0
REVIEW ARTICLES: Solidification

Kinetic Effects in Directional Solidification

[+] Author and Article Information
G. J. Merchant, S. H. Davis

Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208

Appl. Mech. Rev 43(5S), S76-S78 (May 01, 1990) doi:10.1115/1.3120855 History: Online April 30, 2009

Abstract

Mullins and Sekerka showed for fixed temperature gradient that the planar interface is linearly stable for all pulling speeds V above some critical value, the absolute stability limit. Near this limit, where solidification rates are rapid, the assumption of local equilibrium at the interface may be violated. We incorporate nonequilibrium effects into a linear stability analysis of the planar front by allowing the segregation coefficient and interface temperature to depend on V in a thermodynamically-consistent way. In addition to the steady cellular mode, we find a new branch of long-wavelength time-periodic states. Under certain conditions there exists a stability window separating the steady and oscillatory branches.

Copyright © 1990 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In