0
REVIEW ARTICLES

Fracture Mechanics

[+] Author and Article Information
J. R. Rice

Division of Applied Sciences, Harvard University, Cambridge MA 02138

Appl. Mech. Rev 38(10), 1271-1275 (Oct 01, 1985) (5 pages) doi:10.1115/1.3143689 History: Online June 12, 2009

Abstract

Fracture mechanics is an active research field that is currently advancing on many fronts. This appraisal of research trends and opportunities notes the promising developments of nonlinear fracture mechanics in recent years and cites some of the challenges in dealing with topics such as ductile-brittle transitions, failure under substantial plasticity or creep, crack tip processes under fatigue loading, and the need for new methodologies for effective fracture analysis of composite materials. Continued focus on microscale fracture processes by work at the interface of solid mechanics and materials science holds promise for understanding the atomistics of brittle vs ductile response and the mechanisms of microvoid nucleation and growth in various materials. Critical experiments to characterize crack tip processes and separation mechanisms are a pervasive need. Fracture phenomena in the contexts of geotechnology and earthquake fault dynamics also provide important research challenges.

Copyright © 1985 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In