910

Appl. Mech. Rev 45(3S), S132-S139 (Mar 01, 1992) doi:10.1115/1.3121383 History: Online April 30, 2009

Abstract

The microplane concrete material model is based upon assumptions regarding the behavior of the material components. At any point, the response to the strain tensor on arbitrarily oriented surfaces is considered. Simple, softening stress-strain relationships are assumed in directions perpendicular and parallel to the surfaces. The macroscopic material behavior is then composed of the sum of the effects. The implementation of this model into the explicit, nonlinear, dynamic finite element program, DYNA3D, is described. To avoid the spurious mesh sensitivity that accompanies material failure, a weighted integral strain averaging approach is used to ensure that softening is nonlocal. This method is shown to be effective for limiting the failure zone in a concrete rod subjected to an impulse loading.

Copyright © 1992 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In