On Experimental Studies of Longitudinal and Flexural Wave Propagations: An Annotated Bibliography

[+] Author and Article Information
M. M. Al-Mousawi

Department of Engineering, University of Aberdeen, Natural Philosophy Building, Aberdeen AB9 2UE, Scotland, United Kingdom

Appl. Mech. Rev 39(6), 853-865 (Jun 01, 1986) (13 pages) doi:10.1115/1.3149516 History: Online June 12, 2009


Experimental investigations in the field of longitudinal wave propagation in beams are plentiful; however, experimental studies of flexural wave propagation problems are scarce and are restricted mainly to uniform and infinite structures where the effects of reflected waves are not generally included. This review is mostly restricted to low velocity impact and does not cover the so-called high velocity impact such as those of bullets and explosives. In addition to a brief survey of classical work related to impact, this article covers publications related to experimental studies of longitudinal and flexural elastic waves due to impact. This includes the longitudinal, central as well as eccentric impact and transverse impact of two bars and the impact achieved by sphere impinging on a beam. Many workers used experimental findings to study the adequacy of various theoretical solutions of the wave propagation problem such as those by Pochhammer and Chree, Euler–Bernoulli, and the Timoshenko beam theory. The revival of interest in the recent years is due to, among other things, the advancement of experimental equipment and measurement techniques for data acquisition of stress waves and associated signals. An important application of transient waves is their use for the determination of material properties under various loading conditions and strain rates that can be studied by the split Hopkinson pressure bar techniques. The problem of longitudinal and flexural waves in bars with discontinuities of cross section are covered, and some publications on fracture of materials due to bending waves are also included. Experimental investigations demonstrate the effect of abrupt change of cross section and/or material properties on reflected and transmitted waves where reflections are to be taken into consideration when estimating the level of stresses and strains in finite beam with discontinuities. In the field of flexural wave propagation, comparison of theoretical predictions with experimental results verified and validated the adequacy of the Timoshenko theory for the determination of bending strain in finite structures, a one-dimensional theory that takes into account the effect of shear deformation and rotatory inertia.

Copyright © 1986 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In