0
REVIEW ARTICLES: Theoretical

Phenomenological Theories of Elastoplasticity and Strain Localization at High Strain Rates

[+] Author and Article Information
Sia Nemat-Nasser

Center of Excellence for Advanced Materials, Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, CA 92093

Appl. Mech. Rev 45(3S), S19-S45 (Mar 01, 1992) doi:10.1115/1.3121388 History: Online April 30, 2009

Abstract

In this paper certain fundamental concepts underlying the phenomenological theories of elastic-plastic deformations at finite strains and rotations are presented, and some of the commonly discussed theories are summarized, emphasizing the constitutive parameters which influence strain localization and material instability often observed in finite deformation of ductile materials. Particular attention is paid to the thermodynamic basis of inelastic deformation. Conditions for the existence of inelastic potentials are discussed. The results are presented in terms of a general material strain and its conjugate stress, and then specialized for particular applications, emphasizing quantities and theories which are reference- and strain measure-independent. Rate-independent and rate-dependent elastoplasticity relations are developed, starting from a finite deformation version of the J2 -plasticity with isotropic and kinematic hardening, and leading to theories which include dilatancy, pressure sensitivity, frictional effects, and the noncoaxiality of the plastic strain and the stress deviator. A class of commonly used deformation plasticity theories is then examined and its relation to nonlinear elasticity is discussed. The question of plastic spin, and its relation to the decomposition of the deformation gradient into elastic and plastic constituents, is reviewed in some detail, and it is shown that this decomposition yields explicit relations which uniquely define all spins in terms of the velocity gradient and the elastic and plastic deformation rates, hence requiring no additional constitutive relations for the plastic spin. The phenomenon of strain localization at high strain rates is illustrated and discussed, and a series of numerical results are given. Finally, a recent breakthrough in elastoplastic explicit computational algorithms for large-strain, large-strain-rate problems is briefly reviewed.

Copyright © 1992 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In